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A model describing the evolution of the average plasma temperature inside a discharge capillary6

device including Ohmic heating, heat loss to the capillary wall, and ionisation/recombination effects7

is developed. Key to this approach is an analytic quasi-static description of the radial temperature8

variation which, under local thermal equilibrium conditions, allows the radial behaviour of both the9

plasma temperature and the electron density to be specified directly from the average temperature10

evolution. In this way, the standard set of coupled partial differential equations for magnetohydrody-11

namic (MHD) simulations is replaced by a single ordinary differential equation, with a corresponding12

gain in simplicity and computational efficiency. The on-axis plasma temperature and electron den-13

sity calculations are bench-marked against existing full (1D) MHD simulations for hydrogen plasmas14

under a range of discharge conditions and initial gas pressures, and good agreement is demonstrated.15

The success of this simple model indicates that it can serve as a quick and easy tool for16

evaluating the plasma conditions in discharge capillary devices, particularly for com-17

putationally expensive applications such as simulating the long-term plasma evolution,18

performing detailed input parameter scans, or for optimisation using machine-learning19

techniques.20

I. INTRODUCTION21

The ability to characterise and control the plasma22

conditions within gas-filled capillary discharge devices,23

including plasma wakefield acceleration sources [1–7],24

plasma waveguides [8–12] and active plasma lenses [13–25

19], is critical to the development and optimisation of26

next-generation compact particle accelerator technolo-27

gies [20].28

The rapid development of plasma-based accelerator29

techniques, either laser-driven [1, 12, 21–24] or beam-30

driven [3, 25–27], is made possible by advances in diag-31

nostics and numerical modelling. Since the laser spot32

size and/or electron beam radius is small compared to33

the capillary radius, it is the near-axis plasma proper-34

ties that are the most important to characterise and are35

the focus of plasma diagnostic techniques including lon-36

gitudinal laser interferometry [28–31] and plasma emis-37

sion spectroscopy [31–34]. The purpose of this work is38

to present a simple numerical model for evaluating the39

plasma properties on-axis in plasma capillary discharges.40

Magnetohydrodynamic (MHD) simulations have been41

successfully used for modelling hydrogen discharge cap-42

illary devices [8, 11, 16, 35–37]. MHD models, in-43

cluding the approach developed in this work, are44

generally applicable to collisional plasmas with45

atomic density ' 1023 m−3 (i.e., initial gas pres-46

sures of ' a few mbar) and ionisation degrees47

' 10−3. Simulations usually consist of a system of cou-48

pled partial differential equations describing the mass-49

density, momentum and energy evolution in 1-, 2- or 3-50

dimensions. Reduced geometry and simple equilibrium51

models have been shown to capture the essential physics52
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for many applications [8, 11, 16]. These investigations53

have demonstrated that stable quasi-static conditions are54

reached during the discharge that can be well described55

by reduced MHD models.56

The creation and subsequent evolution of a capillary57

plasma due to an electrical discharge is largely dictated58

by the local plasma temperature. During the discharge59

the plasma heats up via Ohmic heating and a radial tem-60

perature gradient develops between the on-axis plasma61

and the cooler wall. In response to the associated pres-62

sure gradient, the plasma density moves away from the63

axis towards the boundary to re-establish a uniform ra-64

dial pressure. In quasi-static equilibrium, the balance65

between Ohmic heating and boundary heat loss results66

in distinctive temperature and electron density profiles,67

which can be exploited for guiding high intensity laser68

pulses [8] and mitigated for active plasma lensing appli-69

cations [17]. The plasma temperature plays the principle70

role in specifying the density of ionic states, as well as71

plasma transport properties, e.g., the thermal and elec-72

trical conductivity.73

In this work, the plasma dynamics are captured via a74

model of the average energy evolution, i.e., a single or-75

dinary differential equation. This is achieved through76

assumptions about the radial variation of the plasma77

properties based on quasi-static conditions. Section II78

describes the model of a hydrogen discharge capillary,79

including the assumptions made about the radial plasma80

temperature and density profiles during different stages81

of the discharge. The explicit forms of the various en-82

ergy input/output mechanisms as well as the appropriate83

transport properties are also detailed here. In Section III84

the simulation results are compared against existing 1D85

MHD simulations for a variety of discharge and pressure86

conditions.87



2

II. MODEL DESCRIPTION88

The most commonly used gas species in gas-filled cap-89

illary discharge devices is hydrogen [1, 9–11, 24, 38].90

In this work, the discharge dynamics of a confined axi-91

symmetric cylindrical hydrogen plasma of radius R and92

length L� R are considered. The dynamics of the93

plasma discharge system are largely dictated by the lo-94

cal plasma temperature, and thus the focus of this work95

is on the dominant energy exchange processes that can96

occur. For hydrogen plasmas, these are Ohmic heating,97

the thermal exchange with the capillary wall, and the98

reactive energy exchanges due to ionisation and recom-99

bination. Radiative energy losses are neglected, as the100

influence of radiation cooling on the plasma dynamics for101

hydrogen is insignificant for discharge currents I � 1.4102

MA (the Pease-Braginskii current) [8, 39]. Z-pinch ef-103

fects [40] are also neglected, as the magnetic pressure is104

small compared to the plasma pressure for the range of105

discharge parameters considered (see Tab. I).106

The system is treated as a single-fluid plasma that ex-107

ists in a state of local thermal equilibrium (LTE) between108

the electrons and ionic species. Since L � R, the longi-109

tudinal variation of the plasma properties is considered110

negligible and only the radial variation is considered. The111

radial energy balance equation [41] is112

∂ε

∂t
+

1

r

∂

∂r
(r [ε+ P ] v) = Q− 1

r

∂

∂r
(rq) , (1)113

114

where r and t are the radial position and time respec-115

tively, ε is the total energy, P is the total pressure, v116

is the radial velocity, and q is the heat flux, all defined117

for a single-fluid plasma. Q represents the combined re-118

maining sources and sinks of thermal energy, which here119

is only Ohmic heating. Assumptions underlying Eq. (1),120

and MHD more generally, include:121

1. the characteristic length scales� collisional mean-122

free-path length, electron/ion gyroradii, and Debye123

length, and124

2. the characteristic time scales � collisional mean-125

free-path time, inverse of electron/ion gyrofrequen-126

cies.127

A small Debye length implies quasi-neutrality, and high128

collisionality implies that the electron/ion velocity dis-129

tribution is close to a Maxwell-Boltzmann distribution.130

These conditions are generally satisfied for hydrogen dis-131

charge capillary plasmas with atomic density of na '132

1023 m−3 (i.e., initial gas pressures of ' a few mbar) and133

ionisation degree Za ' 10−3. The initial breakdown of134

the plasma, which occurs during the first ≈ 10 ns, is a135

complex kinetic phenomena which cannot be described136

with MHD. Instead of modelling the breakdown, an ini-137

tial temperature (e.g. T0 = 0.3 eV) is assumed such that138

the plasma is already slightly ionised.139

For many applications the full radial variation is not140

required, and a single characteristic value representing141

the plasma conditions, e.g., the average value or on-axis142

value, is sufficient. Averaging over the radial extent of143

Eq. (1) yields144

∂

∂t
〈ε〉 = 〈Q〉 − 2

R
q(R), (2)145

146

where it is assumed that there is no net exchange of ma-147

terial with the capillary walls, and where the averaging is148

defined via 〈φ〉 = 1
πR2

∫ R
0

2πrφ(r) dr. The specific form149

of each term in Eq. (2) is detailed in Section II B.150

A similar expression to Eq. (2), i.e., the average rep-151

resentation of the plasma conditions inside a discharge152

capillary, was considered in [42], building upon earlier153

work in [43]. The key difference is that, in this work,154

the radial variation of the plasma properties is consid-155

ered in evaluating Eq. (2), which will be shown to be156

critical in accurately describing the average energy evo-157

lution. A method for approximating the radial variation158

of the plasma temperature and electron density is hence159

required.160

A. Radial variation of the temperature and atomic161

density162

This section introduces a method for determining the163

radial temperature and atomic density, which is the cor-164

nerstone of the present work. Specifying the radial be-165

haviour directly allows the calculation of the on-axis166

plasma properties, average plasma properties, and, im-167

portantly, the derivative terms at the boundary which168

control heat flux.169

The time evolution is separated into two regimes: 1.)170

the initial uniform regime where the plasma conditions171

are approximately radially uniform and, 2.) the final172

quasi-static regime where the plasma temperature and173

atomic density vary radially so as to maintain a balance174

between the energy input and output mechanisms.175

1. Transition from uniform to quasi-static conditions176

At early times during the discharge, the weakly-ionised177

plasma properties, such as the temperature and atomic178

density, are essentially uniform radially. As the plasma179

continues to heat, the axis becomes hotter than the180

constant-temperature wall, creating a temperature (and181

hence pressure) gradient. Ionisation of the neutral182

species acts to absorb energy, both slowing the temper-183

ature increase and reducing the radial temperature vari-184

ation. However, once the first level of ionisation is near185

completion the plasma temperature is free to rise rapidly.186

At this point there is a corresponding rapid rise in pres-187

sure gradient causing the plasma density to re-organise188

towards uniform pressure conditions, i.e., the quasi-static189

state.190

To accurately model the transition from the initial to191
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quasi-static conditions requires the additional calculation192

of the (radially) spatially-resolved density and velocity193

variables. However, given that the onset of the transition194

tends to coincide with the rapid rise in temperature near-195

ing full on-axis ionisation, the model can be vastly sim-196

plified while retaining the important physical phenom-197

ena. It is hereafter assumed that the radial pres-198

sure is always uniform, and that the plasma tem-199

perature and density transition between the uni-200

form and quasi-static regimes occur instantaneously201

at time t = t∗, which is defined via the on-axis ionisation202

fraction Za0(t∗) = 0.9 (see Sec. II B 1). The value of 0.9203

has been chosen for its good agreement with previously204

published 1D simulations [8, 11], which are examined205

in Sec. III. Alternatively, the entire plasma evolution206

can be simulated assuming either uniform or quasi-static207

conditions to establish a range of possible values.208

2. Quasi-static conditions209

The quasi-static regime is characterised by a uniform210

radial pressure and a plasma temperature that is de-211

scribed by the steady-state energy balance equation (see212

Appendix A),213

0 = Q+
1

r

d

dr

(
rκ
dT

dr

)
, (3)214

215

where T is the plasma temperature and κ is the plasma216

thermal conductivity. The precise form of Q depends on217

the expressions chosen for the Ohmic heating (and ra-218

diation losses, when not negligible) as discussed in Sec-219

tion II B 3. In principle the exact solution to Eq. (3) could220

be solved at each time step of the full average energy221

evolution, consistent with instantaneous average energy.222

However, a faster and more efficient method is sought in223

this section.224

The thermal conductivity controls the radial redistri-225

bution of thermal energy. The total thermal conductivity226

κ includes contributions from electron, κe, ion, κi, and227

neutral species, κn, via the simple mixture rule [44],228

κ = κe + κi + κn (4)229

≈ nek
2
bT

me

(
1

3.16νei + π
4 νen

) +
nik

2
bT

ma

(
1
3.9νii + π

8 νin
)230

+
nnk

2
bT

ma

(
π
8 νni + π

8 νnn
) , (5)231

232

where ma is the atomic mass, and νab represents the col-233

lision rate of species a with b, where e, i and n repre-234

sent electrons, ions and neutrals respectively, as given in235

Appendix C. The coefficients of νei and νii are taken236

from [45]. The heavy species-electron collision rates νie237

and νne are typically smaller than νii and νnn respec-238

tively by a factor of
√
ma/me, and are thus neglected239

from Eq. (4). The equilibrium method introduced in [8]240

employs an approximation to the Spitzer-Harm theory241

of fully ionised plasmas [46] such that κ ∝ T 5/2 (and242

Q ∝ T 3/2). At low temperature and hence low ionisation243

fractions, collisions with neutral species (as opposed to244

collisions between charged particles) dominate resulting245

in a κ ∝ T 1/2 dependence.246

For a large proportion of the total discharge time,247

the plasma temperature near the capillary axis will be248

multi-eV [8, 39], while the (constant) temperature of249

the capillary wall is sub-eV, indicating the existence of250

a layer near the boundary dominated by neutral colli-251

sions due to the low ionisation fraction. The system can252

then be separated into two distinct regions, i.e., the cen-253

tral plasma-dominated bulk and the neutral-dominated254

boundary layer near the capillary wall.255

To facilitate fast and efficient calculations an analytic256

approximation for T (r) is sought. Assuming that,257

1. Ohmic heating effects ensure that the radial plasma258

temperature decreases monotonically from a max-259

imum value on-axis to the minimum value at the260

boundary,261

2. a ‘two-region’ approach can be employed, differ-262

entiating the plasma-dominated bulk from neutral-263

dominated boundary layer by an internal boundary264

temperature Tb,265

3. Q is approximately constant with respect to radial266

position, the exact magnitude of which is chosen267

such that T (r) in Eq. (3) is consistent with 〈ε〉 in268

Eq. (2) at each time step,269

then an analytic expression for the radial tempera-270

ture profile in the range [0, R] can be derived (see Ap-271

pendix A). Treating Q as a uniform energy source un-272

der quasi-static conditions in order to analytically de-273

fine the radial plasma temperature, is called the “Quasi-274

static Uniform-Energy-Source Temperature” or QUEST275

method. The QUEST method temperature profile is276

T (r)=


T0

[
1−

(
1− Tn+1

b

Tn+1
0

)
r2

R2
b

] 2
7

for r < Rb,

Tb

[
1−

(
1− T

3
2
w

T
3
2
b

)
r2−R2

b

R2−R2
b

] 2
3

for r ≥ Rb,
(6)277

278

where T0, Tw and Tb are the temperature on-axis, at279

the wall r = R, and at the internal boundary r = Rb,280

respectively. Clearly when T0 � Tb, Tw then T (r) ≈281

T0

[
1− r2

R2

] 2
7

for r < Rb. Equation (6) assumes that282

T0 > Tb > Tw, i.e., that the temperature range spans283

both the plasma-dominated and neutral-dominated re-284

gions, but can be altered easily for other situations.285

The plasma-dominated regime is here defined by κe +286

κi > κn, and conversely the neutral-dominated regime by287

κe + κi < κn. Hence the internal boundary temperature288

Tb is located where κe(Tb) + κi(Tb) = κn(Tb). The κ289

components are weakly dependent on the atomic density,290

and so in the simulations the Tb value corresponding to291
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the initial 〈na〉 is used. For 〈na〉 = 1024 m−3, Tb ≈292

0.9 eV, and this value is used hereafter. An order of293

magnitude change in na results in / 5% change in the294

value of Tb. The corresponding change in the average295

plasma temperature calculations is / 2%, indicating that296

the simulation procedure is robust to the choice of Tb.297

The value of Rb can be completely specified by the298

requirement that the heat flux from each region, which299

obey different temperature power laws, match at the in-300

ternal boundary, i.e., q(R−b ) = q(R+
b ) (and Tb = T (Rb)).301

The expression for Rb in terms of the on-axis temperature302

T0 and wall temperature Tw is303

Rb
R

=

1 +
7

3

[
1−

(
Tw

Tb

) 3
2

]
[(

T0

Tb

) 7
2 − 1

]

− 1

2

, (7)304

305

the derivation of which is given in Appendix B. Thus the306

full radial temperature profile (and Rb) is specified by T0,307

Tb and Tw. In the course of a simulation, Tb and Tw are308

set as input constants, and only T0 varies as a function309

of time.310

Example radial temperature profiles, corresponding to311

select average temperature values, are shown in Fig. 1.312

Different behaviour is demonstrated either side of Rb, ow-313

ing to the different temperature power laws controlling314

the thermal conductivity in each region. As T0 increases,315

the position of the plasma-neutral boundary Rb moves to-316

wards the capillary wall. It should be noted that Rb < R317

and the heat flux at the capillary boundary is dictated318

by the neutral-dominated thermal conductivity regard-319

less of how thin the neutral-dominated boundary layer320

becomes.321

The non-uniform plasma temperature described by322

Eq. (6) implies a non-uniform plasma density under uni-323

form pressure conditions P (r) = 〈P 〉. Assuming uniform324

total pressure, it follows from the ideal gas law that325

P = 〈na〉
〈

1

(1 + Za)kbT

〉−1
, (8)326

na(r) =
〈na〉

(1 + Za)T

〈
1

(1 + Za)T

〉−1
, (9)327

328

where Za is the ionisation fraction as defined in Eq. (10),329

and thus the radial atomic density na(r) is fully specified330

by T (r) under LTE conditions. For the trivial case that331

all properties are radially uniform, i.e., during the ini-332

tial uniform regime, na = 〈na〉. The radial plasma tem-333

perature and electron density profiles resulting from the334

QUEST method are compared to those from 1D MHD335

simulations in Sec. III.336

0 0.2 0.4 0.6 0.8 1

r/R

0

1

2

3

4

T
(r

) 
(e

V
)

0.6

1

1.5

<T> = 3 eV

FIG. 1. Radial temperature profiles T (r), as defined in
Eq. (6), for four average temperatures 〈T 〉. The dashed
vertical lines mark the boundary Rb between the plasma-
dominated region (κ ∝ T 5/2) and the neutral-dominated re-

gion (κ ∝ T 1/2) which occur at Tb = 0.9 eV, represented by
the dashed horizontal line.

B. Energy balance terms and transport coefficients337

In this section the specific forms of the energy balance338

terms (internal energy ε, Ohmic heating QOhm, boundary339

heat flux q(R)) and transport properties (specific heat ca-340

pacity Cv, electrical conductivity σ, thermal conductivity341

κ) necessary to evaluate Eq. (2) are detailed.342

1. Density of ionic states343

A single-temperature plasma that exists in a local ther-344

mal equilibrium between the electrons and heavy ionic345

species is assumed. Reference [39] showed that, for a346

hydrogen discharge capillary, LTE conditions are estab-347

lished in approximately 50 ns. References [8, 11, 35]348

have had success modelling discharge capillaries assum-349

ing LTE conditions over the entire discharge lifetime.350

By assuming LTE conditions the density of ionic states351

is fully specified by the plasma temperature (T ) and352

atomic density (na) via the Saha ionisation equation [47].353

For a quasi-neutral hydrogen plasma only single-level ion-354

isation is required, and the appropriate Saha ionisation355

equation is356

Z2
a

1− Za
=

1

na

(
2πmekbT

h2

) 3
2

exp

(
− IH
kbT

)
, (10)357

358

where IH is the ionisation energy for hydrogen, and359

Za = ne/na is the mean charge per atom which here also360

represents the ionisation fraction. The constants me, kb361

and h are the electron mass, Boltzmann constant and362

Planck constant respectively.363

The ion density ni and neutral density nn can be found364

from the quasi-neutrality, ni = ne, and particle conser-365

vation, nn = na − ni, conditions respectively.366
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2. Internal energy367

The connection between the internal energy and the368

plasma temperature, accounting for the energy stored in369

ionisation, is given by370

ε = Cv,aT + Cv,eT + U, (11)371
372

where Cv,a = 3
2nakb and Cv,e = 3

2nekb are the atomic373

and electronic heat capacities for ideal gases, respec-374

tively. The potential energy term U = neIH represents375

the amount of ionisation energy required to reach the376

specified density of ionic states from a neutral state.377

The time derivative of the internal energy can be re-378

written as a function of temperature directly, i.e.,379

∂ε

∂t
=

3

2
nakb

[
1 + Za + T

(
1 +

2

3

IH
kbT

)
∂Za
∂T

]
∂T

∂t
(12)380

≡ C ′v(T, na)
∂T

∂t
, (13)381

382

where C ′v then represents an effective heat capacity. The383

calculation of ∂Za

∂T is detailed in Appendix D. Note that384

Za and ∂Za

∂T are simply functions of T and na.385

3. Ohmic heating386

The discharge current provides the energy input to the387

plasma system via Ohmic heating. The Ohmic heating388

contribution to Q in Eq. (1) is389

QOhm = JE, (14)390
391

where J is the current density and E is the electric392

field strength. The connection between the electric field393

strength and the current density is given by Ohm’s law394

J = σE, where σ is the electrical conductivity. The395

Ohmic heating is driven predominantly by electron inter-396

actions, such that the electrical conductivity of a plasma397

consisting of electrons, ions and neutral species is [44]398

σ =
nee

2

me

(
1

1.96νei + νen
) , (15)399

400

where νei and νen are the electron-ion collision and401

electron-neutral collision rate respectively, given in Ap-402

pendix C. Although electron-electron collisions are403

momentum-conserving and do not contribute directly to404

Eq. (15), the indirect effect of electron-electron correla-405

tions on the electron velocity distribution is included in406

coefficient of νei, which is taken from [45].407

Following the quasi-static approach in [8], it is assumed408

that the electric field is homogeneous such that409

〈QOhm〉 =
1

〈σ〉

(
I

πR2

)2

, (16)410

411

where I =
∫ R
0

2πrJ dr is the total current. The cur-412

rent amplitude as a function of time is routinely mea-413

sured in discharge capillary experiments, and thus I(t)414

is treated as an input rather than calculated in an addi-415

tional coupled-circuit model [42, 43].416

4. Boundary heat loss417

The dominant energy loss mechanism in (enclosed) hy-418

drogen discharge capillaries is the heat flux through the419

capillary boundary. The heat flux is given by Fourier’s420

law q = −κ∂T∂r , such that421

− 2

R
q(R) =

2

R

(
κ
∂T

∂r

)
r=R

(17)422

= −8

3
κ(Tw)

Tw
R2 −R2

b

[(
Tb
Tw

) 3
2

− 1

]
, (18)423

424

where κ has been defined in Eq. (4). Equation (17) ex-425

plicitly depends on the radial temperature gradient at the426

boundary, and thus can be written in terms of Tw, Tb and427

Rb via Eq. (6). The main reason to decompose the do-428

main into plasma-dominated and neutral-dominated re-429

gions (see Sec. II A) is to capture this term accurately.430

At the capillary boundary the thermal conductivity,431

and hence the energy transfer to the wall, is dominated432

by neutral collisions due to the low local temperature433

and ionisation fraction. This is in contrast to the plasma434

bulk where the electron thermal conductivity is generally435

much larger than the neutral (and ion) species thermal436

conductivity. The melting point of sapphire capillaries437

is approximately 2300 K, and in this work Tw = 2000 K438

is used in the simulations. The simulation procedure is439

very robust to the choice of Tw value, with a change of440

50% in Tw resulting in a / 1% change in the calculated441

average plasma temperature.442

C. Numerical solution443

Each of the transport properties described in Sec. II B444

are fully specified by the plasma temperature and atomic445

density (assuming LTE conditions). Thus the Taylor se-446

ries approximation of each of the radially-varying quan-447

tities, f(T (r), na(r)), in the neighbourhood of some ref-448

erence values, T and na, is449

f(T, na) = f(T , na) + (T − T )
∂

∂T
f(T , na)450

+ (na − na)
∂

∂na
f(T , na) + . . . (19)451

〈f(T, na)〉 ≈ f(T , na). (20)452
453

It is assumed that the appropriate reference values, i.e.,454

where the dominant contribution to the average occurs,455

are the average plasma temperature T = 〈T 〉 and average456
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Start

Input
<na>, I(t), Tb, Tw, tmax

 
 Initial Condition

<T>init

Update 
?<T>(t) 

via Eq. (21)
Is t < tmax?

Calculate 
?q(R) 

via Eqs. (17)-(18)

Calculate 
Cv'(<T>,<na>), ?(<T>,<na>)

via Eqs. (12)-(13)
and Eq. (15)

Calculate 
?T0 , Rb 

via Eqs. (6)-(7)
and Eq. (A5)

End

Post-processing 
T(r,t), ne(r,t) etc. 

Output
<T>(t)

Yes

No

FIG. 2. Flowchart representation of the QUEST method algorithm. Flowchart symbols follow the ISO 5807 (1985) convention.

atomic density na = 〈na〉, such that the energy evolution457

equation (2) becomes,458

C ′v
(
T , na

) dT
dt

=
1

σ
(
T , na

) ( I

πR2

)2

− 2

R
q(R), (21)459

460

where Eq. (12) has been used. Note that q(R) only de-461

pends on T indirectly through the temperature gradi-462

ent at the boundary (see Sec. II A). The O(T − T ) and463

O(na−na) terms, arising from the derivatives in Eq. (19),464

are more in the nature of correction terms, and have been465

neglected in Eqs. (20)-(21). Thus it is expected that466

Eq. (21) works best when the plasma properties are only467

slowly varying functions of radial position. The validity468

of this approach is expanded on in Appendix E.469

An overview of the workflow for the QUEST simulation470

code is given in Fig. 2. At each time step, the method de-471

scribed in Sec. II A is employed to determine the radial472

plasma temperature profile consistent with the average473

temperature. This specifies the remaining transport co-474

efficients and energy balance terms described in Sec. II B.475

The ordinary differential equation (ODE) Eq. (21) is ad-476

vanced using a fourth-order explicit Runge-Kutta rou-477

tine [48]. The radial behaviour of the atomic density478

(and thus the on-axis atomic and electron densities) are479

determined from Eqs. (8)-(9), in both the uniform and480

quasi-static regimes.481

In comparison to the single ordinary differential equa-482

tion QUEST algorithm, the 1D MHD simulations of [8]483

evolve a system of five coupled partial differential equa-484

tions. Simulations using the QUEST algorithm typi-485

cally complete in < 1 s on a desktop computer. This486

indicates that QUEST simulations are particu-487

larly useful for computationally expensive prob-488

lems, such as performing detailed input parame-489

ter scans or investigating the long term (10 + µs)490

plasma evolution, where full MHD simulations491

are prohibitively expensive. It also makes opti-492

misation of discharge capillary plasma conditions493

with machine-learning techniques feasible. The494

simulation results are compared in the following section.495

III. SIMULATION BENCHMARKS496

The principle goal of the QUEST method is to repro-497

duce the plasma temperature and electron density re-498

sults of more complex 1D MHD simulations, in a quasi-499

analytic and significantly less computationally expen-500

sive simulation. In this section, the QUEST simulations501

are compared to the previous 1D MHD investigations502

by [8, 11] for a range of discharge current amplitudes and503

initial gas pressures. After establishing the validity of the504

QUEST approach, the importance of accurately repre-505

senting the radial variation of the plasma properties, par-506

ticularly those close to the capillary boundary, in accu-507

rately describing the evolution of the average quantities508

is demonstrated by comparison with the results of [42].509

The conditions for each simulation are detailed in Tab. I.510

TABLE I. Table of parameters for select plasma discharge511

capillary simulation literature. R is the capillary radius, P is512

the initial gas pressure, na is the initial atomic density, and513

Ip and tp represent the magnitude and time of the discharge514

current peak. The discharge profiles in simulations B, and G1-515

G6 have the form I(t) = Ipsin(πt/tp). The discharge profile516

in simulation C does not have an analytic form, and has been517

digitized for the comparisons in the present work.518

R P na Ip tp
Label (µm) (mbar) (1024m−3) (A) (ns) Ref.

B 150 67 3.35 250 100 [8]
G1 125 35 1.75 140 120 [11]
G2 125 35 1.75 80 120 [11]
G3 125 35 1.75 45 120 [11]
G4 125 35 1.75 33 120 [11]
G5 125 17.5 8.75×10−1 33 120 [11]
G6 125 3.5 1.75×10−1 33 120 [11]
C 500 10 4.80×10−1 650 50 [42]

519

520
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A comparison of the plasma temperature and electron521

density evolution calculated with the QUEST method522

and with the 1D non-ideal MHD simulations of [8] in a523

hydrogen discharge waveguide study is shown in Fig. 3.524

At early times (0-50 ns), represented by the grey525

shaded region in Figs. 3(c)-(e), uniform radial temper-526

ature and density are assumed. The on-axis plasma tem-527

perature shown in Fig. 3(a), and electron density shown528

in Fig. 3(b), from [8] are very well reproduced by the529

QUEST method in the uniform regime. The slow rise530

in the temperature for the first 50 ns is due to sub-531

stantial energy being absorbed by the ionisation process.532

The radial profiles in Figs. 3(a)-(b) corresponding to 40533

ns show good agreement. The 1D MHD profiles exhibit534

some non-uniformity near the boundary but are predom-535

inantly uniform.536

At late times (75-150 ns) the results from [8] are also537

very well reproduced by the QUEST on-axis tempera-538

ture and electron density in the quasi-static regime. The539

radial profiles corresponding to 80 and 100 ns show con-540

sistent non-uniform behaviour between [8] and QUEST541

results. The analytic temperature form in Eq. (6) varies542

more sharply towards the boundary compared to [8], re-543

sulting in electron temperature profiles that are more544

sharply peaked. However, the overall agreement is very545

good. Further radial profile agreement can be expected546

from using a temperature profile shape that is equivalent547

to the equilibrium model shape in [8], but comes at the548

cost of requiring a numeric rather than analytic solution.549

The discrepancy in the intermediate time range of 50-550

75 ns is due to treating the re-organisation of the plasma551

from uniform to quasi-static regimes as an instantaneous552

process (see Sec. II A). Although the transition onset553

time of 50 ns is approximately correct, the transition pro-554

cess takes approximately 20 ns according to MHD sim-555

ulations, rather than being instantaneous. This is em-556

phasised by the fact that the 1D MHD electron density557

and temperature results smoothly transition between the558

QUEST uniform and quasi-static regime bands. The 1D559

MHD radial profiles corresponding to 60 ns occurs dur-560

ing this transition, and hence show behaviour that is part561

way between the uniform and quasi-static regimes, and562

is thus not well reproduced by the QUEST simulation.563

The relationship between the on-axis temperature and564

the (time-dependent) current discharge amplitude is ex-565

plicitly shown in Fig. 3(f). There are two distinct tem-566

perature ‘paths’ corresponding to heating (lower path)567

and cooling (upper path) phases, i.e., on which side of568

the 250 A current peak is being sampled. A simplified569

equilibrium model from [8], which is a function of the570

instantaneous current amplitude, rather than being con-571

nected to the average energy evolution, is also included in572

Fig. 3(f), represented by blue crosses. The equilibrium573

model provides an identical relationship between574

T0 and I during both the heating and cooling575

phases, and demonstrates good agreement for the576

cooling phase, particularly near the current peak.577

However, naturally it does not well represent the heat-578

ing phase, and cannot describe times after the discharge579

has turned off (if I = 0, then the equilibrium tempera-580

ture etc. are also 0). Although both the equilibrium581

model of [8] and QUEST model are based on a582

power-law temperature dependence of the trans-583

port coefficients, it is clear that the temporal evo-584

lution of the average energy must be included to585

satisfactorily describe the full discharge current586

lifetime.587

Fig. 4 features on-axis simulation results from [11]588

where the authors investigated the effect of significant589

changes in discharge current magnitude and pressure on590

the formation of plasma waveguides, and thus represents591

an ideal range of benchmark conditions for the QUEST592

method. Many of the comments in the discussion of593

Fig. 3 apply here too.594

In cases G1-G3 and G5-G6, the onset time of the tran-595

sition is well reproduced by the QUEST method. In the596

case of G4, the plasma temperature (and ionisation frac-597

tion) increases very slowly and the transition threshold of598

Za0 = 0.9 is not reached until 210 ns. According to MHD599

simulations, the transition begins approximately 50 ns600

earlier than predicted using the QUEST method, and it601

is not clear that quasi-static conditions have been estab-602

lished by the culmination of the discharge. This slow603

transition between the uniform and quasi-static regimes604

cannot be accurately modelled by the QUEST approach.605

Overall the QUEST calculations and MHD simulations606

from [11] agree very well, particularly in the uniform and607

quasi-static regimes. The average difference between the608

QUEST calculations and [11] over the full discharge pro-609

file is / 5% for the on-axis plasma temperature, and610

/ 10% for the on-axis electron density, for each condi-611

tion G1-G6. The maximum difference is / 40% for both612

properties, and occurs at the transition between uniform613

and quasi-static regimes. Better overall agreement is ob-614

served for discharge conditions that lead to higher tem-615

peratures (i.e., higher currents or lower densities) as these616

tend to demonstrate sharper transitions.617

In [42] a similar approach to describing the evolution618

of the average plasma properties was proposed. How-619

ever, in the formulation of [42] the treatment of620

the radial variation of the plasma parameters is621

substantially different from the present work. A622

comparison of the average plasma temperature and elec-623

tron density calculated with the QUEST method and the624

simulations from [42] for hydrogen is shown in Fig. 5, and625

demonstrates considerable disagreement. These differ-626

ences are significant in both the magnitude and627

behaviour, which indicates an inherent incompat-628

ibility between the two approaches.629

The QUEST radially-averaged temperature 〈T 〉 is con-630

siderably greater over most of the time range. Al-631

though [42] explicitly includes radiative energy losses, the632

effect is insignificant (less than 0.01% of the dissipated633

power [39]). The larger peak average temperature indi-634

cates a difference in the balance between Ohmic heating635

and wall heat loss for the two approaches. The energy636
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FIG. 3. Comparison of QUEST simulation and 1D MHD simulation [8] results for electron temperature and electron density.
The simulation conditions are given by ‘B’ in Tab. I. The subplots are: a) Radial electron temperature profiles T (r) for select
times corresponding to the vertical lines in d) and coloured square markers in f), b) Radial electron density profiles ne(r) for
select times corresponding to the vertical lines in e), c) Discharge current profile I, d) On-axis electron temperature T0, e)
On-axis electron density ne0, and f) Variation of the on-axis electron temperature T0 with current amplitude I. Solid lines
indicate QUEST method results, while dotted lines indicate the (digitized) simulation results from [8] and blue crosses represent
calculations using the simplified equilibrium model in [8]. The coloured shaded bands in d)-e) represent the range of values
between assuming the uniform regime (bottom edge of temperature band, top edge of density band) and the quasi-static regime
(top edge of temperature band, bottom edge of density band). The shaded grey region indicates the times at which the QUEST
algorithm assumes uniform conditions, and marks the transition between the uniform and quasi-static regimes corresponding
to the discrete jump in the electron temperature and density profiles.

exchange with the capillary boundary is the dominant637

heat loss mechanism in hydrogen capillaries, which de-638

pends critically on the radial temperature derivative at639

the boundary, as described in Sec. II B 4. A key com-640

ponent of the QUEST method is the precise rep-641

resentation of this boundary temperature deriva-642

tive, which differs from the formalism of [42]. An-643

other important difference is that the effect of ionisa-644

tion/recombination energy exchanges is included in the645

QUEST model. The energy ‘absorbed’ during ionisation646

(up to ≈ 75% of the Ohmic heating power) is responsi-647

ble for the slow temperature increase at early times, and648

the ‘release’ (up to ≈ 50% of the wall energy loss) dur-649

ing recombination is responsible for the slow temperature650

decrease at late times.651

The peak average electron density from [42] is the652

same as the QUEST calculation when assuming uniform653

regime conditions. However, the transition onset time is654

predicted to be approximately 35 ns, and the subsequent655

behaviour is calculated in the quasi-static regime. Note656

that the cooler (and hence less ionised) plasma near the657

capillary boundary contributes substantially to the aver-658

aging due to the high atomic density under quasi-static659

conditions, reducing the average electron density. The660

difference in the electron density decrease at late times is661

due largely to the difference in the plasma temperature662

evolution predicted by the two methods, as discussed pre-663

viously.664

IV. CONCLUSION665

It has been shown that the on-axis plasma tempera-666

ture and electron density calculated in existing full 1D667

MHD simulations, which solve a complex system of cou-668

pled partial differential equations, can be remarkably669

well reproduced by the QUEST (Quasi-static Uniform-670

Energy-Source Temperature) method, which solves a sin-671

gle, simplified ordinary differential equation for the aver-672

age plasma temperature evolution. This paves the way673

for investigations of computationally-expensive674

capillary discharge problems, such as character-675

ising the long-term plasma evolution, performing676

detailed input parameter scans, or for employing677

machine-learning-based optimisation techniques,678

which are infeasible using more complex simula-679

tion tools.680

The key to the QUEST method is in the assumptions681

made about the radial temperature behaviour, which682

then specify the remaining plasma properties under lo-683

cal thermal equilibrium conditions. The approach fol-684

lowed here is to split the temporal evolution of the685

plasma into a ‘uniform regime’, where the plasma tem-686

perature is radially uniform, and a ‘quasi-static regime’687
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FIG. 4. Comparison of QUEST simulations and 1D MHD simulations [11] for on-axis electron temperature T0 and electron
density ne0 as a function of time. The simulation conditions are given by G1-G6 in Tab. I. Descriptions are the same as in
Fig. 3(c)-(e). The electron density in G6 is increased by a factor of 10 to aide in visibility. The current discharge profiles are
given in arbitrary units that are consistent across all plots.

FIG. 5. Comparison of QUEST simulation results and those
from [42] for average electron temperature 〈T 〉 and electron
density 〈ne〉 as a function of time. The simulation conditions
are given by ‘C’ in Tab. I. Solid lines indicate the QUEST
method results, while dotted lines indicate the (digitized) sim-
ulation results from [42].

where the plasma temperature has a non-uniform but an-688

alytic representation under quasi-static conditions. Par-689

ticular attention is given to the quasi-static radial tem-690

perature representation, which is separated into plasma-691

dominated and neutral-dominated regions, as it deter-692

mines the heat flux at the capillary boundary — the693

major energy loss process in these hydrogen discharge694

capillary systems.695

The near-axis plasma properties are the most rele-696

vant to many experiments, particularly in beam-driven697

wakefield acceleration. The on-axis plasma tempera-698

ture and electron density are compared to the full 1D699

MHD simulations of [8, 11] for a range of discharge700

current amplitudes and initial gas pressures. The sub-701

stantially simpler QUEST method demonstrates good702

agreement, particularly at early and late times where703

either uniform or quasi-static conditions have been es-704

tablished. The plasma temperature and electron density705

are generally within 5% and 10% of [8, 11], respectively.706

At intermediate times, the 1D MHD results exhibit a707

mixture of uniform and quasi-static behaviour, however708

the QUEST method still gives results with differences709

/ 40%. When compared to the simplified equilib-710

rium model of [8], the QUEST method demon-711

strates that modelling the evolution of the aver-712

age energy is necessary to adequately describe the713

plasma conditions over the full discharge current714

lifetime.715

This marks the first time that a model based716

on the evolution of the average energy in cap-717

illary discharge devices has been satisfactorily718

bench-marked against 1D MHD simulations over719

the entire discharge profile, and the results here720

indicate an incompatibility with previous ap-721

proaches [42, 43].722

In [31] it was shown that evaluating the plasma tem-723

perature to within a relative error of ≈ 100% was nec-724

essary for agreement between plasma diagnostics based725

on emission spectroscopy and laser interferometry. The726

demonstrated success of the QUEST method indicates727

that it can be used in conjunction with plasma emission728

spectroscopy techniques to evaluate the electron density729

from measured emission spectra [49, 50]. Future inves-730

tigations will explore the use of QUEST simulations in731
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plasma cell characterisation experiments.732
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Appendix A: QUEST temperature profile T(r)739

Under steady-state conditions the energy balance740

equation (1) becomes,741

0 = Q+
1

r

d

dr

(
rκ
dT

dr

)
, (A1)742

743

where Fourier’s law for the heat flux q = −κdTdr has been744

employed, and κ is the plasma thermal conductivity. If745

κ = κ0T
n where κ0 is a constant, then for radially uni-746

formQ the integration can be performed analytically over747

the range r ∈ [rL, rR], yielding748

Q =
4κ0
n+ 1

(
Tn+1
L − Tn+1

R

)
(r2R − r2L)

, (A2)749

T (r) = TL

[
1−

(
1−

Tn+1
R

Tn+1
L

)
r2 − r2L
r2R − r2L

] 1
n+1

, (A3)750

751

where TL = T (rL) and TR = T (rR) are the temperatures752

at each end of the range.753

Expressions for the heat flux term,754

rκ
dT

dr
= −rκ2rT−n

n+ 1

(
Tn+1
L − Tn+1

R

)
(r2R − r2L)

, (A4)755

756

and average temperature,757

〈T 〉 =
n+ 1

n+ 2

TL(
1− Tn+1

R

Tn+1
L

) [1− Tn+2
R

Tn+2
L

]
, (A5)758

759

follow directly. The average temperature simplifies to760

〈T 〉 ≈
(
n+1
n+2

)
TL when TL � TR.761

In this work a plasma-dominated region is distin-762

guished from a neutral-dominated region, corresponding763

to n = 5/2 and n = 1/2 respectively.764

Appendix B: QUEST internal boundary Rb765

The two-region method, described in Sec. II A, is delin-766

eated by a boundary temperature Tb separating neutral-767

dominated conditions (i.e., Tw < T < Tb, power law768

index of 1/2) and plasma-dominated conditions (i.e.,769

T0 > T > Tb, power law index 5/2). Continuity of the770

heat flux requires q from the two regions match at the771

internal boundary T (Rb) = Tb, i.e., that q(R−b ) = q(R+
b ),772

which gives773

2

7
T
−5/2
b

(
T

7
2
0 − T

7
2

b

)
R2
b

=
2

3
T
− 1

2

b

(
T

3
2

b − T
3
2
w

)
(R2 −R2

b)
, (B1)774

Rb
R

=

1 +
7

3

[
1− T

3
2
w

T
3
2
b

]
[
T

7
2
0

T
7
2
b

− 1

]

− 1

2

, (B2)775

776

where the radial temperature profile from Eq. (6) and777

heat flux from (A4) have been employed. Thus the po-778

sition of the internal boundary Rb is specified by T0, Tb779

and Tw. The above assume that T0 > Tb. When this is780

not the case, Rb/R = 0, i.e., the entire domain is neutral-781

dominated.782

Appendix C: Plasma collision frequencies783

The electrical conductivity σ (Eq. (15)) controls the784

Ohmic heating, which is the main energy input, and κ785

(Eq. (4)) controls the redistribution of the thermal energy786

and loss to the capillary wall, which is the main energy787

output. These both depend on the collision frequency788

between the electrons, ions and neutrals.789

The electron-ion collision rate νei [8] and electron-790

neutral collision rate νen [44] are given by791

νei =
4

3

√
2π

me

e4ne lnλei

(4πε0)2 (kbT )
3
2

, (C1)792

νen =
4

3
nn

(
8kbT

πme

) 1
2

πa2, (C2)793

794

where a = 145 pm is the kinetic radius for hydrogen [51],795

and lnλei is the electron-ion Coulomb logarithm [8] here796

defined as797

lnλei = ln

[
3

2
√

2π

(4πε0)
3
2 (kbT )

3
2

e3n
1
2
e

]
. (C3)798

799

The Coulomb logarithm is the approximation of a diverg-800

ing collision integral, and is generally of order 10. In the801

simulations a floor is applied to the Coulomb logarithm,802

i.e., max
(
lnλei,

1
2 ln 2

)
, to control the Coulomb collisions803

at low temperatures [52].804

The heavy-species collision rates including ion-ion col-805

lisions νii [8], ion-neutral collisions νin, neutral-ion col-806

lisions νni, and neutral-neutral collisions νnn are calcu-807
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lated via [44]808

νii =
4

3

√
π

ma

e4ni lnλii

(4πε0)2 (kbT )
3
2

, (C4)809

νin =
4
√

2

3
nn

(
8kbT

πma

) 1
2

4πa2 (C5)810

= νnn, (C6)811

νni =
4
√

2

3
ni

(
8kbT

πma

) 1
2

4πa2. (C7)812

813

where once again the kinetic radius a = 145 pm [51], and814

where lnλii is the ion-ion Coulomb logarithm [8], here815

defined as,816

lnλii = ln

[
3

4
√

2π

(4πε0)
3
2 (kbT )

3
2

e3n
1
2
e

]
. (C8)817

818

Similar to the electron-ion Coulomb logarithm Eq. (C3),819

a floor is also to the ion-ion Coulomb logarithm, i.e.,820

max
(
lnλii,

1
2 ln 2

)
. Note that, due to the identical821

masses (ignoring the negligible mass of the electron) of822

the neutral and ion species, niνin = nnνni. The use of823

the hard-sphere scattering model for all neutral collisions,824

along with a single temperature, results in νin = νnn.825

The heavy species-electron collision rates νie and νne are826

typically smaller than νii and νnn respectively by a factor827

of
√
ma/me, and are thus not included in this work.828

Appendix D: Saha ionisation equation829

For a quasi-neutral single-level ionisation plasma the830

appropriate Saha ionisation equation is831

Z2
a

1− Za
=

1

na

(
2πmekbT

h2

) 3
2

exp

(
− IH
kbT

)
(D1)832

≡ F, (D2)833
834

where IH is the ionisation energy for hydrogen, and835

Za = ne/na is the mean charge per atom which here also836

represents the ionisation fraction. The constants me, kb837

and h are the electron mass, Boltzmann constant and838

Planck constant respectively.839

The solution for Za is then840

Za =
F

2

(
−1 +

√
1 +

4

F

)
, (D3)841

842

and the derivative with respect to temperature is843

dZa
dT

=
dZa
dF

dF

dT
, (D4)844

dZa
dF

= −1

2
+

1

2

(
1 +

2

F

)(
1 +

4

F

)− 1
2

, (D5)845

dF

dT
=
F

T

(
IH
kbT

+
3

2

)
. (D6)846

847

The ionisation state described by Za and dZa

dT is com-848

pletely specified by the local plasma temperature T and849

atomic density na.850

Appendix E: Validity of the 0th-order Taylor series851

expansion852

The transport properties controlling the plasma dy-853

namics are functions of the local plasma temperature and854

atomic density. In the 0th-order Taylor series approxima-855

tion Eq. (20) it is assumed that the appropriate reference856

values T and na are the average plasma temperature 〈T 〉857

and average atomic density 〈na〉 respectively. Thus all858

radially-varying plasma properties are evaluated directly859

at 〈T 〉 and 〈na〉 to approximate the average value.860

In general, the transport properties described in sec-861

tion II B are only weakly-dependent on the atomic den-862

sity, and can be well approximated by plasma temper-863

ature power laws. The success of the 0th-order Taylor864

series expansion largely depends on how well the aver-865

age of these power law functions can be approximated as866

a function of the average directly, i.e., how close a pa-867

rameter ζ(p) = 〈T p〉〈T 〉−p is to unity. From Eq. (A3) it868

follows that, for TL � TR,869

ζ(p, n) ≈ n+ 1

n+ 1 + p

(
n+ 2

n+ 1

)p
, (E1)870

871

where now ζ(p, n) is a function of two variables to indi-872

cated the dependence on radial temperature power law873

index n as well as the power to which the temperature874

is being raised, p. A plot of ζ(p, n) vs p for plasma-875

dominated (n = 5/2) and neutral-dominated (n = 1/2)876

limits is shown in Fig. 6. The ζ(p, n) is generally close877

to unity, particularly for plasma-dominated conditions,878

which contributes to the remarkable success of the 0th-879

order Taylor series approximation.880

A comparison of the average plasma temperature evo-881

lution calculated using882

1. the 0th-order Taylor series expansion approach (see883

Sec. II C), and884

2. the full radial variation of the plasma temperature885

and associated plasma parameters,886

when evaluating the quantities in Sec. II B, is shown in887

Fig. 7 for a select range of discharge conditions. The888

agreement is remarkably good considering the significant889
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approximation involved in the 0th-order Taylor series890

truncation, with the relative errors being < 10%. Sim-891

ulations using the truncated Taylor series approach are892

approximately two orders of magnitude faster than with893

including the full radial variation, and thus represents894

an extremely fast and efficient method of estimating the895

plasma temperature and density in discharge capillary896

systems.897

-2 -1 0 1 2 3 4

Power index p

1

1.2

1.4

 (
p

,n
)

n = 5/2

n = 1/2

898

FIG. 6. Variation of ζ(p, n) parameter, defined in Eq. (E1),899

with power p for two temperature power laws n. The plasma900

limit corresponds to n = 5/2, while the neutral limit corre-901

sponds to n = 1/2.902

903

FIG. 7. a) Comparison of the average temperature 〈T 〉 evolu-904

tion calculated by the 0th-order Taylor series truncation (solid905

lines), with including the full radial variation (dotted lines),906

for the simulation conditions G1-G4 in Tab. I. The vertical907

lines indicate the transition time between uniform and quasi-908

static regimes. b) Relative error (%) in average temperature909

〈T 〉 between the two methods in a).910
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