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Reduced model of plasma evolution in hydrogen discharge capillary plasmas
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A model describing the evolution of the average plasma temperature inside a discharge capillary
device including Ohmic heating, heat loss to the capillary wall, and ionisation/recombination effects
is developed. Key to this approach is an analytic quasi-static description of the radial temperature
variation which, under local thermal equilibrium conditions, allows the radial behaviour of both the
plasma temperature and the electron density to be specified directly from the average temperature
evolution. In this way, the standard set of coupled partial differential equations for magnetohydrody-
namic (MHD) simulations is replaced by a single ordinary differential equation, with a corresponding
gain in simplicity and computational efficiency. The on-axis plasma temperature and electron den-
sity calculations are bench-marked against existing full (1D) MHD simulations for hydrogen plasmas
under a range of discharge conditions and initial gas pressures, and good agreement is demonstrated.
The success of this simple model indicates that it can serve as a quick and easy tool for
evaluating the plasma conditions in discharge capillary devices, particularly for com-
putationally expensive applications such as simulating the long-term plasma evolution,
performing detailed input parameter scans, or for optimisation using machine-learning

techniques.

I. INTRODUCTION 53

54

The ability to characterise and control the plasma %
conditions within gas-filled capillary discharge devices, %
including plasma wakefield acceleration sources [1-7],
plasma waveguides [8-12] and active plasma lenses [13—
19], is critical to the development and optimisation of ®
next-generation compact particle accelerator technolo- *
gies [20]. 5

The rapid development of plasma-based accelerator ®
techniques, either laser-driven [1, 12, 21-24] or beam- ©
driven [3, 25-27], is made possible by advances in diag- ®
nostics and numerical modelling. Since the laser spot
size and/or electron beam radius is small compared to %
the capillary radius, it is the near-axis plasma proper- ®
ties that are the most important to characterise and are
the focus of plasma diagnostic techniques including lon- %
gitudinal laser interferometry [28—31] and plasma emis-
sion spectroscopy [31—34]. The purpose of this work is ™
to present a simple numerical model for evaluating the ™
plasma properties on-axis in plasma capillary discharges. ™

Magnetohydrodynamic (MHD) simulations have been ™
successfully used for modelling hydrogen discharge cap-
illary devices [8, 11, 16, 35-37]. MHD models, in-"
cluding the approach developed in this work, are ™
generally applicable to collisional plasmas with ™
atomic density 2 10> m~® (i.e., initial gas pres-"
sures of £ a few mbar) and ionisation degrees™
Z 1073, Simulations usually consist of a system of cou- "
pled partial differential equations describing the mass- ¥
density, momentum and energy evolution in 1-, 2- or 3-*
dimensions. Reduced geometry and simple equilibrium *

models have been shown to capture the essential physics *
84
85

86
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for many applications [8, 11, 16]. These investigations
have demonstrated that stable quasi-static conditions are
reached during the discharge that can be well described
by reduced MHD models.

The creation and subsequent evolution of a capillary
plasma due to an electrical discharge is largely dictated
by the local plasma temperature. During the discharge
the plasma heats up via Ohmic heating and a radial tem-
perature gradient develops between the on-axis plasma
and the cooler wall. In response to the associated pres-
sure gradient, the plasma density moves away from the
axis towards the boundary to re-establish a uniform ra-
dial pressure. In quasi-static equilibrium, the balance
between Ohmic heating and boundary heat loss results
in distinctive temperature and electron density profiles,
which can be exploited for guiding high intensity laser
pulses [8] and mitigated for active plasma lensing appli-
cations [17]. The plasma temperature plays the principle
role in specifying the density of ionic states, as well as
plasma transport properties, e.g., the thermal and elec-
trical conductivity.

In this work, the plasma dynamics are captured via a
model of the average energy evolution, i.e., a single or-
dinary differential equation. This is achieved through
assumptions about the radial variation of the plasma
properties based on quasi-static conditions. Section II
describes the model of a hydrogen discharge capillary,
including the assumptions made about the radial plasma
temperature and density profiles during different stages
of the discharge. The explicit forms of the various en-
ergy input/output mechanisms as well as the appropriate
transport properties are also detailed here. In Section ITI
the simulation results are compared against existing 1D
MHD simulations for a variety of discharge and pressure
conditions.
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II. MODEL DESCRIPTION 142

143

The most commonly used gas species in gas-filled cap-1+
illary discharge devices is hydrogen [1, 9-11, 24, 38].
In this work, the discharge dynamics of a confined axi-j,;
symmetric cylindrical hydrogen plasma of radius R and
length L > R are considered. The dynamics of the
plasma discharge system are largely dictated by the lo- .
cal plasma temperature, and thus the focus of this work
is on the dominant energy exchange processes that can'”
occur. For hydrogen plasmas, these are Ohmic heating,1
the thermal exchange with the capillary wall, and the™
reactive energy exchanges due to ionisation and recom-
bination. Radiative energy losses are neglected, as the'™
influence of radiation cooling on the plasma dynamics for
hydrogen is insignificant for discharge currents I < 1.4
MA (the Pease-Braginskii current) [8, 39]. Z-pinch ef-""
fects [40] are also neglected, as the magnetic pressure is"™’
small compared to the plasma pressure for the range of
discharge parameters considered (see Tab. I). o

The system is treated as a single-fluid plasma that ex-"
ists in a state of local thermal equilibrium (LTE) between
the electrons and ionic species. Since L > R, the longi-
tudinal variation of the plasma properties is considered'®
negligible and only the radial variation is considered. The'®
radial energy balance equation [41] is

0

163

g

r or 165

166
where 7 and ¢ are the radial position and time respec-

tively, € is the total energy, P is the total pressure, v,
is the radial velocity, and ¢ is the heat flux, all defined,
for a single-fluid plasma. @ represents the combined re-
maining sources and sinks of thermal energy, which here
is only Ohmic heating. Assumptions underlying Eq. (1)
and MHD more generally, include:

172

173

1. the characteristic length scales > collisional mean-*
free-path length, electron/ion gyroradii, and Debye!™
length, and

2. the characteristic time scales > collisional mean-
free-path time, inverse of electron/ion gyrofrequen-

cies.
177

A small Debye length implies quasi-neutrality, and highus
collisionality implies that the electron/ion velocity dis-1o
tribution is close to a Maxwell-Boltzmann distribution.iso
These conditions are generally satisfied for hydrogen dis-1s
charge capillary plasmas with atomic density of n, Zw
1023 m~3 (i.e., initial gas pressures of % a few mbar) andues
ionisation degree Z, Z 1073. The initial breakdown ofies
the plasma, which occurs during the first ~ 10 ns, is auss
complex kinetic phenomena which cannot be describediss
with MHD. Instead of modelling the breakdown, an ini-isr
tial temperature (e.g. To = 0.3 V) is assumed such thatuss
the plasma is already slightly ionised. 189

For many applications the full radial variation is notio
required, and a single characteristic value representingio

the plasma conditions, e.g., the average value or on-axis
value, is sufficient. Averaging over the radial extent of
Eq. (1) yields

0 2

Zle) = i 2

£l = (Q) — —a(R), 2)
where it is assumed that there is no net exchange of ma-
terial with the capillary walls, and where the averaging is

defined via (¢) = —» fOR 2mr¢(r) dr. The specific form
of each term in Eq. (2) is detailed in Section IIB.

A similar expression to Eq. (2), i.e., the average rep-
resentation of the plasma conditions inside a discharge
capillary, was considered in [42], building upon earlier
work in [43]. The key difference is that, in this work,
the radial variation of the plasma properties is consid-
ered in evaluating Eq. (2), which will be shown to be
critical in accurately describing the average energy evo-
lution. A method for approximating the radial variation
of the plasma temperature and electron density is hence
required.

A. Radial variation of the temperature and atomic
density

This section introduces a method for determining the
radial temperature and atomic density, which is the cor-
nerstone of the present work. Specifying the radial be-
haviour directly allows the calculation of the on-axis
plasma properties, average plasma properties, and, im-
portantly, the derivative terms at the boundary which
control heat flux.

The time evolution is separated into two regimes: 1.)
the initial uniform regime where the plasma conditions
are approximately radially uniform and, 2.) the final
quasi-static regime where the plasma temperature and
atomic density vary radially so as to maintain a balance
between the energy input and output mechanisms.

1. Transition from uniform to quasi-static conditions

At early times during the discharge, the weakly-ionised
plasma properties, such as the temperature and atomic
density, are essentially uniform radially. As the plasma
continues to heat, the axis becomes hotter than the
constant-temperature wall, creating a temperature (and
hence pressure) gradient. Ionisation of the neutral
species acts to absorb energy, both slowing the temper-
ature increase and reducing the radial temperature vari-
ation. However, once the first level of ionisation is near
completion the plasma temperature is free to rise rapidly.
At this point there is a corresponding rapid rise in pres-
sure gradient causing the plasma density to re-organise
towards uniform pressure conditions, i.e., the quasi-static
state.

To accurately model the transition from the initial to
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quasi-static conditions requires the additional calculationza
of the (radially) spatially-resolved density and velocityas
variables. However, given that the onset of the transitionzss
tends to coincide with the rapid rise in temperature near-2
ing full on-axis ionisation, the model can be vastly sim-2as
plified while retaining the important physical phenom-zss
ena. It is hereafter assumed that the radial pres-u
sure is always uniform, and that the plasma tem-2s
perature and density transition between the uni-o
form and quasi-static regimes occur instantaneously2so
at time ¢t = t*, which is defined via the on-axis ionisationas:
fraction Zgo(t+) = 0.9 (see Sec. IIB1). The value of 0.92
has been chosen for its good agreement with previouslyass
published 1D simulations [8, 11], which are examined.s
in Sec. III. Alternatively, the entire plasma evolutionass
can be simulated assuming either uniform or quasi-staticase
conditions to establish a range of possible values. 257

258

259
2. Quasi-static conditions 260
261

The quasi-static regime is characterised by a uniform

radial pressure and a plasma temperature that is de-**
scribed by the steady-state energy balance equation (see™
Appendix A), 2ot

265
1d dT
0=+ (). o
where T is the plasma temperature and x is the plausmauz68
thermal conductivity. The precise form of @) depends on
the expressions chosen for the Ohmic heating (and ra-ano
diation losses, when not negligible) as discussed in Sec-an
tion IIB 3. In principle the exact solution to Eq. (3) couldzr
be solved at each time step of the full average energyars
evolution, consistent with instantaneous average energy.or
However, a faster and more efficient method is sought inzs
this section. 276
The thermal conductivity controls the radial redistri-
bution of thermal energy. The total thermal conductivity
k includes contributions from electron, k., ion, k;, and

neutral species, k,, via the simple mixture rule [44], o

(4)278
TL'kQT 279
1vp
1 280
Mg (@Vii + %Vm)
nnkET

s s
mq (gyni + §Vnn

K = Ke + Ki + kn,
nekgT

Me (ﬁyei + %Ven)

~
~
281

75282
)()

283
where m, is the atomic mass, and v, represents the col-2ss
lision rate of species a with b, where e,i7 and n repre-uss
sent electrons, ions and neutrals respectively, as given inoss
Appendix C. The coefficients of v.; and v;; are takenos
from [45]. The heavy species-electron collision rates v;ezss
and v, are typically smaller than v;; and vy, respec-as
tively by a factor of \/m,/m., and are thus neglectedswn
from Eq. (4). The equilibrium method introduced in [8].n

employs an approximation to the Spitzer-Harm theory
of fully ionised plasmas [46] such that x oc T°/2 (and
Q o< T3/?). At low temperature and hence low ionisation
fractions, collisions with neutral species (as opposed to
collisions between charged particles) dominate resulting
in a k x T2 dependence.

For a large proportion of the total discharge time,
the plasma temperature near the capillary axis will be
multi-eV [8, 39], while the (constant) temperature of
the capillary wall is sub-eV, indicating the existence of
a layer near the boundary dominated by neutral colli-
sions due to the low ionisation fraction. The system can
then be separated into two distinct regions, i.e., the cen-
tral plasma-dominated bulk and the neutral-dominated
boundary layer near the capillary wall.

To facilitate fast and efficient calculations an analytic
approximation for T'(r) is sought. Assuming that,

1. Ohmic heating effects ensure that the radial plasma
temperature decreases monotonically from a max-
imum value on-axis to the minimum value at the
boundary,

2. a ‘two-region’ approach can be employed, differ-
entiating the plasma-dominated bulk from neutral-
dominated boundary layer by an internal boundary
temperature Ty,

3. @ is approximately constant with respect to radial
position, the exact magnitude of which is chosen
such that T'(r) in Eq. (3) is consistent with (¢) in
Eq. (2) at each time step,

then an analytic expression for the radial tempera-
ture profile in the range [0, R] can be derived (see Ap-
pendix A). Treating ) as a uniform energy source un-
der quasi-static conditions in order to analytically de-
fine the radial plasma temperature, is called the “Quasi-
static Uniform-Energy-Source Temperature” or QUEST
method. The QUEST method temperature profile is

2

Tn+1 7‘2 7
To 1= (1- Tk 1]
3
T2

where Ty, T, and Tj are the temperature on-axis, at

the wall » = R, and at the internal boundary r = Ry,
respectively. Clearly when Ty > Ty, T, then T(r) =
2

for r < Ry,

T(r)= (6)

P2_Rr2 |3
R2—Rb§ for r > Ry,

To [1 - ;—22] " for r < R,. Bquation (6) assumes that
Ty > Ty > Ty, i.e., that the temperature range spans
both the plasma-dominated and neutral-dominated re-
gions, but can be altered easily for other situations.
The plasma-dominated regime is here defined by x. +
Ki > Ky, and conversely the neutral-dominated regime by
Ke + Ki < Kn. Hence the internal boundary temperature
Ty is located where ke(Tp) + ki(Ty) = Kn(Tp). The &
components are weakly dependent on the atomic density,
and so in the simulations the Tj value corresponding to
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the initial (n,) is used. For (n,) = 10?** m=3 T, ~
0.9 eV, and this value is used hereafter. An order of
magnitude change in n, results in $ 5% change in the
value of T,. The corresponding change in the average
plasma temperature calculations is < 2%, indicating that
the simulation procedure is robust to the choice of Ty.

The value of R, can be completely specified by the
requirement that the heat flux from each region, which
obey different temperature power laws, match at the in-
ternal boundary, i.e., ¢(R; ) = ¢(R;) (and T, = T(Ry)).
The expression for R}, in terms of the on-axis temperature
To and wall temperature T, is

37\ ~2
Ry 7{1_(%) }

R 3{(@;1] ’

the derivation of which is given in Appendix B. Thus the
full radial temperature profile (and Ry) is specified by T,
Ty, and T,,. In the course of a simulation, T, and T, are
set as input constants, and only Tj varies as a function
of time. 338

339

(7)

337

340
Example radial temperature profiles, corresponding t0s4
select average temperature values, are shown in Fig. 1.,
Different behaviour is demonstrated either side of Ry, ow-
ing to the different temperature power laws controlling
the thermal conductivity in each region. As Tj increases,ss;
the position of the plasma-neutral boundary Rj moves to-
wards the capillary wall. It should be noted that R, < R_,
and the heat flux at the capillary boundary is dictated,
by the neutral-dominated thermal conductivity regard-_
less of how thin the neutral-dominated boundary layer
becomes.

347
348
349

The non-uniform plasma temperature described by™

Eq. (6) implies a non-uniform plasma density under uni-"
form pressure conditions P(r) = (P). Assuming uniform™
total pressure, it follows from the ideal gas law that %

1

354

k)0

na(r) =5 j‘nzi)T <(1 +lZa)T>_1’

(9)357

358

where Z, is the ionisation fraction as defined in Eq. (10),ss0
and thus the radial atomic density n,(r) is fully specifiedss
by T'(r) under LTE conditions. For the trivial case thats
all properties are radially uniform, i.e., during the ini-s
tial uniform regime, n, = (n,). The radial plasma tem-sss
perature and electron density profiles resulting from thess
QUEST method are compared to those from 1D MHDsass
simulations in Sec. III. 366
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r/R
FIG. 1. Radial temperature profiles T'(r), as defined in

Eq. (6), for four average temperatures (7). The dashed
vertical lines mark the boundary R, between the plasma-
dominated region (k o< T %/2) and the neutral-dominated re-
gion (k o< T'/?) which occur at T, = 0.9 eV, represented by
the dashed horizontal line.

B. Energy balance terms and transport coefficients

In this section the specific forms of the energy balance
terms (internal energy ¢, Ohmic heating Qonm, boundary
heat flux ¢(R)) and transport properties (specific heat ca-
pacity C,, electrical conductivity o, thermal conductivity
k) necessary to evaluate Eq. (2) are detailed.

1.  Density of ionic states

A single-temperature plasma that exists in a local ther-
mal equilibrium between the electrons and heavy ionic
species is assumed. Reference [39] showed that, for a
hydrogen discharge capillary, LTE conditions are estab-
lished in approximately 50 ns. References [8, 11, 35]
have had success modelling discharge capillaries assum-
ing LTE conditions over the entire discharge lifetime.

By assuming LTE conditions the density of ionic states
is fully specified by the plasma temperature (T') and
atomic density (n,) via the Saha ionisation equation [47].
For a quasi-neutral hydrogen plasma only single-level ion-
isation is required, and the appropriate Saha ionisation
equation is

3
72 1 /2rmola, T\ ? Iy
a_ . — (Z0Teto 7 1
1- 2, na< 12 > eXp( ka>’ (10)

where Iy is the ionisation energy for hydrogen, and
Zo = ne/ng is the mean charge per atom which here also
represents the ionisation fraction. The constants m., kp
and h are the electron mass, Boltzmann constant and
Planck constant respectively.

The ion density n; and neutral density n,, can be found
from the quasi-neutrality, n; = n., and particle conser-
vation, n, = n, — n;, conditions respectively.
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2. Internal energy a12
413

The connection between the internal energy and the**

plasma temperature, accounting for the energy stored in*®
ionisation, is given by 16

€=CypoT +CyT+U, (11)

417
where C, , = %nakb and C, = %nekb are the atomic
and electronic heat capacities for ideal gases, respec-as
tively. The potential energy term U = n.ly representsao
the amount of ionisation energy required to reach theao
specified density of ionic states from a neutral state.

The time derivative of the internal energy can be re-

written as a function of temperature directly, i.e., .

% = gnakb {1 +Z,+T (1 + gk{;’) 86?1] 88—:: (12)423
— aT 424

= Cv(Ta na)av (13)
425
where C! then represents an effective heat capacity. Thess
calculation of %%ﬁ is detailed in Appendix D. Note thatsr
Z, and %Zji‘ are simply functions of T" and n,. 428

429
430
431
8. Ohmic heating -
433
The discharge current provides the energy input to thess
plasma system via Ohmic heating. The Ohmic heatingss
contribution to @ in Eq. (1) is 436
437
(14)438
439
where J is the current density and FE is the electric,,
field strength. The connection between the electric field,,
strength and the current density is given by Ohm’s law,,,
J = oFE, where o is the electrical conductivity. The
Ohmic heating is driven predominantly by electron inter-
actions, such that the electrical conductivity of a plasmaa.;
consisting of electrons, ions and neutral species is [44]

QOhm = JEv

.2 444
o= T € , (15)445
Me (myei + Ven) 446

where v.; and v, are the electron-ion collision and::
electron-neutral collision rate respectively, given in Ap-
pendix C. Although electron-electron collisions are
momentum-conserving and do not contribute directly to
Eq. (15), the indirect effect of electron-electron correla-**°
tions on the electron velocity distribution is included in
coefficient of v.;, which is taken from [45]. 451
Following the quasi-static approach in [8], it is assumed
that the electric field is homogeneous such that 3

449

454

(Qohm) = % <7TIR2>2’ (16):22

5

where I = fOR 27rJ dr is the total current. The cur-
rent amplitude as a function of time is routinely mea-
sured in discharge capillary experiments, and thus I(t)
is treated as an input rather than calculated in an addi-
tional coupled-circuit model [42, 43].

4. Boundary heat loss

The dominant energy loss mechanism in (enclosed) hy-
drogen discharge capillaries is the heat flux through the
capillary boundary. The heat flux is given by Fourier’s

law q¢ = —ﬁ%—f, such that
2 2 oT
_Z =2 [ g== 1
rIP =% (” ar>,=R a7
3
8 Tw T, \?
= k() —2— | [=2) -1 1
3 ") 7y (Tw> ] (18)

where k has been defined in Eq. (4). Equation (17) ex-
plicitly depends on the radial temperature gradient at the
boundary, and thus can be written in terms of Ty, T and
Ry via Eq. (6). The main reason to decompose the do-
main into plasma-dominated and neutral-dominated re-
gions (see Sec. ITA) is to capture this term accurately.

At the capillary boundary the thermal conductivity,
and hence the energy transfer to the wall, is dominated
by neutral collisions due to the low local temperature
and ionisation fraction. This is in contrast to the plasma
bulk where the electron thermal conductivity is generally
much larger than the neutral (and ion) species thermal
conductivity. The melting point of sapphire capillaries
is approximately 2300 K, and in this work T, = 2000 K
is used in the simulations. The simulation procedure is
very robust to the choice of T,, value, with a change of
50% in Ty, resulting in a < 1% change in the calculated
average plasma temperature.

C. Numerical solution

Each of the transport properties described in Sec. ITB
are fully specified by the plasma temperature and atomic
density (assuming LTE conditions). Thus the Taylor se-
ries approximation of each of the radially-varying quan-
tities, f(T(r),nq(r)), in the neighbourhood of some ref-
erence values, T and T, is

0

f(Tv na) - f(Taﬁa) + (T - T)aiT (T7ﬁa)
+ (g — Tg) aiaf(f M)+ ... (19)
(F(T,na)) = f(T,7a). (20)

It is assumed that the appropriate reference values, i.e.,
where the dominant contribution to the average occurs,
are the average plasma temperature T' = (T") and average
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FIG. 2. Flowchart representation of the QUEST method algorithm. Flowchart symbols follow the ISO 5807 (1985) convention.

atomic density i, = (n,), such that the energy evolutionas

equation (2) becomes, 495
— _\dT 1 I\* 2
C, (T'7a) 4 o (T,7,) (m?) gUB). 21,

where Eq. (12) has been used. Note that ¢(R) only de-uo

pends on T indirectly through the temperature gradi-ses
ent at the boundary (see Sec. IIA). The O(T — T) anduss
O(ng—Tg) terms, arising from the derivatives in Eq. (19),s00
are more in the nature of correction terms, and have beenso
neglected in Egs. (20)-(21). Thus it is expected thatse
Eq. (21) works best when the plasma properties are onlysos
slowly varying functions of radial position. The validitysos
of this approach is expanded on in Appendix E. 505

An overview of the workflow for the QUEST simulation®™

code is given in Fig. 2. At each time step, the method de-""
scribed in Sec. ITA is employed to determine the radial®™
plasma temperature profile consistent with the average™
temperature. This specifies the remaining transport co-""°
efficients and energy balance terms described in Sec. IT B.

The ordinary differential equation (ODE) Eq. (21) is ad-su
vanced using a fourth-order explicit Runge-Kutta rou-sw
tine [48]. The radial behaviour of the atomic densitys:s
(and thus the on-axis atomic and electron densities) ares*
determined from Eqs. (8)-(9), in both the uniform and**

quasi-static regimes. o
517

In comparison to the single ordinary differential equa-sis
tion QUEST algorithm, the 1D MHD simulations of [8]
evolve a system of five coupled partial differential equa-
tions. Simulations using the QUEST algorithm typi-
cally complete in < 1 s on a desktop computer. This
indicates that QUEST simulations are particu-
larly useful for computationally expensive prob-so
lems, such as performing detailed input parame-
ter scans or investigating the long term (10 + us)
plasma evolution, where full MHD simulations
are prohibitively expensive. It also makes opti-
misation of discharge capillary plasma conditionssx

with machine-learning techniques feasible. The
simulation results are compared in the following section.

III. SIMULATION BENCHMARKS

The principle goal of the QUEST method is to repro-
duce the plasma temperature and electron density re-
sults of more complex 1D MHD simulations, in a quasi-
analytic and significantly less computationally expen-
sive simulation. In this section, the QUEST simulations
are compared to the previous 1D MHD investigations
by [8, 11] for a range of discharge current amplitudes and
initial gas pressures. After establishing the validity of the
QUEST approach, the importance of accurately repre-
senting the radial variation of the plasma properties, par-
ticularly those close to the capillary boundary, in accu-
rately describing the evolution of the average quantities
is demonstrated by comparison with the results of [42].
The conditions for each simulation are detailed in Tab. I.

TABLE I. Table of parameters for select plasma discharge
capillary simulation literature. R is the capillary radius, P is
the initial gas pressure, n, is the initial atomic density, and
I, and t, represent the magnitude and time of the discharge
current peak. The discharge profiles in simulations B, and G1-
G6 have the form I(t) = Ipsin(wt/t,). The discharge profile
in simulation C does not have an analytic form, and has been
digitized for the comparisons in the present work.

R P Ng 1, tp

Label (um) (mbar) (10**m=3) (A) (ns) Ref
B 150 67 3.35 250 100 [g]
Gl 125 35 1.75 140 120 [11]
G2 125 35 1.75 80 120 [11]
G3 125 35 1.75 45 120 [11]
G4 125 35 1.75 33 120 [11]
G5 125 175 8.75x107! 33 120 [11]
G6 125 35 1.75x107' 33 120 [11]
C 500 10 4.80x107' 650 50  [42]
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A comparison of the plasma temperature and electronsr
density evolution calculated with the QUEST methodsso
and with the 1D non-ideal MHD simulations of [8] in ase
hydrogen discharge waveguide study is shown in Fig. 3. se

At early times (0-50 ns), represented by the greysss
shaded region in Figs. 3(c)-(e), uniform radial temper-sss
ature and density are assumed. The on-axis plasma tem-ss
perature shown in Fig. 3(a), and electron density shownsse
in Fig. 3(b), from [8] are very well reproduced by thess
QUEST method in the uniform regime. The slow risess
in the temperature for the first 50 ns is due to sub-ss
stantial energy being absorbed by the ionisation process.swo
The radial profiles in Figs. 3(a)-(b) corresponding to 40se
ns show good agreement. The 1D MHD profiles exhibitse
some non-uniformity near the boundary but are predom-ses
inantly uniform. 594

At late times (75-150 ns) the results from [8] are alsoses
very well reproduced by the QUEST on-axis tempera-sos
ture and electron density in the quasi-static regime. Thesor
radial profiles corresponding to 80 and 100 ns show con-ses
sistent non-uniform behaviour between [8] and QUESTse
results. The analytic temperature form in Eq. (6) variesso
more sharply towards the boundary compared to [8], re-so
sulting in electron temperature profiles that are moreso
sharply peaked. However, the overall agreement is veryeos
good. Further radial profile agreement can be expectedsos
from using a temperature profile shape that is equivalenteos
to the equilibrium model shape in [8], but comes at thess
cost of requiring a numeric rather than analytic solution.eo

The discrepancy in the intermediate time range of 50-e0s
75 ns is due to treating the re-organisation of the plasmaso
from uniform to quasi-static regimes as an instantaneousso
process (see Sec. ITA). Although the transition onsetsu
time of 50 ns is approximately correct, the transition pro-sw
cess takes approximately 20 ns according to MHD sim-es
ulations, rather than being instantaneous. This is em-6
phasised by the fact that the 1D MHD electron densitysis
and temperature results smoothly transition between thees
QUEST uniform and quasi-static regime bands. The 1De
MHD radial profiles corresponding to 60 ns occurs dur-es
ing this transition, and hence show behaviour that is partes
way between the uniform and quasi-static regimes, ande
is thus not well reproduced by the QUEST simulation. ex

The relationship between the on-axis temperature andsz
the (time-dependent) current discharge amplitude is ex-s
plicitly shown in Fig. 3(f). There are two distinct tem-e2
perature ‘paths’ corresponding to heating (lower path)szs
and cooling (upper path) phases, i.e., on which side ofezs
the 250 A current peak is being sampled. A simplifieds2r
equilibrium model from [8], which is a function of thes
instantaneous current amplitude, rather than being con-62
nected to the average energy evolution, is also included ines
Fig. 3(f), represented by blue crosses. The equilibriumsx
model provides an identical relationship betweens:
Ty and I during both the heating and coolingss:
phases, and demonstrates good agreement for thes:
cooling phase, particularly near the current peak.s:
However, naturally it does not well represent the heat-es:s

ing phase, and cannot describe times after the discharge
has turned off (if I = 0, then the equilibrium tempera-
ture etc. are also 0). Although both the equilibrium
model of [8] and QUEST model are based on a
power-law temperature dependence of the trans-
port coefficients, it is clear that the temporal evo-
lution of the average energy must be included to
satisfactorily describe the full discharge current
lifetime.

Fig. 4 features on-axis simulation results from [11]
where the authors investigated the effect of significant
changes in discharge current magnitude and pressure on
the formation of plasma waveguides, and thus represents
an ideal range of benchmark conditions for the QUEST
method. Many of the comments in the discussion of
Fig. 3 apply here too.

In cases G1-G3 and G5-G6, the onset time of the tran-
sition is well reproduced by the QUEST method. In the
case of G4, the plasma temperature (and ionisation frac-
tion) increases very slowly and the transition threshold of
Z40 = 0.9 is not reached until 210 ns. According to MHD
simulations, the transition begins approximately 50 ns
earlier than predicted using the QUEST method, and it
is not clear that quasi-static conditions have been estab-
lished by the culmination of the discharge. This slow
transition between the uniform and quasi-static regimes
cannot be accurately modelled by the QUEST approach.

Overall the QUEST calculations and MHD simulations
from [11] agree very well, particularly in the uniform and
quasi-static regimes. The average difference between the
QUEST calculations and [11] over the full discharge pro-
file is $ 5% for the on-axis plasma temperature, and
< 10% for the on-axis electron density, for each condi-
tion G1-G6. The maximum difference is T 40% for both
properties, and occurs at the transition between uniform
and quasi-static regimes. Better overall agreement is ob-
served for discharge conditions that lead to higher tem-
peratures (i.e., higher currents or lower densities) as these
tend to demonstrate sharper transitions.

In [42] a similar approach to describing the evolution
of the average plasma properties was proposed. How-
ever, in the formulation of [42] the treatment of
the radial variation of the plasma parameters is
substantially different from the present work. A
comparison of the average plasma temperature and elec-
tron density calculated with the QUEST method and the
simulations from [42] for hydrogen is shown in Fig. 5, and
demonstrates considerable disagreement. These differ-
ences are significant in both the magnitude and
behaviour, which indicates an inherent incompat-
ibility between the two approaches.

The QUEST radially-averaged temperature (T) is con-
siderably greater over most of the time range. Al-
though [42] explicitly includes radiative energy losses, the
effect is insignificant (less than 0.01% of the dissipated
power [39]). The larger peak average temperature indi-
cates a difference in the balance between Ohmic heating
and wall heat loss for the two approaches. The energy
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FIG. 3. Comparison of QUEST simulation and 1D MHD simulation [8] results for electron temperature and electron density.
The simulation conditions are given by ‘B’ in Tab. I. The subplots are: a) Radial electron temperature profiles T'(r) for select
times corresponding to the vertical lines in d) and coloured square markers in f), b) Radial electron density profiles n.(r) for
select times corresponding to the vertical lines in e), ¢) Discharge current profile I, d) On-axis electron temperature Tp, €)
On-axis electron density neo, and f) Variation of the on-axis electron temperature Ty with current amplitude I. Solid lines

indicate QUEST method results, while dotted lines indicate the
calculations using the simplified equilibrium model in [8].

(digitized) simulation results from [8] and blue crosses represent

The coloured shaded bands in d)-e) represent the range of values

between assuming the uniform regime (bottom edge of temperature band, top edge of density band) and the quasi-static regime
(top edge of temperature band, bottom edge of density band). The shaded grey region indicates the times at which the QUEST
algorithm assumes uniform conditions, and marks the transition between the uniform and quasi-static regimes corresponding
to the discrete jump in the electron temperature and density profiles.

exchange with the capillary boundary is the dominantess
heat loss mechanism in hydrogen capillaries, which de-
pends critically on the radial temperature derivative at
the boundary, as described in Sec. [IB4. A key com-;
ponent of the QUEST method is the precise rep-
resentation of this boundary temperature derlva—
tive, which differs from the formalism of [42]. An— o
other important difference is that the effect of 1on1sa—
tion/recombination energy exchanges is included in the” »
QUEST model. The energy ‘absorbed’ during 1onlsat10n
(up to ~ 75% of the Ohmic heating power) is responsi- o
ble for the slow temperature increase at early times, and i
the ‘release’ (up to =~ 50% of the wall energy loss) dur—672
ing recombination is responsible for the slow temperature j
decrease at late times.

~
~

675

The peak average electron density from [42] is thesws
same as the QUEST calculation when assuming uniformer
regime conditions. However, the transition onset time isers
predicted to be approximately 35 ns, and the subsequenter
behaviour is calculated in the quasi-static regime. Noteeso
that the cooler (and hence less ionised) plasma near thess:
capillary boundary contributes substantially to the aver-es
aging due to the high atomic density under quasi-staticsss
conditions, reducing the average electron density. Thees
difference in the electron density decrease at late times isess
due largely to the difference in the plasma temperaturesss
evolution predicted by the two methods, as discussed pre-es

viously.

IV. CONCLUSION

It has been shown that the on-axis plasma tempera-
ture and electron density calculated in existing full 1D
MHD simulations, which solve a complex system of cou-
pled partial differential equations, can be remarkably
well reproduced by the QUEST (Quasi-static Uniform-
Energy-Source Temperature) method, which solves a sin-
gle, simplified ordinary differential equation for the aver-
age plasma temperature evolution. This paves the way
for investigations of computationally-expensive
capillary discharge problems, such as character-
ising the long-term plasma evolution, performing
detailed input parameter scans, or for employing
machine-learning-based optimisation techniques,
which are infeasible using more complex simula-
tion tools.

The key to the QUEST method is in the assumptions
made about the radial temperature behaviour, which
then specify the remaining plasma properties under lo-
cal thermal equilibrium conditions. The approach fol-
lowed here is to split the temporal evolution of the
plasma into a ‘uniform regime’, where the plasma tem-
perature is radially uniform, and a ‘quasi-static regime’
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FIG. 4. Comparison of QUEST simulations and 1D MHD simulations [11] for on-axis electron temperature Ty and electron
density neo as a function of time. The simulation conditions are given by G1-G6 in Tab. I. Descriptions are the same as in
Fig. 3(c)-(e). The electron density in G6 is increased by a factor of 10 to aide in visibility. The current discharge profiles are

given in arbitrary units that are consistent across all plots.
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FIG. 5. Comparison of QUEST simulation results and those
from [42] for average electron temperature (T) and electron™
density (n.) as a function of time. The simulation conditions™*
are given by ‘C’ in Tab. I. Solid lines indicate the QUEST715
method results, while dotted lines indicate the (digitized) sim-,
ulation results from [42]. -

718

719
where the plasma temperature has a non-uniform but an-720
alytic representation under quasi-static conditions. Par-7a
ticular attention is given to the quasi-static radial tem-7z
perature representation, which is separated into plasma-,,,
dominated and neutral-dominated regions, as it deter-,,,

mines the heat flux at the capillary boundary — the,.
major energy loss process in these hydrogen discharge;,
capillary systems. 77

The near-axis plasma properties are the most rele-rs
vant to many experiments, particularly in beam-drivenrzo
wakefield acceleration. The on-axis plasma tempera-7so
ture and electron density are compared to the full 1D

MHD simulations of [8, 11] for a range of discharge
current amplitudes and initial gas pressures. The sub-
stantially simpler QUEST method demonstrates good
agreement, particularly at early and late times where
either uniform or quasi-static conditions have been es-
tablished. The plasma temperature and electron density
are generally within 5% and 10% of [8, 11], respectively.
At intermediate times, the 1D MHD results exhibit a
mixture of uniform and quasi-static behaviour, however
the QUEST method still gives results with differences
< 40%. When compared to the simplified equilib-
rium model of [8], the QUEST method demon-
strates that modelling the evolution of the aver-
age energy is necessary to adequately describe the
plasma conditions over the full discharge current
lifetime.

This marks the first time that a model based
on the evolution of the average energy in cap-
illary discharge devices has been satisfactorily
bench-marked against 1D MHD simulations over
the entire discharge profile, and the results here
indicate an incompatibility with previous ap-
proaches [42, 43].

In [31] it was shown that evaluating the plasma tem-
perature to within a relative error of ~ 100% was nec-
essary for agreement between plasma diagnostics based
on emission spectroscopy and laser interferometry. The
demonstrated success of the QUEST method indicates
that it can be used in conjunction with plasma emission
spectroscopy techniques to evaluate the electron density
from measured emission spectra [49, 50]. Future inves-
tigations will explore the use of QUEST simulations in
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Appendix A: QUEST temperature profile T(r)

Under steady-state conditions the energy balance’

. 778
equation (1) becomes,
779

1d dT 780
0=0Q+ prn <W{dr> , (A1)
782
where Fourier’s law for the heat flux g = —H% has been

employed, and k is the plasma thermal conductivity. If
Kk = KkoT™ where kg is a constant, then for radially uni-
form @ the integration can be performed analytically over

the range r € [rp,rg], yielding s

4530 (T£L+1 _ T}%+1)

— A2
@ n+1l (4 —7r7) ( )784
Tn+1 P2 p2 ]t e
T(r)=TyL {1 — (1 — {jﬂ> 22] . (A3)™
TL TR =TT 787

788
where T, = T'(ry,) and Tr = T'(rr) are the temperatures;g
at each end of the range.

Expressions for the heat flux term, 790

791

dT 2T (TpH — TRt

rels = ( L 5 2R ), (A4)

dr n+1 (rg —r7) 792
and average temperature,

793
n+1 TL T£+2 794

<T> = n+2 T}g+1 |:1 - Tn+2 ) (A5)
(1 - T£L+1) L 795

796
follow directly. The average temperature simplifies torr

(T) ~ (%) Ty, when T, > Th.

In this work a plasma-dominated region is distin-res
guished from a neutral-dominated region, correspondingye
ton =5/2 and n = 1/2 respectively.

800
801

Appendix B: QUEST internal boundary Ry 802

803

The two-region method, described in Sec. IT A, is delin-""
eated by a boundary temperature Tj separating neutral-sos
dominated conditions (i.e., T, < T < Tp, power lawsos
index of 1/2) and plasma-dominated conditions (i.e.,sor

10

To > T > Ty, power law index 5/2). Continuity of the
heat flux requires ¢ from the two regions match at the
internal boundary T'(Rp) = Tp, i.e., that ¢(R; ) = q(R;),
which gives

i 7 i T
2T,5/2 0 b)) 2T_% b w (B1)
70 R? 37" (R*-R})’
i)
Rb 7 T%
— 1 t B2
R * 3 [TOE } ’ (B2)
X —
T2

where the radial temperature profile from Eq. (6) and
heat flux from (A4) have been employed. Thus the po-
sition of the internal boundary Ry is specified by Tgy, T
and T,,. The above assume that Ty > T,. When this is
not the case, R,/R = 0, i.e., the entire domain is neutral-
dominated.

Appendix C: Plasma collision frequencies

The electrical conductivity o (Eq. (15)) controls the
Ohmic heating, which is the main energy input, and s
(Eq. (4)) controls the redistribution of the thermal energy
and loss to the capillary wall, which is the main energy
output. These both depend on the collision frequency
between the electrons, ions and neutrals.

The electron-ion collision rate v.; [8] and electron-
neutral collision rate v, [44] are given by

4 [2 e In Ae;
Vei = 5 l ¢ e InAe; 3 (Cl)
3V e (47¢0)2 (kT)2
1
4 kT 2
Ven, = gnn (ir;e > na?, (C2)

where a = 145 pm is the kinetic radius for hydrogen [51],
and In A.; is the electron-ion Coulomb logarithm [8] here
defined as

3 (4reo)? (kyT)?
2427

The Coulomb logarithm is the approximation of a diverg-
ing collision integral, and is generally of order 10. In the
simulations a floor is applied to the Coulomb logarithm,
i.e., max (ln Aeis % In 2), to control the Coulomb collisions
at low temperatures [52].

In);; =1n [ (C3)

1
e3n2

The heavy-species collision rates including ion-ion col-
lisions v;; [8], ion-neutral collisions v;,, neutral-ion col-
lisions v,;, and neutral-neutral collisions v,,, are calcu-
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849

where once again the kinetic radius a = 145 pm [51], andsso
where In );; is the ion-ion Coulomb logarithm [8], here
defined as,

851
3
3 852

(C8)

853

3 (4meo)? (k1)
4/2m e3n2

In >\ii =In [

Similar to the electron-ion Coulomb logarithm Eq. (C3),”™
a floor is also to the ion-ion Coulomb logarithm, i.e.,””
max (ln Nids % In 2). Note that, due to the identical™
masses (ignoring the negligible mass of the electron) of™
the neutral and ion species, n;V;, = Nntn;. The use of
the hard-sphere scattering model for all neutral collisions,”
along with a single temperature, results in v, = unn.860
The heavy species-electron collision rates v;. and vy are™
typically smaller than v;; and vy, respectively by a factor™
of \/mg/me., and are thus not included in this work. 83
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870
Appendix D: Saha ionisation equation 871

872

873
For a quasi-neutral single-level ionisation plasma the_

4
appropriate Saha ionisation equation is

875

3 876

7?2 1 (2mmeky T 2 Iy
e _ — [Z__° 7" _ -4 D1)¥”
1 — Za Ng < h2 ) eXp ( ka ( )878
=F, (D2)sm

880
where Iy is the ionisation energy for hydrogen, andss
Zo = ne /g is the mean charge per atom which here alsoss
represents the ionisation fraction. The constants m., ks
and h are the electron mass, Boltzmann constant and
Planck constant respectively.

883

884

885

The solution for Z, is then 886
F 4 887

Za = 5 <_1 + ]. + F) 5 (D3)333

889

11

and the derivative with respect to temperature is

dZ, dZ,dF
dT  dF dT’ (D4)
1
dz, 1 1 2 4\ 2
dFF F (Ig 3
The ionisation state described by Z, and Cfizqf" is com-

pletely specified by the local plasma temperature T and
atomic density n,.

Appendix E: Validity of the Oth-order Taylor series
expansion

The transport properties controlling the plasma dy-
namics are functions of the local plasma temperature and
atomic density. In the Oth-order Taylor series approxima-
tion Eq. (20) it is assumed that the appropriate reference
values T and 7, are the average plasma temperature (7')
and average atomic density (n,) respectively. Thus all
radially-varying plasma properties are evaluated directly
at (T) and (n,) to approximate the average value.

In general, the transport properties described in sec-
tion II B are only weakly-dependent on the atomic den-
sity, and can be well approximated by plasma temper-
ature power laws. The success of the Oth-order Taylor
series expansion largely depends on how well the aver-
age of these power law functions can be approximated as
a function of the average directly, i.e., how close a pa-
rameter (p) = (T?)(T)~? is to unity. From Eq. (A3) it
follows that, for 17, > Ty,

n+1 n+2\?
n+1+p (n + 1) ’
where now ((p,n) is a function of two variables to indi-
cated the dependence on radial temperature power law
index n as well as the power to which the temperature
is being raised, p. A plot of {(p,n) vs p for plasma-
dominated (n = 5/2) and neutral-dominated (n = 1/2)
limits is shown in Fig. 6. The ((p,n) is generally close
to unity, particularly for plasma-dominated conditions,
which contributes to the remarkable success of the Oth-
order Taylor series approximation.

A comparison of the average plasma temperature evo-
lution calculated using

C(p,n) =~

(E1)

1. the Oth-order Taylor series expansion approach (see
Sec. I1C), and

2. the full radial variation of the plasma temperature
and associated plasma parameters,

when evaluating the quantities in Sec. II B, is shown in
Fig. 7 for a select range of discharge conditions. The
agreement is remarkably good considering the significant
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approximation involved in the Oth-order Taylor series
truncation, with the relative errors being < 10%. Sim-
ulations using the truncated Taylor series approach are
approximately two orders of magnitude faster than with
including the full radial variation, and thus represents
an extremely fast and efficient method of estimating the
plasma temperature and density in discharge capillary
systems.
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FIG. 6. Variation of ((p,n) parameter, defined in Eq. (E1),0s
with power p for two temperature power laws n. The plasmaoos
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FIG. 7. a) Comparison of the average temperature (1) evolu-
tion calculated by the Oth-order Taylor series truncation (solid
lines), with including the full radial variation (dotted lines),
for the simulation conditions G1-G4 in Tab. I. The vertical
lines indicate the transition time between uniform and quasi-
static regimes. b) Relative error (%) in average temperature
(T') between the two methods in a).
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