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Abstract Production cross sections of the Higgs boson are
measured in the H - ZZ — 4¢ ({ = e, ) decay chan-
nel. A data sample of proton—proton collisions at a center-
of-mass energy of 13 TeV, collected by the CMS detector
at the LHC and corresponding to an integrated luminosity
of 137 fb~! is used. The signal strength modifier s, defined
as the ratio of the Higgs boson production rate in the 4¢
channel to the standard model (SM) expectation, is measured
tobe u = 0.94 £+ 0.07 (stat)fgzgg (syst) at a fixed value of
my = 125.38 GeV. The signal strength modifiers for the
individual Higgs boson production modes are also reported.
The inclusive fiducial cross section for the H — 4£ process is
measured to be 2.84:%; (stat)fgig? (syst) fb, which is com-
patible with the SM prediction of 2.84 £ 0.15 fb for the same
fiducial region. Differential cross sections as a function of
the transverse momentum and rapidity of the Higgs boson,
the number of associated jets, and the transverse momen-
tum of the leading associated jet are measured. A new set of
cross section measurements in mutually exclusive categories
targeted to identify production mechanisms and kinematical
features of the events is presented. The results are in agree-
ment with the SM predictions.

1 Introduction

The discovery of the Higgs boson (H) in 2012 by the ATLAS
and CMS collaborations [1-3] has been a major step towards
the understanding of the electroweak symmetry breaking
mechanism [4-9]. Further studies by the two experiments
[10-13] have shown that the properties of the new particle
are consistent with the standard model (SM) expectations for
the H boson.

The H — ZZ — 44 decay channel ({ = e, ) has a
large signal-to-background ratio thanks to a low background
rate and the complete reconstruction of the final state decay
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products, capitalizing on the excellent lepton momentum res-
olution of the CMS detector. The measurements performed
using this decay channel with the LHC Run 1 data set at
center-of-mass energies of 7 and 8 TeV, and the Run 2 data
set at 13 TeV include the determination of the mass, the spin
and the parity of the H boson [14-19], its width [20-23], the
inclusive and differential fiducial cross sections [18,24-28],
and the tensor structure of the H boson interaction with a pair
of neutral gauge bosons in both on-shell and off-shell regions
[17,19,21,29,30].

This paper presents the measurement of production cross
sections in granular kinematic regions of the H boson in
the H — ZZ — 4{ decay channel. A data sample of
proton—proton (pp) collisions at a center-of-mass energy of
ﬁ = 13 TeV, collected by the CMS detector at the LHC
and corresponding to an integrated luminosity of 137 fb~! is
used. The inclusive signal strength modifier, defined as the
ratio of the H boson production rate in the 4¢ channel to the
SM expectation, and signal strength modifiers for the indi-
vidual H boson production modes are measured. The mea-
surements of the inclusive and differential fiducial cross sec-
tions are also presented, and their compatibility with the SM
predictions is tested. The present analysis is similar to that
previously performed by the CMS Collaboration [18], but is
based on a larger data sample.

In addition, measurements of the H boson cross sections
within the simplified template cross section (STXS) frame-
work [31-33] are also presented. The main goals of the STXS
framework are to increase the reinterpretability of the pre-
cision H boson measurements and to minimize the theory
dependence. This is achieved by defining exclusive kinematic
regions in the H boson production phase space. The results
presented within the STXS framework nonetheless depend
on the SM simulation used to model the experimental accep-
tance of the signal processes, which could be modified in
beyond the SM (BSM) scenarios. These kinematic regions,
referred to as bins, are defined in different stages correspond-
ing to increasing degrees of granularity. This paper presents

@ Springer



488 Page 2 of 47

Eur. Phys. J. C (2021) 81:488

results in the STXS stage 0 where the bins correspond closely
to the different H boson production mechanisms. Previous
measurements of cross sections in stage 0 production bins
in the H — 4¢ decay channel were already presented by the
CMS Collaboration [18]. In the STXS framework, additional
stages are defined by further splitting of the bins enhancing
the sensitivity to possible signature of BSM physics at high
transverse momentum of the H boson. Measurements of stage
0, stage 1, and stage 1.1 cross sections in the H — 4¢ decay
channel were recently published by the ATLAS Collabora-
tion [27]. The most recent refinement of STXS binning is
referred to as STXS stage 1.2. This paper presents a first set
of the cross section measurements in the STXS stage 1.2 bins
in the H — 4/ decay channel.

The paper is organized as follows. A brief introduction of
the CMS detector is given in Sect. 2. The data, as well as the
simulated signal and background samples, are described in
Sect. 3. The event reconstruction and selection, the kinematic
discriminants, and the categorization of the H boson candi-
date events are described in Sects. 4, 5, and 6 , respectively.
The background estimation is detailed in Sect. 7 while the
signal modeling is described in Sect. 8. The experimental and
theoretical systematic uncertainties are described in Sect. 9
and the results are presented in Sect. 10. Concluding remarks
are given in Sect. 11.

2 The CMS detector

The central feature of the CMS apparatus is a supercon-
ducting solenoid of 6 m internal diameter, providing a mag-
netic field of 3.8 T. Within the solenoid volume are a silicon
pixel and strip tracker, a lead tungstate crystal electromag-
netic calorimeter (ECAL), and a brass and scintillator hadron
calorimeter (HCAL), each composed of a barrel and two end-
cap sections. Forward calorimeters extend the pseudorapid-
ity n coverage provided by the barrel and endcap detectors.
Muons are detected in gas-ionization chambers embedded in
the steel flux-return yoke outside the solenoid.

Events of interest are selected using a two-tiered trigger
system. The first level, composed of custom hardware pro-
cessors, uses information from the calorimeters and muon
detectors to select events at a rate of around 100 kHz within
a fixed latency of about 4 s [34]. The second level, known
as the high-level trigger, consists of a farm of processors
running a version of the full event reconstruction software
optimized for fast processing, and reduces the event rate to
around 1 kHz before data storage [35].

The candidate vertex with the largest value of summed
physics-object squared transverse momentum p% is taken
to be the primary pp interaction vertex (PV). The physics
objects are the jets, clustered using the jet finding algo-
rithm [36,37] with the tracks assigned to candidate vertices
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as inputs, and the associated missing transverse momentum,
taken as the negative vector sum of the pr of those jets.

The electron momentum is estimated by combining the
energy measurement in the ECAL with the momentum mea-
surement in the tracker. The momentum resolution for elec-
trons with pt &~ 45 GeV from Z — ee decays ranges from
1.7% to 4.5%. It is generally better in the barrel region than in
the endcaps, and also depends on the bremsstrahlung energy
emitted by the electron as it traverses the material in front of
the ECAL [38]. The ECAL consists of 75 848 lead tungstate
crystals, which provide coverage of |n| < 1.48 in the bar-
rel region and 1.48 < [n| < 3.00 in the two endcap regions
(EE). Preshower detectors consisting of two planes of silicon
sensors interleaved with a total of 3X( of lead are located in
front of each EE detector.

Muons are measured in the pseudorapidity range |n| <
2.4, with detection planes made using three technologies:
drift tubes, cathode strip chambers, and resistive plate cham-
bers. The single muon trigger efficiency exceeds 90% over
the full n range, and the efficiency to reconstruct and iden-
tify muons is greater than 96%. Matching muons to tracks
measured in the silicon tracker results in a relative transverse
momentum resolution, for muons with p up to 100 GeV, of
1% in the barrel and 3% in the endcaps. The pt resolution in
the barrel is better than 7% for muons with pt up to 1 TeV
[39].

A more detailed description of the CMS detector, together
with a definition of the coordinate system used and the rele-
vant kinematic variables, can be found in Ref. [40].

3 Data and simulated samples

This analysis is based on the pp collision data collected by
the CMS detector at the LHC in 2016, 2017, and 2018 with
integrated luminosities of 35.9, 41.5, and 59.7 b1, respec-
tively [41-43]. The collision events are selected by high-
level trigger algorithms that require the presence of leptons
passing loose identification and isolation requirements. The
main triggers select either a pair of electrons or muons, or an
electron and a muon. The minimal transverse momentum of
the leading and subleading leptons changed throughout the
years to account for the different data-taking conditions and
is summarized in Table 1.

To maximize the coverage of the H — 4¢ phase
space, triggers requiring three leptons with relaxed trans-
verse momenta thresholds and no isolation requirement are
also used, as are isolated single-electron and single-muon
triggers. The overall trigger efficiency for simulated signal
events that pass the full event selection (described in Sect. 4)
is larger than 99%. The trigger efficiency is derived from
data using a sample of 4¢ events collected by the single-
lepton triggers and a method based on the “tag and probe”
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Table 1 The minimal pr of the leading/subleading leptons for the main
di-electron (e/e), di-muon (/1 ), and electron-muon (e/p, p/e) high-
level trigger algorithms used in the H — 4¢ analysis in 2016, 2017,
and 2018

ele (GeV) w/n (GeV) e/n, ple (GeV)
2016 17/12 17/8 17/8, 8/23
2017 23/12 17/8 23/8, 12/23
2018 23/12 17/8 23/8, 12/23

technique. One of the four leptons is matched to a candidate
reconstructed by the single-lepton trigger and the remaining
three leptons in the event are used as probes. The probe lep-
tons are combined in an attempt to reconstruct any of the
triggers used in the analysis. The efficiency in data is found
to be in agreement with the expectation from the simulation.

Monte Carlo (MC) simulation samples for the signals
and the relevant background processes are used to evaluate
the signal shape, estimate backgrounds, optimize the event
selection, and evaluate the acceptance and systematic uncer-
tainties. The SM H boson signals are simulated at next-to-
leading order (NLO) in perturbative QCD (pQCD) with the
POWHEG 2.0 [44-46] generator for the five main produc-
tion processes: gluon fusion (ggH) [47], vector boson fusion
(VBF) [48], associated production with a vector boson (VH,
where V is a W or a Z boson) [49], and associated produc-
tion with a pair of top quarks (ttH) [50]. The ZH production
occurs in two ways, qq — ZH and a much smaller contri-
bution from gg — ZH, which is simulated at leading order
(LO) using JHUGEN 7.3.0 [51-55]. In addition to the five
main production processes, the contributions due to H boson
production in association with a single top quark (tH) and
either a quark (tHq) or a W boson (tHW) are simulated at
LO using JHUGEN 7.0.2 and MADGRAPH5_aMC@NLO 2.2.2
[56], respectively. The associated production with a pair of
bottom quarks (bbH) is simulated at LO with JHUGEN 7.0.2.
In all cases, the decay of the H boson to four Ieptons is mod-
eled with THUGEN 7.0.2. The theoretical predictions used for
the various production and decay modes can be found in Refs.
[57-79] and are summarized in Ref. [32].

The ZZ background contribution from quark-antiquark
annihilation is simulated at NLO pQCD with POWHEG 2.0
[80], while the gg — ZZ process is generated at LO with
MCFM 7.0.1 [81]. The WZ background and the triboson back-
grounds ZZZ, WZZ, and WWZ are modeled at NLO using
MADGRAPH5_aMC@NLO 2.4.2. The smaller ttZ, tt WW, and
ttZZ background processes are simulated at LO with MAD-
GRAPHS_aMC@NLO 2.4.2. The events containing Z bosons
with associated jets (Z+jets) are simulated at NLO with
MADGRAPHS_aMC@NLO 2.4.2 and the tt background is sim-
ulated at NNLO with POWHEG 2.0. The reducible background

determination does not rely on the MC but is based on data,
as described in Sect. 7.2.

All signal and background event generators are interfaced
with PYTHIA 8.230 [82] using the CUETP8MI1 tune [83] for
the 2016 data-taking period and the CP5 tune [84] for the
2017 and 2018 data-taking periods, to simulate the multi-
parton interaction and hadronization effects. The NNPDF3.0
set of parton distribution functions (PDFs) is used [85]. The
generated events are processed through a detailed simulation
of the CMS detector based on GEANT4 [86,87] and are recon-
structed with the same algorithms that are used for data. The
simulated events include overlapping pp interactions (pileup)
and have been reweighted so that the distribution of the num-
ber of interactions per LHC bunch crossing in simulation
matches that observed in data.

4 Event reconstruction and selection

The particle-flow (PF) algorithm [88] aims to reconstruct
and identify each individual particle (PF candidate) in an
event, with an optimized combination of information from
the various elements of the CMS detector. The energy of pho-
tons is obtained from the ECAL measurement. The energy
of electrons is determined from a combination of the elec-
tron momentum at the PV as determined by the tracker, the
energy of the corresponding ECAL cluster, and the energy
sum of all bremsstrahlung photons spatially compatible with
originating from the electron track. The energy of muons is
obtained from the curvature of the corresponding track. The
energy of charged hadrons is determined from a combination
of their momentum measured in the tracker and the matching
ECAL and HCAL energy deposits, corrected for the response
function of the calorimeters to hadronic showers. Finally, the
energy of neutral hadrons is obtained from the corresponding
ECAL and HCAL energies.

The missing transverse momentum vector ﬁ{“iss
puted as the negative vector sum of the transverse momenta
of all the PF candidates in an event, and its magnitude is
denoted as p%ﬁ“ [89]. The ﬁ{ni“ is modified to account for
corrections to the energy scale of the reconstructed jets in the
event.

Muons with p% > 5GeV are reconstructed within the
geometrical acceptance, corresponding to the region |n*| <
2.4, by combining information from the silicon tracker and
the muon system [39]. The matching between the inner and
outer tracks proceeds either outside-in, starting from a track
in the muon system, or inside-out, starting from a track in
the silicon tracker. Inner tracks that match segments in only
one or two stations of the muon system are also considered
because they may belong to very low-pt muons that do not
have sufficient energy to penetrate the entire muon system.
The muons are selected among the reconstructed muon track

is com-
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candidates by applying minimal requirements on the track in
both the muon system and the inner tracker system, and tak-
ing into account the compatibility with small energy deposits
in the calorimeters.

To discriminate between prompt muons from Z boson
decay and those arising from electroweak (EW) decays of
hadrons within jets, an isolation requirement of 7" < 0.35
is imposed, where the relative isolation is defined as

" = ( [0’ Z p%eutral
+ 3y - o)k (1)

In Eq. (1), Y pCharged is the scalar sum of the transverse
momenta of charged hadrons originating from the chosen
PV of the event. The quantities Y pi""® and }" pX are the
scalar sums of the transverse momenta for neutral hadrons
and photons, respectively. The isolation sums involved are
all restricted to a volume bound by a cone of angular
radius AR = 0.3 around the muon direction at the PV,
where the angular distance between two particles i and j
is ARG, j) = v (' —n))? + (¢' — ¢7)2. Since the iso-
lation variable is particularly sensitive to energy deposits

h d
p% e 4+ max

. . . ,PU T
from pileup interactions, a p# contribution is subtracted,

defined as pT’PU 05%; p' PU, where i runs over the

charged hadron PF candidates not originating from the PV,
and the factor of 0.5 corrects for the different fraction of
charged and neutral particles in the cone [90].

Electrons with py. > 7GeV are reconstructed within the
geometrical acceptance, corresponding to the pseudorapid-
ity region |n°| < 2.5 [38]. Electrons are identified using a
multivariate discriminant which includes observables sen-
sitive to the presence of bremsstrahlung along the electron
trajectory, the geometrical and momentum—energy match-
ing between the electron trajectory and the associated cluster
in the ECAL, the shape of the electromagnetic shower in
the ECAL, and variables that discriminate against electrons
originating from photon conversions. Instead of an addi-
tional isolation requirement, similar to the one for muons, the
electron multivariate discriminant also includes the isolation
sums described above (3 pr charged , Y prevmal and 3 pl)
but computed around the electron direction. The inclusion of
isolation sums helps suppressing electrons originating from
electroweak decays of hadrons within jets [91] and has a bet-
ter performance than a simple requirement on the relative
isolation observable. The package XGBOOST [92] is used for
the training and optimization of the multivariate discriminant
employed for electron identification and isolation. The train-
ing is performed with simulated events that are not used at any
other stage of the analysis. Events are divided into six regions
defined by two transverse momentum ranges (7—-10 GeV and
> 10GeV) and three pseudorapidity regions: central barrel
(In®] < 0.8), outer barrel (0.8 < |n°| < 1.479), and endcaps
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(1.479 < |n®| < 2.5). Separate training is performed for
the three different data-taking periods and selection require-
ments are determined such that the signal efficiency remains
the same for all three periods.

The effect of the final-state radiation (FSR) from leptons is
recovered as follows. Bremsstrahlung photons already asso-
ciated to electrons in the reconstruction step are not consid-
ered in this procedure. Photons reconstructed by the PF algo-
rithm within |nY| < 2.4 are considered as FSR candidates if
they satisfy the conditions p% > 2GeV and 7V < 1.8, where
the photon relative isolation ZV is defined as for the muon in
Eq. (1). Every such photon is associated to the closest selected
lepton in the event. Photons that do not satisfy the require-
ments AR(Y, £)/(ph)? < 0.012GeV—2and AR(y, £) < 0.5
are discarded. The lowest-AR(y, £)/( p%)2 photon candidate
of every lepton, if any, is retained. The photons thus identified
are excluded from the isolation computation of the muons
selected in the event.

In order to suppress muons from in-flight decays of
hadrons and electrons from photon conversions, leptons are
rejected if the ratio of their impact parameter in three dimen-
sions, computed with respect to the PV position, to their
uncertainty is greater or equal to four.

The momentum scale and resolution of electrons and
muons are calibrated in bins of p% and n® using the decay
products of known dilepton resonances as described in Refs.
[38,39].

A “tag and probe” technique [93] based on samples of
Z boson events in data and simulation is used to measure
the efficiency of the reconstruction and selection for prompt
electrons and muons in several bins of p% and n¢. The dif-
ference in the efficiencies measured in simulation and data is
used to rescale the yields of selected events in the simulated
samples.

For each event, hadronic jets are clustered from the recon-
structed particles using the infrared- and collinear-safe anti-
kt algorithm [36,37] with a distance parameter of 0.4. The
jet momentum is determined as the vectorial sum of all par-
ticle momenta in the jet, and is found from simulation to
be within 5-10% of the true momentum over the whole
pr spectrum and detector acceptance. Additional pp inter-
actions within the same or nearby bunch crossings can con-
tribute extra tracks and calorimetric energy depositions to
the jet. To mitigate this effect, tracks identified as originat-
ing from pileup vertices are discarded and an offset correc-
tion is applied to correct for the remaining contributions. Jet
energy corrections are derived from simulation to match that
of particle level jets on average. In situ measurements of the
momentum balance in dijet, photon + jet, Z+ jet, and multijet
events are used to account for any residual differences in jet
energy scale in data and simulation [94]. Jet energies in sim-
ulation are smeared to match the resolution in data. The jet
energy resolution amounts typically to 16% at 30 GeV, 8%
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at 100 GeV, and 4% at 1 TeV. Additional selection criteria
are applied to remove jets potentially dominated by anoma-
lous contributions from various subdetector components or
reconstruction failures. To be considered in the analysis, jets
must satisfy the conditions pJTet > 30GeV and |¢!| < 4.7,
and be separated from all selected lepton candidates and any
selected FSR photons by AR({/vy, jet) > 0.4. Jets are also
required to pass the tight identification criteria and the tight
working point of pileup jet identification described in Ref.
[90].

For event categorization, jets are tagged as b jets using
the DeepCSV algorithm [95], which combines information
about impact parameter significance, secondary vertex, and
jet kinematics. Data to simulation scale factors for the b tag-
ging efficiency are applied as a function of jet pr, 1, and
flavor.

The event selection is designed to extract signal candi-
dates from events containing at least four well-identified and
isolated leptons, each originating from the PV and possibly
accompanied by an FSR photon candidate. In what follows,
unless otherwise stated, FSR photons are included in invari-
ant mass computations.

First, Z candidates are formed with pairs of leptons of the
same flavor and opposite-charge (eTe ™, w1 ™) that pass the
requirement 12 < my+y- < 120GeV. They are then com-
bined into ZZ candidates, wherein we denote as Z; the Z
candidate with an invariant mass closest to the nominal Z
boson mass [96], and as Z, the other one. The flavors of the
involved leptons define three mutually exclusive subchan-
nels: 4e, 4|1, and 2e2.

To be considered for the analysis, ZZ candidates have to
pass a set of kinematic requirements that improve the sen-
sitivity to H boson decays. The Z; invariant mass must be
larger than 40 GeV. All leptons must be separated in angular
space by atleast AR({;, £;) > 0.02. At least two leptons are
required to have pt > 10 GeV and at least one is required to
have pt > 20 GeV. In the 4} and 4e subchannels, where an
alternative Z,7Z; candidate can be built out of the same four
leptons, we discard candidates with mz, < 12GeV if Z, is
closer to the nominal Z boson mass than Z; is. This rejects
events that contain an on-shell Z and a low-mass dilepton res-
onance. To further suppress events with leptons originating
from hadron decays in jet fragmentation or from the decay of
low-mass resonances, all four opposite-charge lepton pairs
that can be built with the four leptons (irrespective of fla-
vor) are required to satisfy the condition m+,- > 4 GeV,
where selected FSR photons are disregarded in the invariant
mass computation. Finally, the four-lepton invariant mass
ma¢ must be larger than 70 GeV, which defines the mass
range of interest for the subsequent steps of the analysis.

In events where more than one ZZ candidate passes the
above selection, the candidate with the highest value of D]gf(“g

(defined in Sect. 5) is retained, except if two candidates con-
sist of the same four leptons, in which case the candidate with
the Z mass closest to the nominal Z boson mass is retained.

5 Kinematic discriminants

The full kinematic information from each event using either
the H boson decay products and/or the associated particles
in the H boson production is extracted by means of matrix
element calculations and is used to form several kinematic
discriminants. These computations rely on the MELA pack-
age [51-53,55] and exploit the JHUGEN matrix elements for
the signal and the MCFM matrix elements for the background.
Both the H boson decay kinematics and the kinematics of
the associated production of H+ 1 jet, H+ 2 jets, VBF, ZH,
and WH are explored. The full event kinematics is described
by decay observables 2H=4 or observables describing the
associated production QP+ which may or may not include
the H — 4¢ decay kinematic information depending on the
use case. The definition of these observables can be found in
Refs. [51-53].

Two types of kinematic discriminants are exploited in the
H — 4¢ analysis. First we construct the three categorization
discriminants in order to classify signal events into exclusive
categories as defined in Sect. 6.2. Categorization discrimi-
nants are designed to increase the purity of the targeted pro-
duction mechanism in a dedicated event category. In addition,
we define another set of three kinematic discriminants that
are taken as an observable in the two-dimensional likelihood
fits carried out to extract the results, as described in Sect. 10.
These kinematic discriminants are designed to separate the
targeted H boson production mechanism from its dominant
background.

Categorization discriminants are calculated following the
prescription in Refs. [18,21,97]. The discriminants sensitive
to the VBF signal topology with two associated jets, the VBF
signal topology with one associated jet, and the VH (either
ZH or WH) signal topology with two associated jets are:

- I —1
DVBF — |14 PHjj(%H+JJ|m4€)
Pypr($2H+|myy)

N —1
DVBF _ 1+ PHj(‘QHt”mM)
| [ dnPypr($2H i myy)

- e —1
DWH =1+ w
Pw (28 [m )

@)

- .. —1
|y PHjj({ZHﬂJImM)
Pz ($2HHi myy)

@ Springer



488 Page 6 of 47

Eur. Phys. J. C (2021) 81:488

where PyBr, Phjj, Phj, and Pyy are the probabilities for the
VBF process, the ggH process in association with two jets
(combination of gg/qg/qq’ parton collisions producing H +
2 jets), the ggH process in association with one jet (H+1 jet),
and the VH process, respectively. The quantity [ d W PyBF
is the integral of the two-jet VBF matrix element probability
over the nj values of the unobserved jet, with the constraint

that the total transverse momentum of the H + 2 jets system

. .. VH
is zero. The discriminant D2

et used for event categorization,
is defined as the maximum value of the two discriminants,
Dy = max(DH, DY),

A set of three discriminants used in the likelihood fits is
calculated as in Refs. [17,18]. The discriminant sensitive to
the gg/qq — 44 process exploits the kinematics of the four-
lepton decay system. It is used in most of the event categories
described in Sect. 6 to separate signal from background and

is defined as:

a3
,Pbkg(-QH_)M lmae)

Pl (284 may)

) 3

D= |1+

where Psgii is the probability for the signal and P[()]l?g is the
probability for the dominant qq — 4¢ background process,
calculated using the LO matrix elements. In the VBF-2jet-
tagged and VH-hadronic-tagged event categories (defined in
Sect. 6.2), the background includes the QCD production of
77]7y*/y*y* — 4¢ in association with two jets, the EW
background from the vector boson scattering (VBS), as well
as the triboson (VVV) production process. We therefore use
dedicated production-dependent discriminants based on the
kinematics of the four-lepton decay and information from the
associated jets (noted with VBF+ dec or VH+ dec), defined
as:

ng;(BgF+dec
_ [1 VBE (mag) [PEY (218 |mae) + PSkﬁD(éHﬂnmm]]—l
PEV (@H+i )
(4)
,Dg/kl;+dec

~ [1 | MmaolPy (24 myy) + P&?(éﬂﬂnmun]l
B Pﬁ?(éﬂﬂi [z 7
(%)

where ngv is the probability for the VBF and VH signal,

PEIX; is the probability for the VBS and VVV background
processes, and P&ED is the probability for ZZ/Zy* /y*y* —
4¢ QCD production in association with two jets. The quan-
tity c? (m4,) for category p is the mqo-dependent parameter
that allows to change the relative normalization of the EW
probabilities, separately for the VBF and VH topologies. For
each slice of m4y, the distributions of the signal and back-
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ground discriminants are plotted, and the c” (ma4¢) value is
determined in such a way that the two distributions cross at
0.5. This procedure allows rescaling of the distributions for
the linear-scale binning of the templates used in the likeli-
hood fits described in Sect. 10.

6 Event categorization

In order to improve the sensitivity to the H boson production
mechanisms, the selected events are classified into mutu-
ally exclusive categories based on the features of the recon-
structed objects associated with the H — 4¢ candidates.
Event categorization is organized in two steps with increasing
granularity of the categories. First step is primarily designed
to separate the ggH, VBF, VH, and ttH processes. There is
little sensitivity to bbH or tH, even though these production
modes are considered explicitly in the analysis. The recon-
structed event categories from the first step are further sub-
divided (as discussed in Sect. 6.2) in order to study each
production mechanism in more detail. This subdivision is
carried out by matching the recommended binning of the
framework of STXS described in the following section.

6.1 STXS production bins

The STXS framework has been adopted by the LHC experi-
ments as a common framework for studies of the H boson. It
has been developed to define fine-grained measurements of
the H boson production modes in various kinematic regions,
and to reduce the theoretical uncertainties that are folded into
the measurements. It also allows for the use of advanced cat-
egorization techniques and provides a common scheme for
combining measurements in different decay channels or by
different experiments. The regions of phase space defined
by this framework are referred to as production bins and
are determined by using generator-level information for H
bosons with rapidity |yg| < 2.5. Generator-level jets are
defined as anti-kT jets with a distance parameter of 0.4 and
a pr threshold of 30 GeV; no requirement is placed on the
generator-level leptons.

The STXS framework has been designed to complement
the Run I measurements of the production signal strength
modifiers and fiducial differential cross sections of the H
boson by combining their advantages. The sensitivity to the-
oretical uncertainties in the signal strength modifier results
is suppressed by excluding dominant theoretical uncertain-
ties causing production bin migration effects from the STXS
measurements. They are included only when comparing the
results with the theoretical predictions. In contrast to the fidu-
cial differential cross section measurements, in the STXS
framework measurements are optimized for sensitivity by
means of event categories and matrix element discriminants.
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To account for the evolving experimental sensitivity, differ-
ent stages of production bins with increasing granularity are
developed.

The stage 0 production bins are called ggH, ggH, VH-1ep,
and t tH and are designed to closely match the main H boson
production mechanisms. The ggH bin includes the EW pro-
duction of the H boson in association with two quarks from
either VBF or VH events with hadronic decays of the vector
boson V. The VH-1ep production bin includes VH events
with leptonic decays of the vector boson V. The low rate
bbH and tH production processes are considered together
with the ggH and t tH production bins, respectively. In this
analysis, a modified version of the stage O production bins
is also studied, where instead of VH-1ep and ggH bins we
define the WH, ZH, and VBF bins that map the H boson pro-
duction mechanisms without the splitting of the VH events
in leptonic and hadronic decays.

Stage 1 of the STXS framework was designed by further
splitting the bins from the stage 0, one of the main motives
being the enhanced sensitivity to possible signatures of BSM
physics. This is achieved by dividing stage O bins with addi-
tional requirements on generator-level quantities that include
the transverse momentum of the H boson ( p?), the number
of associated jets (ND), the dijet invariant mass (mj;), the
transverse momentum of the H boson and the leading jet
( p?J), and the transverse momentum of the H boson and the

two leading jets ( p?”). These bins were designed in order to
maximize sensitivity to new physics while also taking into
account the current experimental sensitivity limited mostly
by the amount of collected data. The most recent set of bins
defined in the STXS framework is referred to as stage 1.2.
This paper presents a first set of cross section measurements
in the H — 4¢ channel for the stage 1.2 of the STXS frame-
work. However, several stage 1.2 production bins are merged
as the full set of bins cannot be measured with the current
data sample. The merging scheme results in 19 production
bins; it is illustrated in Fig. 1 and discussed in more detail
below.

The ggH production process is split into events with
pi <200GeV and pi! > 200 GeV. The events with p¥ >
200 GeV are placed into one single production bin called
ggH/pp> 200. The events with p¥ < 200GeV are split
in events with zero, one, and two or more jets. The events
with zero or one jets are split into the following produc-
tion bins according to the H boson prt: ggH-03 /p:[0, 10],
ggH-03/p[10,200], ggH-13/p[0,60], ggH-13/
pr[60, 120], and ggH-13 /p[120, 200]. The events with
two or more jets are split according to the dijet invari-
ant mass as follows. The events with mj; < 350GeV
are split into three production bins according to the H
boson pr: ggH-27/p1[0, 60], ggH-27 /pc[60, 120], and
ggH-23/pp[120, 200]. The events with mj; > 350 GeV

are all placed into one production bin ggH-2j /m;5> 350,
which merges four bins originally suggested in stage 1.2 of
the STXS framework.

The merging scheme of the electroweak ggH production
bins is as follows. The events with zero jets, one jet, or with
two or more jets with m;; < 60GeV or 120 < mj <
350GeV correspond to production bins with insufficient
statistics; they are all merged into one bin called ggH-rest.
The events with two or more jets and 60 < mj; < 120 GeV
are placed in the ggH-2 j /mj 5 [60, 120]bin. The events with
two or more jets and mj; > 350GeV are split into events
with p¥ < 200 GeV and p¥ > 200 GeV. The events with
p¥ > 200 GeV are placed into one single production bin
called ggH-27j /pp> 200. The events with p¥ < 200 GeV

and p?jj < 25GeV are split into two production bins,
agH-23/m45[350, 700] and qgH-23 /my5> 700, and oth-

erwise if p?“ > 25GeV are merged in a single bin called
QqQH-33/m;4> 350.

The three production processes qq, — WH, gg — ZH,
and qq — ZH are combined to build VH-1ep reduced stage
1.2 production bins. Several proposed production bins are
merged into just two bins according to the pt of the H boson:
VH-lep/pmu[0, 150] and VH-1ep/pm> 150.

In stage 1.2 of the STXS framework the t tH stage 0 pro-
duction bin is split in five different bins according to the pr
of the H boson. Because of the very low expected yields all
these bins are merged into a single bin that includes the tH
production process as well.

Finally, in stage 1.2 the bbH production process, which
has small cross section, is classified in the
ggH-03/pp[10, 200] production bin.

The first measurement of STXS stage 1.2 cross sections
was recently performed by the CMS Collaboration [98].

6.2 Reconstructed event categories

In order to be sensitive to different production bins, the ZZ
candidates that pass the event selection described in Sect. 4
are classified into several dedicated reconstructed event cat-
egories. The category definitions are based on the multiplic-
ity of jets, b-tagged jets, and additional leptons in the event.
Additional leptons are not involved in the ZZ candidate selec-
tion but, if present, should satisfy the identification, vertex
compatibility, and isolation requirements. Requirements on
the categorization discriminants described in Sect. 5, the
invariant mass of the two leading jets, and the transverse
momentum of the ZZ candidate are also exploited.

The event categorization is carried out in two steps. In
the first step, the ZZ candidates are split into seven initial
categories to target the main H boson production mechanisms
corresponding to the stage O production bins. The first step of
the categorization closely follows the analysis strategy from
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Fig. 1 Binning of the gluon fusion production process, the electroweak and gluon fusion ZH production), and the ttH production process in the

production process (combines VBF and VH with hadronic V decay), merged stage 1.2 of the STXS framework used in the H — ZZ — 4¢
the VH production process with leptonic V decay (combining WH, ZH, analysis

the previous publication [18]. To ensure exclusive categories, — The ttH-hadronic-tagged category requires at least 4 jets,
an event is considered for the subsequent category only if it of which at least 1 is b-tagged, and no additional leptons.
does not satisfy the requirements of the previous one. — The ttH-leptonic-tagged category requires at least 1 addi-
In the first categorization step, the following criteria are tional lepton in the event.
applied: — The VBF-1jet-tagged category requires exactly 4 leptons,
exactly 1 jet and D};g}: > 0.7.

— The untagged category consists of the remaining events.
— The VBF-2jet-tagged category requires exactly 4 leptons.

In addition there must be either 2 or 3 jets of which at

most 1 is b-tagged, or at least 4 jets and no b-tagged jets. Reconstructed events are further subdivided in the sec-
Finally, Dzngf > 0.5 is required. ond step of the categorization that is designed to closely
— The VH-hadronic-tagged category requires exactly 4lep-  match the merged stage 1.2 production bins described in
tons. In addition there must be 2 or 3 jets with no b-  the previous section. In the second categorization step, the
tagging requirements, or at least 4 jets and no b-tagged  untagged, VBF-2jet-tagged, VH-hadronic-tagged, and VH-
jets. Finally, ng > 0.5 is required. leptonic-tagged categories are further split exploiting addi-

— The VH-leptonic-tagged category requires no more than  tional variables like the invariant mass of the two leading
3 jets and no b-tagged jets in the event, and exactly 1  jets and the transverse momentum of the ZZ candidate. A
additional lepton or 1 additional pair of opposite sign,  total number of twenty-two reconstructed event categories
same flavor leptons. This category also includes events  is defined and details of the categorization are presented in
with no jets and at least 1 additional lepton. Table 2.
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Table 2 Event categorization criteria of the H — 4¢ analysis targeting stage 1.2 STXS production bins. Events from the first step of the categorization are further classified based on the kinematical
properties listed in the table. A dash indicates no requirement

Reconstructed event category

1st categorization step

Number of jets

Kinematical requirements ( GeV)

Targeted production bin

Untagged-0j-p3[0, 10]
Untagged-0j-p3[10, 200]
Untagged-1j- pflﬁl[O, 60]
Untagged-1j-p3[60, 120]
Untagged-1j-p3£[120, 200]
Untagged-2j-p#[0, 60]
Untagged-2j-p3[60, 120]
Untagged-2j-p3¢[120, 200]
Untagged- p%[ > 200
Untagged-2j-mj; > 350
VBF-1jet-tagged
VBF-2jet-tagged-m;;[350, 700]
VBF-2jet-tagged-mj; > 700
VBF-3jet-tagged-mj; > 350
VBF-2jet-tagged-pi* > 200
VBF-rest
VH-hadronic-tagged-m;;[60, 120]
VH-rest

VH-leptonic-tagged- p%e [0, 150]
VH-leptonic-tagged-p# > 150
tt H-leptonic-tagged
ttH-hadronic-tagged

Untagged

Untagged

Untagged

Untagged

Untagged

Untagged

Untagged

Untagged

Untagged

Untagged
VBF-1jet-tagged
VBEF-2jet-tagged
VBEF-2jet-tagged
VBEF-2jet-tagged
VBEF-2jet-tagged
VBEF-2jet-tagged
VH-hadronic-tagged
V H-hadronic-tagged
VH-leptonic-tagged
VH-leptonic-tagged
tt H-leptonic-tagged
ttH-hadronic-tagged

NN = = = O O

0< p%l < 10

10 < p3 <200

0 < p3t <60

60 < p%l < 120

120 < p3 <200

0 < pF < 60, mj < 350

60 < p%l < 120, mj; < 350
120 < p%e < 200, mj; < 350
Pt > 200

mj; > 350

P <200, pii < 25,350 < mj; < 700

P <200, pii < 25, mjj > 700
P <200, pi > 25, mji > 350
Pt > 200, mj; > 350

mj; < 350

60 < mj; < 120

mj; < 60 or mj; > 120

p%[ < 150

Pt > 150

ggH-03/p,[0,10]
ggH-03/p¢[10,200]
ggH-13/p¢[0, 60]
ggH-13/p¢[60,120]
ggH-17/p1[120,200]
ggH-23/pr[0, 60]
ggH-23/pg[60,120]
ggH-27/p1[120,200]
ggH/pp> 200
ggH-23/mj5> 350
gqH-rest
qgqH-23/m;4[350,700]
gqH-23/mj5> 700
qgqH-33/mj5> 350
qgH-23 /pp> 200
ggH-rest
qu—Zj/mjj[60, 120]
ggH-rest
VH-lep/pml[0, 150]
VH-lep/pm> 150
ttH

ttH

D [ 'skyq g

88%:18 (1200)

L JO 6 35ed

88%



488 Page 10 of 47

Eur. Phys. J. C (2021) 81:488

7 Background estimation
7.1 Trreducible backgrounds

The irreducible background to the H boson signal in the 4¢
channel, which comes from the production of ZZ via qq
annihilation or gluon fusion, is estimated using simulation.
The fully differential cross section for the qq — ZZ process
is computed at NNLO [99], and the NNLO/NLO K factor as
a function of myzyz is applied to the POWHEG sample. This K
factor varies from 1.0 to 1.2 and is 1.1 at myzz = 125 GeV.
Additional NLO electroweak corrections that depend on the
initial state quark flavor and kinematics are also applied in
the region mzz > 2myz following the prescription in Ref.
[100].

The production of ZZ via gluon fusion contributes at
NNLO in pQCD. It has been shown that the soft collinear
approximation is able to describe the cross section for this
process and the interference term at NNLO [101]. Further
calculations also show that the K factors are very similar
at NLO for signal and background [102] and at NNLO for
signal and interference terms [103]. Therefore, the same K
factor is used for signal and background [104]. The NNLO K
factor for the signal is obtained as a function of mzz using the
HNNLO v2 program [105-107] by calculating the NNLO and
LO gg — H — 2£2¢’ cross sections for the H boson decay
width of 4.07 MeV and taking their ratios. The NNLO/LO K
factor for gg — ZZ varies from ~2.0 to 2.6 and is 2.27 at
mzz = 125 GeV; a systematic uncertainty of 10% is assigned
to it when applied to the background process.

The triboson background processes ZZZ, WZZ, and
WWZ, as well as ttZ, tt WW, and ttZZ are also considered.
These rare backgrounds are all estimated from simulation
and are jointly referred to as the EW backgrounds.

Simulated samples are used to obtain shapes of the four-
lepton invariant mass that are later used to build the likeli-
hood function. For each irreducible background contribution,
events are divided in three final states (4, 4e, and 2e2L) and
22 event sub-categories defined in Sect. 6.1. To extract the
shape of the my4, distribution, expected yields are fitted to
empirical functional forms built from a third order Bernstein
polynomial. In sub-categories with not enough statistics to
perform a fit, the shape is extracted from the inclusive distri-
bution in the corresponding final state.

7.2 Reducible backgrounds

Additional backgrounds to the H boson signal in the 4¢ chan-
nel arise from processes in which decays of heavy-flavor
hadrons, in-flight decays of light mesons within jets, or (for
electrons) charged hadrons overlapping with 7 decays are
misidentified as leptons. The main processes leading to these
backgrounds are Z+jets, tt+jets, Zy+jets, WW-jets, and
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WZ+jets production. We denote these reducible backgrounds
as 7Z+X” since they are dominated by the Z+jets process.
The contribution from the reducible background is estimated
with two independent methods, each with dedicated control
regions in data. The control regions are defined by the pres-
ence of both a lepton pair satisfying all the requirements of a
Z, candidate and two additional opposite sign (OS) or same
sign (SS) leptons; the two additional leptons satisfy identi-
fication requirements looser than those used in the analysis.
These four leptons are then required to pass the analysis ZZ
candidate selection. The event yield in the signal region is
obtained by weighting the control region events by the lep-
ton misidentification probability f. (f,.), defined as the frac-
tion of non-signal electrons (muons) that are identified by
the analysis selection criteria. A detailed description of both
methods can be found in Ref. [18].

The lepton misidentification rates f. and f, are measured
as a function of p% and n° by means of a sample that includes
a Z candidate consisting of a pair of leptons, both passing
the selection requirements used in the analysis, and exactly
one additional lepton passing the relaxed selection. Further-
more, the p‘Trliss is required to be less than 25 GeV in order to
suppress contamination from WZ and tt processes.

For the OS method, the mass of the Z; candidate is
required to satisfy the condition |Z; —myz| < 7 GeV in order
to reduce the contribution of (asymmetric) photon conver-
sions, which is estimated separately. In the SS method, the
contribution of photon conversions to the misidentification
rate is estimated with dedicated samples.

The predicted yields of the reducible background from the
two methods are in agreement within their uncertainties for
each final state (4, 4e, and 2e21). The final yield used in
the analysis is a weighted average of the two independent
estimates. To extract the shape of the m4, distribution for the
reducible background a maximum-likelihood fitis performed
in each of the 22 event sub-categories defined in Sect. 6.1.
For each sub-category, the expected ”Z+X" yields from the
OS and SS methods are binned as a function of m4, and fitted
to empirical functional forms built from Landau distributions
[108]. In sub-categories with not enough statistics to perform
a fit, the shape is extracted from the inclusive distribution in
the corresponding final state.

The dominant systematic uncertainty on the reducible
background estimation arises from the difference in the com-
position of the sample from which the misidentification rate
is computed and that of the control regions. It is determined
from the MC simulation and is found to be around 30%,
depending on the final state. Additional sources of system-
atic uncertainty arise from the limited number of events in the
control regions as well as in the region where the misidenti-
fication rates are computed.
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8 Signal modeling

In order to generate an accurate signal model, the pt spec-
trum of the H boson, p?, was tuned in the POWHEG simula-
tion of the dominant gluon fusion production mode to bet-
ter match the predictions from full phase space calculations
implemented in the HRES generator [107,109,110].

In order to take advantage of the accuracy of the NNLOPS
[111] simulation available for the ggH process, an event
reweighting procedure is used. Events originating from the
ggH process are subdivided into classes with 0, 1, 2, and
>3 jets; the jets with pt > 30GeV are clustered from all
stable particles using the anti-kt algorithm with a distance
parameter of 0.4, excluding the decay products of the H
boson or associated vector bosons. The weights are obtained
as the ratios of the p¥ distributions from the NNLOPS and
the POWHEG generators for each event class; the sum of the
weights in each sample is normalized to the inclusive cross
section.

The signal shape is parametrized by means of a double-
sided Crystal Ball function [112] around myg ~ 125 GeV.
A Landau function is added in the total probability density
function for the non-resonant part of the signal for the case
of WH, ZH and ttH production modes. The signal shape is
parametrized as a function of my by performing a simultane-
ous fit of several mass points for all production modes in the
105 to 140 GeV mass range. Each parameter of the double-
sided Crystal Ball function has a linear dependence on myy,
for a total of 12 free parameters. An examples of the fit is
shown in Fig. 2.

9 Systematic uncertainties

The systematic uncertainties are divided into experimental
and theoretical. The main experimental uncertainties origi-
nate from the imperfect knowledge of the detector; the dom-
inant sources are the uncertainties in the luminosity mea-
surement, the lepton reconstruction and selection efficiency,
the lepton and jet energy scale and resolution, the b tag-
ging efficiency, and the reducible background estimate. The
theoretical uncertainties account for the uncertainties in the
modeling of the signal and background processes.

Both types of uncertainties can affect the signal selection,
cause migrations between the event categories, and affect the
signal or background shapes used in the fit. All the uncertain-
ties affecting this analysis are modeled as nuisance param-
eters (NPs) that are profiled in the maximum likelihood fit
described in Sect. 10.

In the combination of the three data-taking periods, all the-
oretical uncertainties are treated as correlated across these
periods. The experimental uncertainties related to recon-
struction and selection efficiency, the lepton energy scale
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Fig. 2 The shape of the parametric signal model for each year of simu-
lated data, and for the sum of all years together. The black points repre-
sent weighted simulation events of the ggH production mechanism for
mpy = 125 GeV and the blue line the corresponding model. Also shown
is the ocp value (half the width of the narrowest interval containing
68% of the invariant mass distribution) in the gray shaded area. The
contribution of the signal model from each year of data-taking is illus-
trated with the dotted lines. The models are shown for the 4e (upper)
and 4p (lower) final states in the untagged event category

and resolution, and the b-tagging efficiency are also consid-
ered correlated across data-taking periods. Luminosity uncer-
tainty is treated as partially correlated. All other experimental
uncertainties are treated as uncorrelated. Correlated sources
of uncertainty are assigned the same NP and uncorrelated
sources have a dedicated NP in the likelihood fit described
in Sect. 10.

The dominant sources of uncertainties and their effect on
the analysis are discussed in detail in the following subsec-
tions. The impact of a NP on a parameter of interest (POI) is
defined as the shift induced on POI when NP is varied by a
41 standard deviation from its post-fit value, with all other
parameters profiled as usual. The relative impact of the dom-
inant systematic uncertainties on some of the measurements
discussed in Sect. 10 is illustrated in Fig. 3.
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Fig. 3 The impact of the dominant systematic uncertainties (in per-
cent) on the inclusive signal strength p and stage 0 production mode
cross section described in Sect. 10. Impacts from different NPs are com-
bined assuming no correlation. Only dominant experimental sources are
presented: integrated luminosity uncertainty (Lumi.), lepton reconstruc-
tion and selection efficiency, scale and resolution (Leptons), jet energy
scale and resolution (Jet), b-tagging efficiency (B-tag), and reducible
background estimation uncertainty (Red. bkg). Only dominant theoret-
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Impact (%)

ical sources are presented: ggH, VBF, and VH cross section theoreti-
cal uncertainty scheme (THU), renormalization and factorization scale
(QCD), choice of the PDF set (PDF), the branching fraction of H — 4¢
(B), modeling of hadronization and the underlying event (Hadr), and
background modeling (Bkg. mod.). The THU uncertainty is not consid-
ered in the stage O cross section measurements. The uncertainties are
rounded to the nearest 0.5%



Eur. Phys. J. C (2021) 81:488

Page 13 0f 47 488

CMS - L 137(13TeV)
3 350 — -
0] o ¢+ Data ]
< F [ H(125) ]
2 F Ca9-2Z,2y
c B 9922, Zy* ]
Q 250~ . EW =
w - Bl Z+X ]
200 3
150 {— =
100~ =
50— —:
07780 300 400 500
m,, (GeV)
CMS 137 fb' (13 TeV)
E 20 | ’ Dalta | ]
~ C [ H(125) ]
I - 1 q9—-ZZ, Zy* ]
£ 200 ! W g-2Z 2 ]
g r I EW ]
weor I Z+X ]
150 — |
100 _— -
50 -
S . ) b i 4
. . : ¥

0 80 100 120 140 160

m,, (GeV)

Fig. 4 Four-lepton mass distribution, m4¢, up to 500 GeV with 4 GeV
bin size (upper) and in the low-mass range with 2 GeV bin size (lower).
Points with error bars represent the data and stacked histograms repre-
sent the expected distributions for the signal and background processes.
The SM Higgs boson signal with my = 125 GeV, denoted as H(125),
the ZZ and rare electroweak backgrounds are normalized to the SM
expectation, the Z+X background to the estimation from data

9.1 Experimental uncertainties

The integrated luminosities of the 2016, 2017, and 2018 data-
taking periods are individually known with uncertainties in
the 2.3-2.5% range [41-43], while the total Run 2 (2016—
2018) integrated luminosity has an uncertainty of 1.8%,
the improvement in precision reflecting the (uncorrelated)
time evolution of some systematic effects. The experimental
uncertainty on the integrated luminosity measurement affects
all final states, both signal and background. Another exper-
imental uncertainty common to all final states is the uncer-
tainty in the lepton reconstruction and selection efficiency.
Here selection efficiency includes all the steps from trigger
to impact parameter significance and finally identification
and isolation requirements. The uncertainty ranges from 1
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Fig. 5 Four-lepton mass distribution in three final states: 4e upper),
4 (center), and 2e2 (lower). Points with error bars represent the
data and stacked histograms represent the expected distributions for
the signal and background processes. The SM Higgs boson signal with
my = 125 GeV, denoted as H(125), the ZZ and rare electroweak back-
grounds are normalized to the SM expectation, the Z+X background to
the estimation from data
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Table 3 Number of expected background and signal events and number of observed candidates after full analysis selection, for each event category, in the mass range 105 < m4, < 140 GeV and for
an integrated luminosity of 137 fb~!. The yields are given for the different production modes. The uncertainties listed are statistical only. Signal is estimated from MC simulation at my = 125 GeV,
77 and rare electroweak backgrounds are also estimated from MC simulation, and Z+X is estimated from data

Reconstructed event category Signal Background Expected Observed
ggH VBF WH ZH ttH bbH tH qq — ZZ gg — 77 EW Z+X Signal Total

Untagged—Oj—p%K[O, 10] 27.7 0.09 0.03 0.03 0.00 0.15 0.00 71.5 3.06 0.01 3.21 27.9 £ 0.1 106 £0 114
Untagged—Oj—p%[[IO, 200] 96.2 1.69 0.60 0.77 0.01 1.01 0.00 98.1 11.6 0.35 37.8 100+ 0 248 + 1 278
Untagged—lj—p%‘f[o, 60] 26.8 1.51 0.56 0.48 0.01 0.45 0.01 25.3 3.02 0.64 14.2 29.8 £ 0.1 729+ 04 74
Untagged-lj-p%‘Z [60, 120] 13.5 1.31 0.51 0.41 0.02 0.11 0.01 7.81 0.82 0.62 7.95 159+ 0.1 33.1+03 20
Untagged—lj—p%@[IZO, 200] 3.51 0.60 0.17 0.17 0.01 0.02 0.00 1.15 0.19 0.25 1.63 4.48 +0.05 7.69 +0.16 11
Untagged—Zj—p%l[O, 60] 3.45 0.29 0.15 0.14 0.08 0.09 0.02 2.14 0.32 0.63 4.75 4.20 £ 0.06 12.1 £0.2 14
Untagged—Zj—p%[[60, 120] 5.26 0.56 0.24 0.19 0.12 0.04 0.03 2.19 0.30 0.72 4.14 6.43 £ 0.06 13.8+£0.2 15
Untagged-Zj-p%l[IZO, 200] 3.07 0.40 0.16 0.13 0.07 0.01 0.02 0.75 0.14 0.34 1.19 3.86 + 0.05 6.28 +0.14 7
Untagged—p%g > 200 2.79 0.62 0.21 0.17 0.07 0.01 0.02 0.43 0.21 0.21 0.73 3.89 +0.04 5.47+0.11 3
Untagged-2j-mj; > 350 0.77 0.16 0.06 0.04 0.05 0.01 0.01 0.34 0.06 0.31 1.71 1.12 £ 0.02 354 £0.14 3
VBF-1jet-tagged 15.5 3.29 0.22 0.16 0.00 0.13 0.01 6.85 1.53 0.20 2.44 19.3 £ 0.1 303+0.2 27
VBE-2jet-tagged-m;;[350, 700] 0.83 1.19 0.01 0.01 0.00 0.01 0.00 0.19 0.07 0.11 0.14 2.05 +0.03 2.55 4+ 0.05 2
VBF-2jet-tagged-mj; > 700 0.43 1.96 0.00 0.00 0.00 0.00 0.00 0.07 0.05 0.12 0.03 2.40 £ 0.02 2.67 £0.03 1
VBE-3jet-tagged-mj; > 350 2.52 2.35 0.06 0.06 0.03 0.03 0.05 0.62 0.21 0.64 243 5.11 £0.05 9.01 £0.17 12
VBF—Zjet—tagged—pf# > 200 0.44 0.79 0.01 0.01 0.01 0.00 0.01 0.03 0.03 0.04 0.06 1.26 £ 0.02 1.42 +0.03 0
VBF-rest 2.48 0.94 0.13 0.09 0.04 0.04 0.01 0.98 0.20 0.39 2.18 3.74 £ 0.05 7.49 £ 0.17 5
VH-hadronic-tagged-m;;j[60, 120] 4.11 0.25 1.09 0.96 0.13 0.06 0.02 1.69 0.22 0.52 293 6.62 £ 0.06 120 £ 0.2 12
VH-rest 0.57 0.03 0.09 0.06 0.03 0.01 0.00 0.16 0.02 0.06 0.33 0.79 £ 0.02 1.36 + 0.06 0
VH—leptonic—tagged—p# [0, 150] 0.33 0.04 0.85 0.26 0.10 0.03 0.03 2.16 0.36 0.19 1.11 1.64 £ 0.02 547 £0.13 10
VH—1eptonic—tagged—p%Z > 150 0.02 0.01 0.21 0.06 0.04 0.00 0.01 0.05 0.01 0.03 0.08 0.35£0.01 0.52£0.03 0
tt H-leptonic-tagged 0.02 0.01 0.02 0.02 0.68 0.00 0.03 0.08 0.01 0.23 0.21 0.79 + 0.01 1.32 £ 0.07 0
tt H-hadronic-tagged 0.18 0.05 0.03 0.05 0.86 0.01 0.03 0.03 0.01 0.82 1.06 1.22 +0.01 3.15+0.14

Ly 3o y133ed  §8%

D [ 'syd g
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Fig. 6 Distributions of the expected and observed number of events
for the reconstructed event categories in the mass region 105 < myp <
140 GeV. Points with error bars represent the data and stacked his-
tograms represent the expected numbers of the signal and background

to 2.3% in the 4 channel and from 11 to 15.5% in the 4e
channel. While for muon efficiency measurements in the low
p;f regions we rely on low mass di-muon resonances, the
electron efficiency measurement relies solely on the Z boson
resonance, resulting in a higher uncertainty in the low p5
region.

Lepton momentum scale and resolution uncertainties are
estimated from dedicated studies on the Z — £ ¢~ mass dis-
tribution in data and simulation. Events are classified accord-
ing to the pt and n of one of the two leptons, determined
randomly, and integrated over the other. The dilepton mass
distributions are then fit by a Breit—-Wigner parameteriza-
tion convolved with the double-sided Crystal Ball function
described in Sect. 8. The scale uncertainty is found to be
0.04% in the 4\ channel and 0.3% in the 4e channel, while
the resolution uncertainty is 20% for both channels. In both
cases full correlation between the leptons in the event is
assumed. Both scale and resolution uncertainties alter the
signal shape by allowing the corresponding parameters of
the double-sided Crystal Ball function to vary. The impact is

B H(125) bbH

R

T

VH-hadronic-tagged-m [60,120]
T

VH-rest
a

VBF-rest
VH-leptonic-tagged-p*>150

VBF-2jet-tagged-m [350,700]
i

1

VBF-1jet-tagged
VBF-2jet-tagged-m_>700

VBF-3jet-tagged-m_>350
VBF-2jet-tagged_p*>200
VH-leptonic-tagged-p*[0,150]
ttH-leptonic-tagged
ttH-hadronic-tagged

events. The yields of the different H boson production mechanisms with
my = 125 GeV, denoted as H(125), and those of the ZZ and rare elec-
troweak backgrounds are normalized to the SM expectations, while the
Z+X background yield is normalized to the estimate from the data

found to be non-negligible only in the case of fiducial cross
section measurements.

The effects of the jet energy corrections are studied in a
similar manner. While jet energy scale and smearing do not
alter signal selection efficiency, they cause event migrations
between the categories. They can also alter the shape of the
discriminants, but the effect on the shape is negligible. The
uncertainty in the jet energy scale ranges from 1% in the high
jet pr range and increases up to 5% in the low jet pr range.
The uncertainty in jet energy resolution ranges from 1 to 2%.
A detailed description of the determination of the jet energy
scale and smearing uncertainties can be found in [113]. The
effect on the analysis is studied in detail by propagating the
uncertainties and estimating the effect on event migration in
each of the 22 sub-categories. Their impact on the inclusive
measurements is found to be negligible. However, the impact
is significant in measurements of the VBF and VH produc-
tion modes and differential cross section measurements as
a function of jet kinematics, where it is one of the leading
sources of uncertainty.
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Fig. 7 Distribution of the Z; (upper left) and Z, (upper right) recon-
structed masses in the 118 < m4y < 130 GeV mass region and their
2D distribution (lower) in the 105 < m4; < 140 GeV mass region. The
stacked histograms and the red and blue scales represent expected distri-
butions of the signal and background processes and the points represent

The uncertainty in the b-tagging efficiency is found to be
1% in the high jet pr range and increases up to 3% in the
low jet pr range. The impact from the category migration is
found to be negligible in all categories.

Finally, experimental uncertainties in the reducible back-
ground estimation, described in Sect. 7.2, originating from
the background composition and misidentification rate uncer-
tainties vary between 30 and 45% depending on the final state
and category. However, the impact of this uncertainty on the
measurements is found to be negligible.

Other sources of experimental uncertainties are also stud-
ied but their impact is negligible compared to the sources
described above.

9.2 Theoretical uncertainties

Theoretical uncertainties that affect both the signal and back-
ground estimation include those related to the renormaliza-

@ Springer

the data. The yields of the different H boson production mechanisms
with mg = 125 GeV, denoted as H(125), and those of the ZZ and rare
electroweak backgrounds are normalized to the SM expectations, while
the Z+X background yield is normalized to the estimate from the data

tion and factorization scales, and the choice of the PDF set.
The uncertainty from the renormalization and factorization
scales is determined by varying these scales between 0.5 and
2 times their nominal value, while keeping their ratio between
0.5 and 2. The uncertainty due to the PDF set is determined
following the PDF4ALHC recommendations by taking the root
mean square of the variation of the results when using differ-
ent replicas of the default NNPDF set [114,115]. The uncer-
tainties just described have an effect both on the signal and
background yields, as well as on the migration of events
between the categories. An additional 10% uncertainty in
the K factor used for the gg — ZZ prediction is applied as
described in Sect. 7.1. A systematic uncertainty of 2% [32]
in the branching fraction of H — 4¢ only affects the signal
yield.

Theoretical uncertainties that affect the predictions of the
STXS production bins are described in Ref. [32]. From here
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Fig. 8 Distribution of categorization discriminants in the mass region

118 < myge < 130 GeV: D;/ gF (upper), D}?:tF (center), ’D;;g (lower) =
max(Dggf,D%}e{[) Points with error bars represent the data and stacked
histograms represent expected distributions of the signal and back-
ground processes. The SM Higgs boson signal with my = 125GeV,
denoted as H(125), and the ZZ backgrounds and rare electroweak back-
grounds are normalized to the SM expectation, the Z+X background to
the estimation from data. The vertical dashed lines denote the working
points used in the event categorization. The SM H boson signal is sep-
arated into two components: the production mode which is targeted by
the specific discriminant, and other production modes, where the gluon
fusion process dominates.

on we will refer to these uncertainties as the theoretical uncer-
tainty scheme (THU).

The THU for the ggH process includes 10 NPs, which
account for uncertainties in the cross section prediction for
exclusive jet bins (including the migration between the 0 and
1-jet, as well as between the 1 and >2-jet bins), the 2 jet
and >3 jet VBF phase space, migrations around the p¥ bin
boundaries at 10, 60, and 120 GeV, and the uncertainty in the
p¥ distribution due to missing higher order finite top quark
mass corrections.

In the THU uncertainties for VBF and VH production,
additional sources are introduced to account for the uncer-
tainty in the modeling of the p¥, mjj and p?ﬂ distributions, as
well as that of the number of jets in the event. A total of 6 NPs
account for the migrations of events across the mj; bound-
aries at 60, 120, 350, 700, 1000, and 1500 GeV. Two addi-
tional NPs account for migrations across the pIT{ = 200 GeV

and p?” = 25 GeV bin boundaries. Finally, a single source
is introduced to account for migrations between the zero and
onejet, as well as the the two or more jet bins. In each case, the
uncertainty is computed by varying the renormalization and
factorization scales and recalculating the fractional break-
down of the ggH STXS stage 1.2 cross sections.

A set of THU uncertainties is considered as NPs in the like-
lihood fit when signal strength modifiers, rather than STXS,
are measured. In the STXS framework, THU uncertainties
only enter at the interpretation step and are thus applied only
to the SM cross section predictions.

Additional theoretical effects that only cause migration
of signal and background events between categories origi-
nate from the modeling of the hadronization and the under-
lying event. The underlying event modeling uncertainty is
determined by varying initial- and final-state radiation scales
between 0.25 and 4 times their nominal value. The effects of
the modeling of hadronization are determined by simulating
additional events with the variation of the nominal PYTHIA
tune described in Sect. 3.

10 Results

The reconstructed four-lepton invariant mass distribution is
shown in Fig. 4 for the 4e, 41 and 2e2u events together, and
is compared with the expectations for signal and background
processes. The error bars on the data points correspond to the
intervals at 68% confidence level (CL) [116]. The observed
distribution agrees with the expectation within the statistical
uncertainties over the whole spectrum.

The reconstructed four-lepton invariant mass distribution
is shown in Fig. 5 for the three 4¢ final states and is compared
with the expectations from signal and background processes.
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Fig. 9 Distribution of three
different kinematic
discriminants versus mg4y: Dlg;(“g

VBFtdec (middle) and

(upper), Dy,
Dt\)/k:Hec. (lower) shown in the
mass region

105 < my4p < 140 GeV. The
blue scale represents the
expected total number of ZZ,
rare electroweak, and Z+X
background events. The red
scale represents the number of
expected SM H boson signal
events for my = 125 GeV. The
points show the data from the
categories listed in the legend
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Fig. 10 Distribution of kinematic discriminants in the mass region
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tograms represent expected distributions of the signal and background
processes. The yields of the different H boson production mechanisms
with myg = 125 GeV, denoted as H(125), and those of the ZZ and rare
electroweak backgrounds are normalized to the SM expectations, while
the Z+X background yield is normalized to the estimate from the data.
In the center and lower figures the SM H boson signal is separated into
two components: the production mode which is targeted by the spe-
cific discriminant, and other production modes, where the gluon fusion
process dominates
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Fig. 11 (Upper) The observed and expected profile likelihood scans
of the inclusive signal strength modifier. The scans are shown both
with (solid line) and without (dashed line) systematic uncertainties.
(Lower) Results of likelihood scans for the signal strength modifiers
corresponding to the five main SM H boson production mechanisms,
compared to the SM prediction shown as a vertical dashed line. The
thick black lines indicate the one standard deviation confidence intervals
including both statistical and systematic sources. The thick red lines
indicate the statistical uncertainties corresponding to the one standard
deviation confidence intervals

The number of candidates observed in the data and the
expected yields for 137 fb~!, for the backgrounds and H
boson signal after the full event selection, are given in Table 3
for each of the 22 reconstructed event categories (described
in Sect. 6.2) for the 105 < my4¢ < 140 GeV mass window
around the Higgs boson peak. Fig. 6 shows the number of
expected and observed events for each of the categories.

The reconstructed invariant masses of the Z; and Z; dilep-
ton systems are shown in Fig. 7 for 118 < m4, < 130 GeV,
together with their 2D distribution in the 105 < my4, <
140 GeV mass region. The distribution of the discriminants
used for event categorization along with the corresponding
working point values are shown in Fig. 8.

The results presented in Sects. 10.1 and 10.2 are extracted
with a two-dimensional likelihood fit that relies on two vari-
ables, the four-lepton invariant mass m4, and the matrix ele-
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Table 4 Best fit values and +1
standard deviation uncertainties
for the expected and observed

Expected

Observed

1. 00+(1) %3 (stat)"'g gé (syst)
1007183 (stat) 075 (syst)
1.00T520 (stat) 506 (syst)

1. 00+8 Zi (9tat)+8 %g (syst)

1.00 % 0.10 (stat) T 15 (syst)

1007098 (stat) 009 (syst)

0. l7f8 ?g (stat)"'g gé (syst)
1.667122 (stat) O35 (syst)
0.007¢38 (stat) T5-23 (syst)
0. 48+8 ;‘g’ (9tat)+8 %3 (syst)
0.99 £ 0.09 (stat) T8 (syst)
0.94 % 0.07 (stat) 009 (syst)

signal strength modifiers at Hn,n
my = 125.38 GeV. The IWWH
statistical and systematic
. . MZH
uncertainties are given
separately HVBF
Moot bbH
n
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Fig. 12 Result of the 2D likelihood scan for the ¢ = Hgglt, (TH,bBH, tH
and uv = pver,vH signal strength modifiers. The solid and dashed
contours show the 68 and 95% CL regions, respectively. The cross
indicates the best fit value, and the diamond represents the expected
value for the SM Higgs boson

ment kinematic discriminant D. The fiducial cross section
measurements are extracted with a one-dimensional likeli-
hood fit that relies only on the four-lepton invariant mass. The
fit procedure and results are presented in Sect. 10.3. The fit
is performed in the 105 < m4¢ < 140 GeV mass region. The
parameters of interest (POIs) are estimated with their corre-
sponding confidence intervals using a profile likelihood ratio
test statistic [117,118], in which the experimental and theo-
retical uncertainties are incorporated via NPs. The choice of
the POIs depends on the specific measurement under consid-
eration, while the remaining parameters are treated as NPs.
All the POIs considered in the analysis are forced to be greater
than or equal to zero; this reflects the fact that the signal yield
is substantially larger than the background yield in the mass
range studied. Negative POIs would imply negative signal
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strength modifiers and a negative probability density func-
tion (pdf). We define a two-dimensional pdf as the product
of two one-dimensional pdfs:

f(mag, D) = P(mae)P(Dlmae). (6)

The first term, P(m4¢), is the unbinned analytical shape
described in Sect. 8 for signals and Sect. 7 for backgrounds.
The second term, P (D|ma4y), is a binned template of D that
is conditional to m4¢. This is achieved by creating a two-
dimensional template of m4¢ vs. D and normalizing it to 1
for each bin of myy.

In almost all sub-categories we use a decay-only kinematic
discriminant (D = Dlgi‘(‘?g) to separate the H boson signal from
the background as defined in Eq. (3). Conversely, in the sub-
categories of the VBF-2jet-tagged, the D = DyBr T4 dis-
criminant (defined in Eq. (4)) is used, which is sensitive to the

VBF production mechanism. Similarly, in two sub-categories
VH-+dec dis-

of the VH-hadronic-tagged category, the D = Dbkg

criminant (defined in Eq. (5)) is used.

The ggH, VBF, WH, ZH and tt H samples are used to build
different signal templates for each of the nineteen STXS pro-
duction bins described in Sect. 6.1. Irreducible background
templates are built starting from qq — ZZ and gg — ZZ
samples. Finally, reducible background templates are built
using data driven methods described in Sect. 7.2. Following
the described procedure, P(D|my,) templates are obtained
for the twenty-two event categories and the three final states
(4, 4e, 2e2u0).

The unbinned likelihood function, £(), is defined as the
product over N observed events:

19
- 1 Jjk ,ijk
civ= [T (ZmSi (mar. D)

events =1

Jjk j
+B7% £ (mae, D>) SRS, ™

where Wi is the signal strength modifier for the production bin
i S’ are the predicted SM rates of events in the production
bin i that are observed in the reconstructed event category j
and final state k, B/ are the predicted background rates in the
reconstructed event category j and final state k, f ;j k (mgye, D)
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Fig. 13 The measured product of cross section times branching frac-
tion for H — ZZ decay (0 B)obs and the SM predictions (o B)sm for
the stage 0 STXS production bins and the inclusive measurement at
my = 125.38 GeV. Points with error bars represent measured values

are the pdfs for the signal, and f ék (mag, D) the pdfs for the
background.
The correlation of the kinematic discriminants Dlgl‘(“g,

VH+dec . . .
Dg;BgFNeC, and Dbkg+ with the four-lepton invariant mass

is shown in Fig. 9 for the mass interval 105 < my4p <
140 GeV. Their distributions for the mass interval 118 <
my4e < 130 GeV are shown in Fig. 10.

10.1 Signal strength modifier

A simultaneous fit to all categories is performed to extract the
signal strength modifier, defined as the ratio of the observed
H boson yield in the H — 4¢ decay channel to the standard
model expectation.

The combined measurement of the inclusive signal strength
modifier is measured to be u = 0.94‘_F8:ﬁ or u = 094 £
0.07 (stat)fgzgg (theo)i'gzgg (exp) at a fixed mass value myg =
125.38 GeV, which is the current most precise measurement
of the H boson mass published by the CMS Collaboration
[119]. In all subsequent fits, my is fixed to this value. The
dominant experimental sources of systematic uncertainty
are the uncertainties in the lepton identification efficiencies
and luminosity measurement, while the dominant theoretical
source is the uncertainty in the total gluon fusion cross sec-

and black dashed lines with gray uncertainty bands represent the SM
predictions. In the bottom panel ratios of the measured cross sections
and the SM predictions are shown along with the uncertainties for each
of the bins and the inclusive measurement

tion. The contributions to the total uncertainty from exper-
imental and theoretical sources are found to be similar in
magnitude. The signal strength modifiers are further studied
in terms of the five main SM Higgs boson production mech-
anisms, namely ggH, VBF, ZH, WH, and ttH. The contri-
butions of the bbH and tH production modes are also taken
into account. The relative normalizations of the bbH and the
gluon fusion contributions are kept fixed in the fit, and so are
the tH and ttH ones. The results are shown in Fig. 11 for the
observed and expected profile likelihood scans of the inclu-
sive signal strength modifier and those for the signal strength
modifiers of the five main SM Higgs boson production mech-
anisms. The corresponding numerical values, including the
decomposition of the uncertainties into statistical and sys-
tematic components, as well as the expected uncertainties,
are given in Table 4.

The dependence of the measured signal strengths on the
profiling of myy is checked and found to have a small impact
both on the inclusive results and those in terms of the five
main H boson production mechanisms, well within the mea-
surement uncertainties. The best fit signal value changes at
most by 4% and the profiled value of the mass is found to be
my = 1 25.09J_r8: }i (stat) GeV. Itis important to note here that
the precise determination of my and the systematic uncer-
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Fig. 14 The measured cross sections (o B8),bs and the SM predictions
(0B)sm for H — ZZ decay and the merged stage 1.2 STXS production
bins at my = 125.38 GeV. Points with error bars represent measured
values and black dashed lines with gray uncertainty bands represent

Table 5 Best fit values and £1 standard deviation uncertainties for the
measured cross sections (o B)obs, the SM predictions (o B)sm, and their
ratio for the stage 0 STXS production bins at my = 125.38 GeV for
H — ZZ decay

(0 B)obs (fb) (oB)sm (fb) (0B)obs/ (0 B)sm
ttH 3*Hi6 159+ 1.4 0.16707%
VH-lep 41132 259£0.8 1.56%1%
qqH 61733 12246 0.50703¢
ggH 1214732 1192 £95 1.02404
Inclusive 1318+139 1369 + 164 0.967949

tainties that enter its measurement are beyond the scope of
this analysis.

Two signal strength modifiers, ur = ogH, (TH,bbH,(H and
UV = WVBF,VH, are introduced for the fermion and vector-
boson induced contributions to the expected SM cross sec-

@ Springer

the SM predictions. In the bottom panel ratios of the measured cross
sections and the SM predictions are shown with corresponding uncer-
tainties for each of the bins

tion. A two-parameter fit is performed simultaneously to
the events reconstructed in all categories, leading to uf =
0.96+8:ig and uy = 0.82J_r8:§?. The expected values for

my = 125.38 GeV are up = 1.001013 o33

o3 and py = 1.00
The 68 and 95% CL contours in the (uf, v ) plane are shown
in Fig. 12 and the SM predictions lie within the 68% CL

regions of this measurement.

10.2 Simplified template cross section

The results for the H boson product of cross section times
branching fraction for H — ZZ decay, (0 B)obs, and com-
parisons with the SM expectation, (o B)swm, for the stages of
production bins defined in Sect. 6.1, are shown in Fig. 13
for the stage 0 and in Fig. 14 for the merged stage 1.2. The
corresponding numerical values are given in Tables 5 and 6 .

As discussed, the set of THU uncertainties described in
Sect. 9.2 is not considered for the STXS measurements: THU
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Table 6 Best fit values and +1
standard deviation uncertainties

for the measured cross sections
(0 B)obs, the SM predictions

(0 B)sm, and their ratio for the
merged stage 1.2 STXS
production bins at

my = 125.38GeV forH — ZZ
decay

(0 B)obs (tb) (0 B)sm (fb) (0B)obs/ (0 B)sm
9gH-03 /pg[0, 10] 145155 164+ 11 0.8970:3
9gH-03 /pa[10, 200] 61175 561 + 87 1.09%51¢
ggH-15 /p,[0, 60] 214178 177+ 18 121797
ggH-173/pr[60,120] 59T 121 + 14 0.487937
ggH-15 /pp[120, 200] 53133 2044 2.62+124
ggH-23 /p,[0, 60] 0+ 3546 0.00%5:5
ggH-23 /pp[60, 120] 7874 5149 1.537931
ggH-23 /pp[120, 200] 27122 2646 1.0679%7
ggH-23 /m;;> 350 47 2343 0.17551
9gH/pr> 200 74 15+6 0477533
ggH-rest e 7145 0.15%221
agH-273 /m;5[60, 120] 1239 121+12 1.01728
agH-23/mj5[350, 700] 15123 10.5+0.7 1.417221
q@H-23 /my5> 700 0ts? 15+1 0.00%0:0
qQH-33/ms5 > 350 4343 89+0.5 484155
qqH-23 /pgp> 200 0+ 42402 0.00%0:55
VH-lep/pgu[0, 150] 56738 223+ 1.1 2.4913-%0
VH-lep/pqgn> 150 0+g0 3.640.1 0.00220
ttH 0ty 159+ 1.4 0.005:01

uncertainties are model dependent and should be only consid-
ered in the interpretation of the results. Therefore, the THU
uncertainties are included in the SM predictions of the cross
section. The correlation matrices are shown in Fig. 15. The
dominant experimental sources of systematic uncertainty are
the same as for the signal strength modifiers measurement,
while the dominant theoretical source is the uncertainty in
the category migration for the ggH process.

10.3 Fiducial cross section

In this section the cross section measurement for the pro-
cess pp — H — 4¢ within a fiducial volume that closely
matches the reconstruction level selection is presented. In
particular, the integrated fiducial cross section is measured
as well as differential cross sections as a function of the
transverse momentum of the H boson (p¥), its rapidity
( yH |), the number of associated jets (NY), and the transverse
momentum of the leading jet ( pJT). These measurements are
largely independent of the assumptions on the relative frac-
tions and kinematic distributions of the individual produc-
tion modes. The definition of the fiducial volume is based
on generator-level quantities and is identical to that in Ref.
[18]. In ordgr to reduce the experimental uncertainties, only
jets with pJT > 30GeV and |)| < 2.5 are considered for
the differential cross sections as a function of jet observ-
ables. An increase in model dependence compared to Ref.

[25] is observed when using the ZZ candidate selection at
reconstruction level where the candidate with the best Dlg]i(‘;
discriminant value is chosen. Therefore, the fiducial cross
section measurement is performed using the event selection
algorithm in Ref. [25]. Specifically, the Z; candidate is cho-
sen to be the one with m(Z;) closest to the nominal Z boson
mass, and in cases where multiple Z, candidates satisfy all
criteria, the pair of leptons with the largest sum of the trans-
verse momenta magnitudes is chosen. The full fiducial vol-
ume definition is detailed in Table 7 and the acceptance for
various SM production modes is given in Table 8.

A maximum likelihood fit of the signal and background
parameterizations to the observed 4¢ mass distribution,
Nobs(mayg), is performed to extract the integrated fiducial
cross section for the process pp — H — 4¢ (07q). The fit is
carried out inclusively (i.e., without any event categorization)
and does not use the Dlgli(“g observable in order to minimize the
model dependence. The fitis performed simultaneously in all
final states and assumes a H boson mass my = 125.38 GeV,
while the branching fractions of the H boson to different final
states (4e, 4., 2e2) are free parameters in the fit. The sys-
tematic uncertainties described in Sect. 9 are included in the
form of NPs and the results are obtained using an asymptotic
approach [118] with a test statistic based on the profile like-
lihood ratio [117]. This procedure accounts for the unfolding
of detector effects from the observed distributions and is the
same as in Refs. [25,120].
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Fig. 15 Correlation matrices between the measured cross sections for the stage 0 (upper) and the merged stage 1.2 (lower) for H — ZZ decay
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Table 7 Summary of requirements used in the definition of the fiducial phase space for the H — 4¢ cross section measurements

Requirements for the H — 4¢ fiducial phase space

Lepton kinematics and isolation

Leading lepton pr

Next-to-leading lepton pr

Additional electrons (muons) pt

Pseudorapidity of electrons (muons)

Sum of scalar pr of all stable particles within AR < 0.3 from lepton

Event topology

pT > 20GeV
pt > 10GeV
pt > 7(5) GeV
nl <2.524)
< 0.35pT

Existence of at least two same-flavor OS lepton pairs, where leptons satisfy criteria above

Inv. mass of the Z; candidate

Inv. mass of the Z, candidate

Distance between selected four leptons
Inv. mass of any opposite sign lepton pair

Inv. mass of the selected four leptons

40 < mz, < 120GeV

12 < mz, < 120GeV

AR(C;, £;) > 0.02 for any i # j
M+ - > 4GeV

105 < m4e < 140 GeV

Table 8 Summary of the fraction of signal events for different SM
signal production modes within the fiducial phase space (acceptance
Agd), reconstruction efficiency (e) for signal events in the fiducial
phase space, and ratio of the number of reconstructed events outside
the fiducial phase space to that of the reconstructed events in the fidu-

cial phase space (fhonfia). For all production modes the values given
are for myg = 125GeV. Also shown in the last column is the factor
(1 + fhonfid)€ which regulates the signal yield for a given fiducial cross
section, as shown in Eq. (8). The uncertainties listed are statistical only.
The theoretical uncertainty in Agq for the SM is less than 1%

Signal process Afiq € JSronfid (1 + fnonfid)€
ggH (POWHEG) 0.402 £ 0.001 0.598 £ 0.002 0.054 £+ 0.001 0.631 £ 0.002
VBF 0.445 £+ 0.002 0.615 £ 0.002 0.043 £ 0.001 0.641 £ 0.003
WH 0.329 £ 0.002 0.604 £ 0.003 0.078 £ 0.002 0.651 £ 0.004
ZH 0.340 £ 0.003 0.613 £ 0.005 0.082 £ 0.004 0.663 + 0.006
ttH 0.315 £ 0.004 0.588 £+ 0.007 0.181 £ 0.009 0.694 +0.010

The number of expected events in each final state f and
in each bin 7 of a given observable is expressed as a function
of myy as:

N mae) = NI mae) + Nt (mag) + NS oo (mag)
+ N[ﬁ;;(mu)
R i 8
=l (14 Fline) ot £Pstmay - ®
J

+ Nh}z;ilrespnonres (mag) + Ng;lgpbkg (may).

The shape of the resonant signal contribution, Pres(m14¢), is
described by a double-sided Crystal Ball function as dis-
cussed in Sect. 8, and the normalization is used to extract
the fiducial cross section. The non-resonant signal function,
Phonres (Ma4¢), is determined by the WH, ZH, and ttH con-
tributions where one of the leptons from the H boson decay
is lost or not selected. It is modeled by a Landau distribu-
tion with shape parameters constrained in the fit to be within
a range determined from simulation. This contribution is
referred to as the “combinatorial signal” and is treated as
a background in this measurement.

The quantity eif ; represents the detector response matrix

that maps the number of expected events in bin j of a given
observable at the fiducial level to the number of expected
events in bin i at the reconstruction level. This response
matrix is determined using simulated signal samples and
includes corrections for residual differences between data
and simulation. In the case of the integrated fiducial cross
section measurement, the response matrices become single
numbers, which are listed in Table 8 for different SM pro-
duction mechanism.

An additional resonant contribution arises from events
which are accepted but do not originate from the fiducial
phase space. These events are due to detector effects that
cause differences between the quantities used for the fidu-
cial phase space definition and the corresponding quantities
at the reconstruction level. This contribution is treated as
background and is referred to as the “non-fiducial signal”
contribution. A simulated sample is used to verify that the
shape of the distribution for these events is identical to that
of the fiducial signal, and its normalization is fixed to the
corresponding fraction of the fiducial signal. The value of
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Fig. 16 The measured inclusive fiducial cross section in different final
states (upper) and integrated as a function of /s (lower). The accep-
tance is calculated using POWHEG at /s = 13 TeV and HRES [107,109]
at /s =7 and 8 TeV, and the total gluon fusion cross section and uncer-
tainty are taken from Ref. [58]. The fiducial volume for /s = 6-9 TeV
uses the lepton isolation definition from Ref. [25] and the SM predic-
tions and measurements are calculated at myg = 125.0 GeV, while for
/s = 12-14TeV the definition described in the text is used and SM
predictions and measurements are calculated at mpg = 125.38 GeV

this fraction, which we denote as fyonfid, 1S determined from

simulation for each of the signal models studied. The value

of fhonfia for different signal models is shown in Table 8.
The integrated fiducial cross section is measured to be

ofig = 2.847031 = 2.847033 (stat) T3S (syst) fb
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atmy = 125.38 GeV. This can be compared to the SM expec-
tation aﬁséw = 2.84 £+ 0.15 tb. The measured inclusive fidu-
cial cross sections in different final states and integrated as
a function of center-of-mass energy are shown in Fig. 16.
The corresponding numerical values, including the decom-
position of the uncertainties into statistical and systematic
components, and the corresponding expected uncertainties,
are given in Table 9.

The measured differential cross sections as a function of
the H boson transverse momentum and rapidity are shown
in Fig. 17. The corresponding numerical values are given
in Tables 10 and 11 . Finally, the measured differential cross
sections as a function of the number of associated jets and the
transverse momentum of the leading jet are shown in Fig. 18.
The corresponding numerical values are given in Tables 12
and 13.

For all the fiducial measurements the dominant system-
atic uncertainties are those on the lepton identification effi-
ciencies and luminosity measurement, while the theoreti-
cal uncertainties are smaller. In order to assess the model
dependence of the measurement, the unfolding procedure is
repeated using different response matrices created by varying
the relative fraction of each SM production mode within its
experimental constraints. The uncertainty is negligible with
respect to the experimental systematic uncertainties.

11 Summary

Several measurements of the Higgs boson production in the
four-lepton final state at /s = 13 TeV have been presented,
using data samples corresponding to an integrated lumi-
nosity of 137 fb~!. Thanks to a large signal-to-background
ratio and the complete reconstruction of the final state decay
products, this channel enables a detailed study of the Higgs
boson production properties. The measured signal strength
modifier is 1 = 0.94 £ 0.07 (stat) ™57 (theo) TS (exp)
and the integrated fiducial cross section is measured to be
Ofd = 2.84J_r8:£ (stat)fgé? (syst) fb with a standard model
prediction of 2.84£0.15 fb for the same fiducial region.. The
signal strength modifiers for the main Higgs boson produc-
tion modes are also reported. A new set of measurements,
designed to quantify the different Higgs boson production
processes in specific kinematical regions of phase space,
have also been presented. The differential cross sections as
a function of the transverse momentum and rapidity of the
Higgs boson, the number of associated jets, and the trans-
verse momentum of the leading associated jet are determined.
All results are consistent, within their uncertainties, with the
expectations for the standard model Higgs boson.
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Table 9 The measured inclusive fiducial cross section and £1 standard deviation uncertainties for different final states and data-taking periods at
my = 125.38 GeV. The statistical and systematic uncertainties are given separately for the inclusive measurements

2e2 (fb) 4 (fb) 4e (fb) Inclusive (fb)
2016 1.227938 0.897922 1077943 3.1970%8 = 3.197048 (stat) T 33 (syst)
2017 1647041 0.82+024 0.56703 3.017080 = 3.0110:4] (sta) T35 (syst)
2018 1.17753] 0.6670 13 0.73%93, 2.57104% = 2.57103 (stat) T) 3] (syst)
2016-2018 1.317929 0.78+919 0.76+013 2.841034 = 2.847023 (stat) T0:2¢ (syst)
— _CI:Mls T ?37 flb; (1‘3|T?V‘)_ Table 10 The measured differential fiducial cross section and +1
> F E standard deviation uncertainties for the pH observable at my =
t Data (stat ® syst) T
8 ’Ié— Systematic uncertainty 3 1'25..38 GeV. The br.eakdown of th'e tqtal uncertainty (unc.) into sta-
B F SO ggLH (NNLOPS) + XH ] tistical and systematic components is given
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