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Abstract: Full-penetration laser beam welding is characterized by a weld seam whose depth equals

the material thickness. It is associated with a stable capillary and is therefore widely used for

welding of sheet metal components. The realization of lightweight concepts in car body production

requires the application of high-strength aluminum alloys that contain magnesium as an alloying

element, which significantly influences the evaporation temperature and pressure. This change of

the evaporation processes influences the geometry of the capillary and therefore its absorptance.

In order to quantify the influence of magnesium on the capillary, their geometries were captured

by means of high-speed synchrotron X-ray imaging during the welding process of the aluminum

alloys AA1050A (Al99.5), AA5754 (AlMg3) and AA6016 (AlSi1.2Mg0.4). The 3D-geometries of the

capillaries were reconstructed from the intensity distribution in the recorded X-ray images and

their absorptance of the incident laser beam was determined by the analysis of the reconstructed

3D-geometry with a raytracing algorithm. The results presented in this paper capture for the first

time the influence of the magnesium content in high-strength aluminum alloys on the aspect ratio of

the capillary, which explains the reduced absorptance in case of full-penetration laser beam welding

of aluminum alloys with a high content of volatile elements. In order to improve the absorptance in

full-penetration welding, these findings provide the information required for the deduction of new

optimization approaches.

Keywords: laser beam welding; aluminum alloys; full-penetration; X-ray imaging; synchrotron;

absorptance; magnesium content

1. Introduction

Full-penetration welding is characterized by a weld seam whose depth equals the
material thickness. Compared to partial-penetration laser beam welding, full-penetration
welding is associated with a stable capillary and therefore is a more reliable process because
the additional opening at the bottom results in the avoidance of a collapsing capillary
tip [1–3]. In addition, it facilitates the quality assurance of the weld because it can be
visually ascertained whether the required penetration depth was achieved. Full-penetration
laser beam welding is therefore widely used for welding of sheet metal components.

There are two modes of full-penetration welding which can be distinguished by the
length sc of the capillary in relation to the sample’s thickness ss, as diagramed in Figure 1a
the capillary is closed at the bottom i.e., sc < ss and only the melt pool penetrates the whole
sheet thickness and Figure 1b the capillary is open at the bottom, i.e., sc = ss.
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the bottom side of the sheet. The course of the melt isotherms in the lower region of the
sheet differs between both modes. In mode A, a curvature of the boundary of the melt pool
occurs near the bottom region whereas this boundary is a straight vertical line in mode B.

For each investigated material, the power was adapted until the depths of the capillary
equaled the sheet thickness and a vertical melt pool boundary was observed, as shown
in Figure 3b to determine the power required for welding mode B. This was ensured by
visual inspection of the high-speed X-ray images. The resulting welding parameters for the
different alloys are listed in Table 2.

Table 2. Overview of the used parameters for welding in full-penetration mode B.

Parameter AA1050A AA6016i AA5754

v in m/min 6 6 6
df in µm 102 102 102

P in kW 1.2 2.0 2.1

2.3. Determination of the Absorptance of the Vapor Capillaries

The 3D-geometry of the capillary was reconstructed from the recorded images as
described in [18,19]. Based on Beers absorption law of the X-ray radiation that is transmitted
through the samples, the geometrical extension of the capillary along propagation direction
of the X-ray beam is given by:

wy(x, z) =
1

2·µ
· ln

(

Ic(x, z)

I0

)

, (1)

where Ic(x,z) is the measured X-ray intensity at the corresponding position (x,z) as defined
in Figure 2 within the cross-sectional area of the capillary and I0 is the intensity transmitted
through the workpiece at a location outside the capillary, and µ is the attenuation coefficient.

The attenuation coefficient for the monochrome X-ray beam with 37.7 keV in solid
aluminum amounts to µsol = 1.8 cm−1 [20], and linearly depends on the density of the
material [21]. As described in [18] the presence of a liquid phase causes a systematic error
which results from its decreased density. To take this into account and to estimate the range
of possible extensions of the capillary in the direction along the X-ray beam, Equation
(1) was solved for both, the attenuation coefficient µsol = 1.8 cm−1 of the solid material
and for the one of the liquid material given by µliq = µsol · ρliq/ρsol = 1.58 cm−1 and

with the corresponding densities ρliq(T = 700 ◦C) = 2370kg/m3 and ρsol(T = 20 ◦C) =

2700 kg/m3, respectively [15]. This yields the minimum and maximum possible values of
the real extent wy of the capillary.

Assuming a mirror symmetric capillary centered at the plane of symmetry at y = 0,
wy(x,z) defines its 3D-geometry in which the absorptance of the laser beam was calculated
by raytracing. The bundle of rays for the raytracing calculation were defined according
to the specifications of the laser beam used in the experiments which exhibited a top-hat
shaped intensity distribution in the focal plane. It was assumed that the distance between
the front of the capillary and the beam axis equals df/2. The complex refractive index
nc = n − ki for liquid aluminum at T = 2500 ◦C used to calculate the Fresnel absorption
at each reflection of a ray on the walls of the capillary is given by Re(nc) = n = 4.5 and
Im(nc) = k = 9.0 [5]. The propagation and reflection of 150,000 randomly polarized beams
was calculated, considering up to 20 reflections of each beam.

It is to be assumed that the evaporating surface of the capillary is not perfectly
smooth but exhibits small geometrical variations that cannot be resolved by the applied
measurement and reconstruction method. In order to take into account the diffuse character
of the reflection at this rough surface the radiation was assumed to be reflected according
to Lambert’s cosine emission law [22,23].
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