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ABSTRACT: The valence electronic structure of the half-metallic ] "]
double perovskite Sr,FeMoQy forms from a strongly hybridized o 2O i
band in the spin-down channel of Fe 3d and Mo 4d states that ; z Local :Zié;afo:,m&r;nne‘s,
provides metallic conductivity and a gapped spin-up channel. The o © .
ground-state description has previously been explored in terms of ] ] fooF

many-body interactions where local and nonlocal interactions Hard XK 0
) ) ) ard X-Ray
produce states with a combination of a charge-transfer Photon

configuration and intersite charge fluctuations. Here, we provide == “ :f o == Tk

a qualitative understanding on nonlocal effects in Sr,FeMoOy I I e g

using a combination of core-level X-ray spectroscopies, specifically R
X-ray absorption, emission, and photoelectron spectroscopies. Our ‘ | 7112 7114 7116 7118

. Incident E v
spectroscopic data indicate intersite Fe 4p—O 2p—Mo 4d  Transition Metal A neident Eneray (V)

interactions to be the origin of these nonlocalized transitions.

Close to the Fermi level, this interaction is dominated by Mo 4d—O 2p character. When our data are compared against first-
principles electronic structure calculations, we conclude that a full understanding of the nature of these states requires a spin-resolved
description of the hybridization functions and that the nonlocal screening occurs predominantly through hybridization in the
minority spin channel of the Mo 4d bands.

Hl INTRODUCTION coupling in 4d/5d elements, making the prediction of DP’s
properties complex." The interaction between neighboring
metal components is simultaneously active and has encouraged
research to uncover new fundamental properties as well as
materials with properties that can be engineered for use in a
range of applications from spintronics to catalysis.”

One of the most studied materials in this class is the half-
metallic and ferrimagnetic Sr,FeMoO, (henceforth termed
SEMO).” 1t is known to have a purely spin-polarized band
structure where only one-spin direction is present at the Fermi
level”™"" The large room-temperature magnetoresistance is
noteworthy for its potential use in spintronic devices based on
the high spin polarization of charge carriers.”'*™"® In the ionic

. . . picture, the electronic structure is understood to have a
spin-polarized metals to strongly correlated systems, spin—

3+ N : : . . . _
orbit effects, ferroelectricity, and complex magnetic properties, Fe’' (3d) . sites as Iocahz'ed w1th5+a hllgh—s'pln S. = 32
to name a few examples.2_7 configuration together with Mo>"(4d') sites with one

The proximity effects of two separated octahedra of B

Double perovskite (DP) oxides offer a unique material
framework to engineer a wide range of physics with a
multitude of functionalities. In its simplest form, the DP
structure (A,BB'Qg) consists of two transition metal (TM)
ions interspersed by corner-sharing octahedra that can be
arranged in a rock-salt, layered, or columnar order. This
means that this type of perovskite oxide can accommodate a
range of suitable A- and B-type cations, altering its microscopic
interactions and, in turn, dramatically affecting a material’s
macroscopic properties. More specifically, the choice of the B/
B’ cations can profoundly alter a material’s electronic structure,
creating materials with desired functionalities ranging from

cations in DP oxides with varying ionic size and valence states Received: March 22, 2021
produce materials with different structural and electronic Revised: ~ May 1, 2021
characteristics. The electronic and magnetic properties are Published: May 13, 2021

governed by the spatially extended TM d orbitals and therefore
by the balance between bandwidth, crystal-field splitting of the
d orbitals, electron—electron correlations, and spin—orbit
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conduction electron that can hop between Mo and Fe sites in
the exchange split t,, orbitals.'*”"® The complete ground-state
electronic structure description in SEFMO presents a more
complex picture due to the large Fe—O and Mo-O
hybridization as well as the importance of nonlocal Fe—O—
Mo charge fluctuations.'”*° This intricacy arises from the
antiferromagnetic coupling between Fe and Mo sites, e.g,
unlike the ferromagnetic coupling in manganites. In contrast to
manganites like La; ,Sr,MnO;, the strong local coupling in
SFMO only applies to every other site since Mo is
paramagnetic.”” Unlike most common half-metals such as
Heuslers or manganites, SFMO has a large localized moment
associated with the Fe 3d shell and antiparallel moment
associated Mo 4d states. Thus, an antiferromagnetic (AFM)
exchange interaction results between Fe localized moments
and conduction electrons. This relationship of interatomic
electronic and magnetic structures and competition between
electron localization and hybridization are relevant ingredients
in determining a material’s Curie temperature and ferromag-
netic state.'> This nonlocal interaction between every other Fe
site produces interesting coupling schemes that constitute the
basis of this study and relevant to other magnetic perovskite
oxides.

In this article, we provide a detailed view of the local and
nonlocal Fe energy levels of Sr,FeMoOg4 comparison to several
Fe-based oxides to show how nonlocal effects are important to
understand this material. Core-level X-ray spectroscopic
methods are extensively used for studying 3d electrons and
their local and nonlocal effects.”! Nonlocal effects, sensitive to
aspects of intersite interactions, leave signatures in the X-ray
absorption, emission, and photoemission spectra. Here, we
employ Fe K-edge X-ray absorption (XAS) and X-ray emission
spectroscopy (XES) to gain valuable information about the
spin density of Sr,FeMoO4 and use a partial fluorescence
absorption spectrum to reveal features related to this intersite
hybridization. The pre-edges region of a K-edge XAS is
typically comprised of relatively low-intensity structures due to
weak 1s — 3d quadrupole transitions. For Sr,FeMoO, this
feature has larger intensity when compared with other similar
oxide perovskites where Fe** remains octahedrally coordinated
by O,  ions. We furthermore find that hard X-ray photo-
emission spectroscopy (HAXPES) for the Fe 2p core-level
spectra show structures characteristic of nonlocal screening
channels. Calculations from local density approximation
(LDA) with density functional theory (DFT) can explain
these features by examining the hybridization potential
function which can be used to investigate the amount and
intensity of hybridized Fe 3d—O 2p—Mo 4d states, especially
near the Fermi level.

B EXPERIMENTAL SECTION

Polycrystalline Sr,FeMoOy, a-Fe,03, and LaFeOj; pellets were
prepared by conventional solid-state synthesis as described in
ref 22. SrCOj is preheated at 150 °C to remove any absorbed
water. The stoichiometric mixture of highly pure SrCO;, a-
Fe,0;, and MoO; is first heated at 900 °C for 12 h for
calcination. The obtained powder is then annealed to 1500 °C
in a reducing atmosphere 98% Ar/2% H, gas for 12 h. The
powder was finally pressed to 5 GPa to form a 5 mm diameter
pellet and subsequently sintered for 6 h at 1500 °C.
Polycrystalline Ca,FeReOg4 was prepared by solid-state reaction
as previously reported.”” The phase purity and ordering were
checked by laboratory X-ray diffraction (PANanalytical MRD

II). The X-ray diffraction pattern was indexed with the (111)
and (311) Bragg peaks that are due to the alternating order of
the Fe and Mo sites. The sample is highly ordered, and no
impurity peaks are found in the XRD pattern.

X-ray absorption and emission measurements at the Fe K-
edge edge were performed at the CLAESS beamline® of the
ALBA Synchrotron (Barcelona, Spain) using a Si (311)
double-crystal monochromator. The spectra were recorded by
monitoring the emission of the Kf, ; (& 7058 eV) or Kf' (~
7045 €V) emission lines and scanning the incoming energy
across the Fe K-edge absorption edge. The Fe fluorescence
energy was selected by using a Si (333) dynamical bent diced
analyzer crystal and an energy dispersive one-dimensional
(1D) detector in Rowland circle geometry (Rowland radius =
1 m). The overall energy resolution was determined to 0.8 eV
from the full width at half-maximum (fwhm) of the quasi-
elastic peak collected from a Kapton tape. The spectrometer
energy window around the Fe Kf3, ; emission line window was
1S eV. Spin-selective high-resolution fluorescence detected X-
ray absorption (HERFD-XANES) was acquired by selecting
Kf,; and KB’ fluorescence lines, which correspond to final
states with the unpaired spin in the 3p shell either parallel or
antiparallel to the unpaired spin in the 3d shell.*> Our fitting
procedure is applied in the range 7110—7119 eV with Gaussian
peaks whose widths are constrained to the experimental
resolution. The background was fitted by using an arc-tangent
function having a fwhm of ~1.8 eV and a centroid energy of
~7120 eV to account for the leading edge of the intense
dipolar transition. Oxygen K-edge XAS were measured at the
8.0.1 beamline®® at the Advanced Light Source (Berkeley, CA).
The X-ray absorption spectrum was acquired in both total
electron yield (TEY) and total fluorescence yield (TFY)
modes at room temperature and under a high vacuum of 107"
mbar. Spectra obtained by TEY and TFY were qualitatively
similar. Oxygen K-edge XAS data were calibrated by using the
offset determined from the TiO, O K-edge.

Hard X-ray photoelectron spectroscopy measurements were
performed at the P22 beamline®” of the PETRA-III
synchrotron in Hamburg, Germany. The incident photon
energy was set to 4750 eV. The Fermi level was calibrated by
using a clean Au foil in contact with the sample holder. The
overall instrumental resolution was set to 300 meV. The
photoelectrons were collected by using a SPECS 225 HV
hemispherical analyzer at a near normal emission geometry
with the incident X-ray at a 15° angle to the sample. The
pressure in the main chamber was ~107'° mbar, and
measurements were carried at room temperature (300 K).

B COMPUTATION DETAILS

The density functional theory (DFT) calculations are
performed in the generalized gradient approximation +
Hubbard U (GGA+U) approach by means of a full potential
linearized muffin-tin orbital method (FP-LMTO)*®* as
implemented in the RSPt code.’® The Brillouin-zone (BZ)
integration is performed by using the thermal smearing
method with 10 X 10 X 10 k-mesh which corresponds to
144 k-points in the irreducible part of the BZ. For the charge
density and potential angular decomposition inside the MT
spheres, the value of maximum angular momentum was taken
equal to I, = 8. To describe the electron—electron correlation
within the GGA+U approach, we have used U =3 eVand J =
0.8 eV for Fe d states. We note that our choice of U is guided
by the recent study where such values of correlation
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parameters were used to study SFMO in the GGA+U
framework.”’

After self-consistency is achieved, we used the spin-polarized
GGA+U solution to compute the energy-dependent hybrid-
ization function A(E) of Mo and Fe d orbitals. If G, is the site
projected Green’s function obtained from DFT and H is the
hybridization-free impurity Hamiltonian, with the correspond-
ing energy EY, one obtains the following form of the
hybridization function, A(E), via the Dyson equation:

Gy ' = (E - EY¥) - A(E)

The preceding expression is used to compute the hybridization
function from our converged DFT calculations. In a quantum
impurity model, A(E) gives the properties of the bath
surrounding the impurity cluster and thus describes the
interaction of an impurity electron (in our case, d-electrons
of either Fe or Mo ions) with the bath consisting of all other
electrons.

B RESULTS AND DISCUSSION

The spin sensitivity in K XES (3p — 1s) stems from the
exchange coupling between unpaired 3p and unpaired 3d
electrons. Via this coupling, the XES process provides an
indirect probe of the local magnetic moment at the Fe 3d site
and is therefore sensitive to the Fe spin state.”””’ Figure 1
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Figure 1. Normalized Fe K XES of Sr,FeMoOg and well-defined Fe
spin systems measured at room temperature. The nominal spin
density S is quantitatively derived from IAD analysis and plotted
against formal spin and experimental determined magnetic moment
(inset). The spectra are normalized to the integrated area.

shows the Kf XES spectrum taken at an incident energy of
7300 eV, far above the Fe K-edge absorption threshold. As
mentioned above, the splitting of the Kf into the Kf, ; line and

Kp' originates from an exchange coupling between electrons in
the 3d shells and a hole in the 3p shell. As is now established,
the Kf spectral shape and intensity are sensitive to the local
spin state of the Fe ion and is more quantitatively estimated by
comparing with references through the integral absolute
difference (IAD) method.**** From our IAD calculations,
Sr,FeMoOg shows a high-spin S = 2.5, an assignment similar to
that of hematite (a-Fe,O;, S = 2.5) and LaFeO, (S = 2.5). Fe
in both SFMO and LaFeOj; systems resulted in a high-spin
configuration, with five unpaired electrons occupying the 3d
levels. The inset shows the relative variation of determined
magnetic moment and IAD values plotted as a function of
references and SFMO, where qualitatively similar trends are
observed. We see that IAD depends linearly formal Fe valence
and tracks with the experimental magnetic moment.

One can separate the Kf X-ray emission spectrum into an
internally referenced spin-up and spin-down channels to obtain
a local-spin selectivity in the K-edge absorption spectrum.*®~*
This is based on measuring partial fluorescence absorption
spectrum by setting the emission energy selectively to either
Kf,; or Kp' satellite lines that are sensitive to the local 3d
moment.”> The Kp, ; emission line leaves the final state with a
spin-down reference in the 3p state, and K’ with a final state
with a spin-up 3p state, as shown schematically in Figure 2a.
Figure 2b shows the pre-edge region for spin-selective XANES
spectra measured for Kf,; (spin-down) and Kf' (spin-up)
lines for SEMO; the inset shows the full energy range. Figure
2b clearly shows a distinct pre-edge feature for the spin-down
channel that is absent for the spin-up channel. This is a direct
consequence of the high-spin configuration of SEMO 3d° (S =
2.5) as determined from our Kf XES analysis discussed
previously. Therefore, we expect only spin-down intermediate
states to be available in the 1s — 3d transitions. This
interpretation shows evidence for a purely spin-down band in
SEMO’s ground-state electronic structure.

The Fe K-edge 1s — 3p resonant X-ray emission (RXES)
map for SFMO and related Fe®* oxides is measured as the
incident energy and emitted energy are varied, yielding a two-
dimensional spectral surface as shown in Figure 3. The
diagonal cut in a RXES map corresponds to the so-called high
energy resolution fluorescence detection (HERFD) spectrum
recorded as a partial fluorescence yield. In Figure 4a, we show
HERFD spectra for SEMO and reference Fe** oxides, obtained
at the Kf, ; emission line. The partial yield spectrum shows
better resolved spectral features compared to Fe K-edge
conventional XANES,” particularly in the pre- and near-edge
range. The absorption spectrum is referenced against FeO
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Figure 2. (a) Schematic representation of the two final state emission process in the atomic picture for Fe**. (b) HERFD-XANES taken at the
maximum of spin-down selective Kf3; ; HERFD and spin-up K" HERDF spectra.

11251

https://doi.org/10.1021/acs.jpcc.1c02580
J. Phys. Chem. C 2021, 125, 11249—-11256



The Journal of Physical Chemistry C

pubs.acs.org/JPCC

120 <120 <120
O O )
(%2} 12} 2]
_‘8 80 § 80 § 80
3 40 3 40 2 > 40
() Q [}
i 8 a-Fe,03 KB 3 5 0 LaFeO3 KBy 3 & 0
IIIIIIIII|I||I[IIII| ||1||l|||||||||||||| ||I|||||||I|l||l||||
7100 7120 7140 7100 7120 7140 7100 7120 7140

Incident Energy (eV)

Incident Energy (eV)

Incident Energy (eV)
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spectrum can be extracted.
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Figure 4. Fe K HERFD-XANES taken at the maximum of Kf, ; X-ray emission peak for SFMO and related Fe oxides. Spectra are normalized to
the K-edge jump at 7263 eV. (b) Fitting of pre-edge peaks for LaFeO5 and SFMO. (c) Spin-resolved partial density of states (PDOS) of Fe p and
Mo d orbitals and (d) Fe d PDOS. The Fermi level (Eg) is set at 0 eV and indicated by a dashed line.

(Fe*"), Fe;0,, a-Fe,0; (Fe’*), and LaFeO, (Fe*"). Although
these references have different crystal structures, the local
atomic coordination is also octahedral. We observe that the
absorption edge shifts to higher energies for the Fe’*
compounds as expected and reported previously for Fe
oxides.*’

The pre-edge structure also evolves in spectral shape and
intensity between Fe reference oxides and SFMO (Figure 4b
inset). SFMO exhibits two main pre-edge structures centered
near 7115 and 7120 eV. These features are attributed to
quadrupolar (1s — 3d) and dipolar (1s — 4p) transitions,
resulting in overlapping lines, and therefore single transitions
cannot be easily distinguished. However, general trends can be
observed based on the intensity and energy position. The first
pre-edge feature is assigned to a 1ls — 3d quadrupolar
transition that is localized at the Fe absorbing atom.*' More
than one feature can be identified in this energy range because
of the splitting of the 3d orbital energy levels. In the crystal-

11252

field picture, the quadrupolar prepeak intensity distribution
change systematically with spin state, oxidation state, and local
geometry.”” Because of differences in crystallographic
symmetry, it is only appropriate to compare the pre-edge of
structures of LaFeO; and SFMO, as FeO and a-Fe,O; assume
rock-salt and corundum crystal structures, respectively. As
shown in the bottom panel of Figure 3b, two well-resolved pre-
edge features can be distinguished for LaFeO; They
correspond to local quadrupolar 1s — 3d transition into
unoccupied t,, and e, states, although they have been
suggested to carry some O 2p character as reported in
previous studies,”.">** The splitting of the two pre-edge peaks
for LaFeO; is 1.53 eV, which correspond to the crystal-field
splitting of 1.50 eV as reported by Haas et al.”> For SEMO, we
find that three peaks are necessary for a reasonable fit of the Fe
K pre-edge. The first two features, labeled Peaks 1 and 2 in
Figure 3b, are separated by 1.23 eV and can be readily
accounted as transitions to crystal field split t, and e, states,

https://doi.org/10.1021/acs.jpcc.1c02580
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respectively, which is close to the crystal-field splitting of 1.25
eV from our calculations. The third pre-edge feature, centered
at 7115.9 eV labeled Peak 3, is compatible with a mixture of
quadrupolar and a dipolar transition that involve a neighboring
Mo site.*!

In transition metal oxides, dipolar contributions in the pre-
edge can also arise from transitions to neighboring d states that
are mediated via bridging oxygen through intersite Fe (4p)—O
(2p)—Mo (4d)*>*"* hybridized states. Similar nonlocal
features have also been identified in manganites* and
cobaltites.”*” The strength of this nonlocal dipole contribu-
tion is primarily determined by the degree of covalency and
thus by B—O bond lengths and the B—O—B’ bond angle which
will influence the orbital overlap. Orthorhombic LaFeOj,
consists of corner-shared distorted octahedra*® with a Fe—
O—Fe bond angle values of 157°, while tetragonal SFMO
consists of corner-shared octahedra®® with Fe—O—Mo band
angle closer to 180°. This near-collinear geometric arrange-
ment maximizes the overlap to the 2p orbital of the bridging
oxygen to make the most effective link and Fe 4p—O 2p—Mo
4d (unpublished results).”” The Fe—O bond lengths in
LaFeO; and SFMO are 1.988 and 1.985 A, respectively,
which suggests that the collinear structure bears more weight
on the intensity of the nonlocal intersite pre-edge structure.

We support this interpretation by analyzing the calculated
partial density of states (PDOS) that are separated into spin-up
and spin-down contributions as shown in Figures 4c and 4d.
The Fe d PDOS, shown in Figure 4d, shows a sizable intensity
in the unoccupied region of the spin-down channel around 1
eV above the Ej that defines the local quadrupolar 1s — 3d
transitions. The PDOS of Fe p orbitals furthermore shows
structures for both spin directions at about 4.5 eV above the
Fermi level, which could correspond to the absorption feature
shown around 7120 eV. Similar structures are also observed in
the PDOS of Mo d states at the same position of energy axis,
implying hybridization between Mo d orbitals and Fe p
orbitals. Moreover, the spin-down Fe d PDOS shows a
relatively small intensity around 2 eV above Ey that most likely
correspond to the “Peak 3” intrasite transition for SFMO with
oxygen mediated intersite mixing between Fe p state and
adjacent neighbor Mo d state. In fact, concomitant Fe p and
Mo d (spin-down) DOS are present at the same energy. The
small Fe PDOS character explains the relative enhanced
absorption feature intensity.

Recent studies using hard X-ray photoemission have shown
features in core-level spectra of transition metals oxides which
are consistently explained in terms of well-screened peaks.’”""
With its increased probe depth, HAXPES measurements show
true bulk electronic structure and reveal satellite features and
screening effects due to the large probing depth otherwise not
straightforward from soft X-rays. The inclusion of additional
nonlocal screening channels has been shown to be useful for
understanding the 2p photoelectron spectra of NiO,>
cuprates,53 ruthenates,”* and manganites.55 Although there
are several reports on the Fe 2p core levels for SEMO,**’
measurements at high X-ray photon energies have yet to be
reported to the best of our knowledge, particularly for the
description of local and nonlocal features. Figure Sa shows the
Fe 2p hard X-ray photoemission spectra along with reference
Fe oxides. The Fe®" reference a-Fe,O;, LaFeO,, and
Ca,FeReO¢ compounds show two main-line peaks that are
due to spin—orbit split Fe 2p core levels. For each spin—orbit
component, there are also high binding energy (Ej) satellite
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the maximum of Fe 2p;, line. (b) Hybridization densities shown in a
spin-resolved spectrum for Mo d, O p, and Fe d states.

features denoted as S1 and S2 in Figure 5a. These features
have been previously assigned to charge-transfer (CT)
structures that are dominated by 3d° and 3d°L final states
conﬁgurations,sg’59 where ¢ and L denote a core hole and L a
hole in the nearest ligand.

The SFMO Fe 2p HAXPES is characterized by broader
main lines including a low binding energy contribution that are
indicated by dashed arrows in Figure Sa. Low-Eg features in
correlated oxides have varying explanations including a hole-
doped bound state interaction like those in NiO,** a coherent
metallic band formation in vanadates,® and magnetic
transitions.”’ We exclude the broadening of the Fe 2p main
line due to hole doping at the Fe site,*”% but rather due to the
formation of a nonlocal metallic band with Mo 4d and O 2p
character. This conclusion is supported from the hybridization
function presented in Figure Sb, which shows very little
contribution from Fe d states close to Ep. This observation is
further corroborated by considering the asymmetric broad-
ening of the O 1s photoemission line shape (see Figure S1b),
which are common to systems with metallic screening.* The
HAXPES binding energy position for SFMO O 1s is 529.1 eV,
exactly matching the absorption threshold in the O 1s XAS
spectrum of 529.0 eV, reflecting the empty oxygen 2p states at
Ep. We therefore suggest that this line-shape change is due to
delocalized states with considerable O 2p—Mo 4d hybrid-
ization. We exclude the lower binding energy features due to
contributions from a lower valence such as Fe** or Fe’, since
the existence of such species would be detected with
appreciable shifts from the measured Fe K absorption and
emission spectra. Consequently, we attribute these low binding
energy features at approximately 706 and 708 eV (indicated by

https://doi.org/10.1021/acs.jpcc.1c02580
J. Phys. Chem. C 2021, 125, 11249—-11256



The Journal of Physical Chemistry C

pubs.acs.org/JPCC

arrows in Figure Sa) to screening from hybridized Fe 3d—O
2p—Mo 4d valence states that screen the photoexcited Fe.
From greviously reported double cluster calculations on
SEMO,™ the ground state was reported to be described by a
mixed character of ionic 3d° as well as locally screened 3d°L
and nonlocal 3d% configurations, where v represent a hole in
the valence band. The nonlocal screening involves an oxygen
mediated Fe 3d—O 2p—Mo 4d hybridization. This config-
uration interaction picture has merit due to the strong nonlocal
character of the ground state of SFMO.

Nonlocal screening has been successfully discussed in terms
of the energy-dependent hybridization function in correlated
systems.””® The hybridization function encodes orbital and
spin interactions and is composed of distance-shell contribu-
tions.*>*® The larger the magnitude of hybridization function,
the larger the overlap of that orbital with all other orbitals. The
spin-resolved hybridization function is shown in Figure Sb.
The intensities from 2 to —2 eV for Mo d corresponds to
hybridized delocalized Mo 4d bands. The intensity is rather
strong for Mo minority d states close to the Eg, largely
attributable to the stronger amplitude of an indirect Fe—O—
Mo hopping term, i.e., the conducting minority spin channel.
This gives merit to a 6ground-state configuration with a hole in
the valence band (3d°v) that tracks its origin to the spin-down
Mo d band validating nonlocal effects in SEMO. We note that
the hybridization function of Mo d majority states does not
show any strong feature close to the Fermi level. The
hybridization strength at Ep that are prominent for Mo d
bands shown in Figure Sb are responsible for the width and
shape of the Fe 2p low-Ejy features. The hybridization function
being the main indicator of itinerancy and localization, our
results illustrate the significance of analyzing spin-resolved
character of the Mo d bands for understanding the nonlocal
effects in SFMO.

B CONCLUSIONS

We have investigated the electronic structure properties of
SEMO through several hard X-ray core-level spectroscopies.
Our study provides direct support for nonlocal effects in
SFMO. From Fe K-edge absorption and emission, we find that
SFMO exhibits a high-spin 3d° configuration with a nominal
spin density of S = 2.5, similar to its trivalent Fe®* analogues.
Fe K-edge HERFD-XANES in SFMO shows a broad pre-edge
structure that is a convolution of quadrupolar and dipolar
peaks, one of which can be linked to an excitation in an
intersite Fe 4p—O 2p—Mo 4d band. The spin-selective
HERFD-XANES spectra show pre-edge features that are
characteristics of spin-polarized properties of SFMO. Hard
X-ray photoemission for the Fe 2p core-level show several
structures in the low-Ejy region that are highly probable of a
nonlocal screening channel from an electron near the Fermi
level. This nonlocal screening can effectively be tied to the
strong hybridization density from the Mo 4d band, a
consequence of optimal near-collinear Fe—O—Mo lattice
geometry in SEMO. Our results point to a strong relationship
between localized and nonlocalized character in SEFMO that
leads to its large T and high spin polarization. These results
highlight the significance of nonlocal charge interactions in
mediating a large exchange coupling strength (J) between Fe
and Mo, where T is maximized. This combined approach of
hard X-ray core-level spectroscopy techniques with theoretical
simulations that include intersite effects is very useful to gain
insights into double perovskite oxides and correlated systems

in general. We hope our results advances the fundamental
understanding of intersite physics in magnetic oxides that can
lead to new directions in spintronic applications.
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B ABBREVIATIONS

DP, double perovskite; TM, transition metal; SFMO,
Sr,FeMoOQg; XAS, X-ray absorption spectroscopy; XES, X-ray
emission spectroscopy; HAXPES, hard X-ray photoemission
spectroscopy; LDA, local density approximation; DMFT,
dynamical mean-field theory; HERFD-XANES, high-resolution
fluorescence detected X-ray absorption; TEY, total electron
yield; TFY, total fluorescence yield; DFT, density functional
theory; FP-LMTO, full potential linearized muffin-tin orbital
method; BZ, Brillouin-zone; GGA+U, gradient approximation
+ Hubbard U; IAD, integral absolute difference; RXES,
resonant X-ray emission; PDOS, partial density of states.
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