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Achromatic focusing systems for hard X-rays are

examined which consist of a refractive lens paired

with a diffractive lens. Compared with previous

analyses, we take into account the behaviour of thick

refractive lenses, such as compound refractive lenses

(CRLs) and waveguide gradient index refractive

lenses (GRIN lenses), in which both the focal length

and the position of the principal planes vary with

wavelength. Achromatic systems formed by the

combination of such a thick refractive lens with a

multilayer Laue lens are found that can operate

at a focusing resolution of about 3 nm, over a

relative bandwidth of about 1%. With the appropriate

distance between the refractive and diffractive lenses,

apochromatic systems can also be found, which

operate over relative bandwidth greater than 10%.

These systems can be used to focus short pulses

without distorting them in time by more than several

attoseconds. Such systems are suitable for high-flux

scanning microscopy and for creating high intensities

from attosecond X-ray pulses.
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1. Introduction

Diffractive optics such as multilayer Laue lenses (MLLs) and sputter-sliced zone plates are

currently under development as a means to achieve imaging at 1 nm resolution for X-ray

wavelengths of 0.1 nm or less [1,2]. These optical elements are essentially volume holographic

optical elements constructed with nanometer layer thicknesses, and lens thicknesses in the

direction of beam propagation of tens of micrometers, as needed to achieve efficient beam

deflection by Bragg diffraction for high numerical aperture lenses. Being diffractive optics,

such lenses suffer from chromatic aberrations, with a focal length that varies inversely with

wavelength, λ. Each layer in a diffractive optic imparts an additional wave of optical path to

create the (first-order) focus by constructive interference. In a lens consisting of N layers, the

arrival time of light at the focus will vary by Nλ/c, which may considerably stretch attosecond-

or femtosecond-duration X-ray pulses in ultrafast imaging applications. No matter the duration

of the illumination, a deviation of the wavelength by ∆λ will result in a cumulative path error

of N ∆λ as compared with the design condition. To achieve diffraction-limited performance, this

error must be no greater than a wavelength, requiring that ∆λ/λ< 1/N . Thus, in designing the

optical system for an X-ray microscope or to focus ultrashort pulses to obtain high intensities, one

may have to choose between limiting the bandwidth of the illumination—resulting in a loss of

throughput and a longer pulse duration—or limiting the size of the lens through the number

of periods N . For example, the spectrum of a typical undulator device may have a relative

bandwidth of about 1/300, as given by the number of periods in the undulator. A lens of 300 bi-

layer periods to utilise the full spectrum for imaging at a resolution of, say, 1 nm at a wavelength

of 0.05 nm would have a radius of only 300 nm and a focal length of 24µm. This lens would

preserve the transform-limited pulse duration of 50 attoseconds. This calculation is based on the

result that the bi-layer periods in a diffractive optic of focal length f are positioned according

to y2N ≈Nfλ, producing a resolution δr = λ/(2NA) = λf/(2yN ) = yN/(2N), so that yN = 2Nδr .

Expressed another way, the focal length varies inversely with wavelength, giving a dispersion

∆f/f =−∆λ/λ. The change in focus ∆f must remain within the depth of focus of the lens, which

itself varies quadratically with the resolution length δr .

A similar analysis finds that refractive lenses suffer even harsher limitations. Typical refractive

indices of materials in the X-ray regime are slightly less than unity and expressed as n= 1− δ,

with the decrement δ proportional to λ2 at wavelengths away from absorption edges. Given that

the focal length of a refractive lens is proportional to 1/(n− 1) and thus inversely proportional to

the square of the X-ray wavelength, the dispersion of a refractive lens in the X-ray regime is given

by ∆f/f =−2∆λ/λ, which is twice the dispersion experienced by diffractive lenses. A refractive

lens therefore stretches a pulse by twice the amount than does a diffractive lens of the same focal

length. For a similar resolution and bandwidth, a refractive lens would require an even shorter

focal length than considered above to avoid chromatic aberrations.

Regardless of whether we wish to use them in a full-field imaging microscope, to focus a beam

to a small spot for a scanning microscope, or to focus a short pulse to a small spot to achieve

high intensities, the short focal-length lenses of these examples would bring several practical

inconveniences. The field of view would be limited to a width that is comparable to the diameter

of the lens [3] and the working distance limits the size of objects that can be examined in a

tomographic setting. The lens must be positioned near the source or to an image of that source,

where the beam size matches the diameter of the lens, placing high demands on the beamline

design and optics. Ideally, lenses more than 100 times larger would be preferred, giving focal

lengths of millimeters. A diffractive lens like an MLL would then consist of tens of thousands of

layers and the consequent reduction of tolerable bandwidth to 1/100th of that available and the

stretching of pulses by tens of femtoseconds.

This analysis naturally leads to reflective optics as a basis for a high-throughput or short-pulse

imaging system. Mirrors are achromatic and hence can focus radiation of a very broad bandwidth

to a small spot, without appreciably stretching the pulse [4]. Kirkpatrick-Baez (KB) mirrors, for
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example, have been fabricated with resolutions well below 10 nm [5,6], and the use of refractive

phase plates to compensate measured aberrations of these systems should further improve their

performance [7,8]. The numerical aperture (NA) of KB optics is limited by the critical angle of

reflection, but this can be increased using multilayer reflective coatings with some loss of tolerable

bandwidth and corresponding increase in pulse response time [9].

Another attractive approach for broad-band or short-pulse applications is to form an achromat

by pairing a diffractive lens with a refractive lens. With the appropriate choice of the ratio of focal

lengths of the two lenses, the dispersion of the diffractive lens can be compensated by that of

the refractive lens and still provide a residual focusing effect [10–13]. An achromat design nulls

the linear term in a series expansion of the focal length of the optical system as a function of

the relative wavelength deviation ∆λ/λ, leaving a quadratic dependence so that an equal focal

length can be obtained for two distinct wavelengths. This typically provides a bandwidth of 1% or

more [11–13], even with diffractive lenses with tens of thousands of layers. Apochromatic designs

can also be made. In these the quadratic term is also brought to zero, which can be achieved

with the right choice of separation of the diffractive and refractive lenses [12–14]. In this case the

dominant dependence of the focal length on wavelength is cubic and so an equal focal length

can be obtained for three distinct wavelengths, broadening the tolerable bandwidth to 10% or

more. This corresponds to a correction of group-velocity dispersion in the lens system, to keep

pulse stretching to below about 10 wavelengths, or below 2 as for λ= 0.05 nm. The refractive-

diffractive achromat might offer a cheaper and more compact focusing system than KB mirrors,

possibly also at higher resolution.

Here we examine achromat and apochromat designs to focus short-wavelength X rays for

imaging modalities such as scanning Compton X-ray microscopy [15,16], scanning fluorescence

microscopy [3], ptychography [17], and projection imaging [18], as well as to create high

intensities of short pulses, such as generated by X-ray free-electron lasers, for non-linear X-ray

optics experiments [6]. Our goal is to achieve focused spot sizes considerably smaller than 10 nm

while utilising a high fraction of the flux produced by an undulator at a modern synchrotron

radiation facility or free-electron laser. While the focusing achromat design requires the refractive

lens to be diverging (that is, have a negative focal length), both lenses must have comparable

power.1 We present an overview of such systems in Sec. 2 and find conditions that give achromatic

and apochromatic focusing. Given the dispersions of diffractive and refractive lenses mentioned

above, there are two geometries that give achromatic conditions: Type I, consisting of a negative

refractive lens followed by a positive diffractive lens, and Type II, where the positive diffractive

lens is followed by the negative refractive lens. High-NA MLLs can be considered as thin lenses

in paraxial designs of achromatic systems, but in practice the refractive lens must be treated

differently. Given that the refractive indices of materials in the X-ray regime barely differ from

that of vacuum, high-resolution imaging necessitates placing many refractive lenses in a row

to accumulate focusing power. These compound refractive lenses (CRLs) must then be treated

as thick lenses in the paraxial analysis of achromatic imaging, as has been carried out in the

analysis of Poulsen et al [13]. In Sec. 4, we extend and improve upon that work by noting that

not only does the focal length of a CRL change with wavelength but so too does the position of

its principal planes. We find that this change of the location of the focal plane with a change in

wavelength must be accounted for to properly describe the imaging performance of such optical

systems. This is carried out using an accurate yet very tractable formalism of the paraxial optics

of CRLs, introduced in Sec. 3, by noting the analogy of a CRL to a thick gradient refractive-index

(GRIN) lens [19]. (This approach also enables the derivation of the pulse front through thick

refractive lenses, given in Appendix A.) The design space of achromats in Sec. 4 is parameterised

in terms of product of the length and refractive gradient of the refractive lens, as well as the focal

length and distance of the diffractive lens. The achievable bandwidths of thick-lens achromats are

examined in Sec. 5. The high relative bandwidths found for apochromatic designs—which can

exceed 10%—are verified by ray tracing in Sec. 6. Finally, some examples are presented in Sec. 7.
1The power of the refractive lens can be considerably relaxed if the high dispersion of elements near their absorption edges

is exploited [11]. However, the wavelength span for this is limited and we do not consider that case in this paper.
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2. Thin Lens Achromats

(a) The thin-lens doublet

An achromatic doublet lens is formed by placing two lenses in contact that have different

dependences of focusing power on wavelength. In visible-light optics this is conventionally

achieved by combining lenses made of different glasses. For focal lengths fa and fb of the two

lenses, the achromatic condition is found when fa/Va = fb/Vb where V is the dispersive power

of the lens,

V =

(

∆f

f

)/(

∆λ

λ

)

=
λ

f

∂f

∂λ
(2.1)

The resulting focal length is f = faVa/(Vb − Va), showing that lenses of differing dispersive

powers are required. All diffractive lenses have V =−1 as explained above and so an achromat

consisting of a MLL must be combined with a refractive lens. This refractive-diffractive achromat

for X-rays was proposed independently by Skinner [10] in the context of astronomy and by Wang

et al. [11] for microscopy and lithography. Since V =−2 for X-ray refractive lenses (away from

absorption edges), a diverging refractive lens of focal length −2f0 at a wavelength λ0 combined

with an MLL of focal length f0 at the same wavelength will give an achromat of 2f0 focal length

with zero dispersion at λ0. That is, a positively focusing achromatic doublet requires a negative

(diverging) refractive lens placed in contact with a positive diffractive lens.

The power of the achromat doublet lens, given by the reciprocal of the focal length, is

1

fA
=

1

fR
+

1

fD
(2.2)

where fR =−2f0λ
2
0/λ

2 is the focal length of the refractive lens and fD = f0λ0/λ is the focal

length of the diffractive lens. Expanding Eqn. 2.2 and defining ∆λ= λ− λ0 gives

1

fA
=

(

1−
(

∆λ

λ0

)2
)

1

2f0
, (2.3)

which obviously has zero linear dispersion at ∆λ= 0. We define the higher-order dispersion

terms V (j) as the coefficients of the powers of ∆λ/λ in the Taylor-series expansion of f(λ)/f(0).

Thus, we see from Eqn. 2.3 that the achromat doublet has V (2) = 1.

Although the phase velocity of X-rays propagating through a medium of refractive index

n= 1− δ exceeds the speed of light in the vacuum, the speed of a short pulse is given by the

group velocity, vg = ∂ω/∂k= c/(n− λ∂n/∂λ) = c/(1 + δ), where ω is the X-ray frequency and

k the wave number, and as above we have assumed that δ∝ λ2. Thus, when light propagates

through different thicknesses of a material, as in a lens, the pulse front will separate from the

wavefront [20]. A bi-convex lens has negative focal length in the X-ray regime with a thickness

of the refractive material that is greatest on axis and reduces quadratically with distance y from

the axis. In this case the pulse front lags behind the phase front on the axis and coincides with the

phase front at the periphery of the lens where the thickness is zero. Relative to the pulse front on

axis, therefore, the pulse leads the wavefront by a duration that increases as y2, which is to say

that meridional rays propagate through the lens faster than axial rays. The opposite is true for a

positive (converging) lens, and in general the delay between the phase front and the pulse front

in a thin lens, due to linear dispersion, is given by [20]

∆T =
−y2

2cf2
λ
∂f

∂λ
=

−y2

2cf
V. (2.4)

Here, when ∆T < 0, the propagation time is shorter for rays at y than on the axis, which occurs

for an X-ray refractive lens with f < 0 since in that case V =−2.

A pulse is not delayed in traversing a diffractive lens (in the limit of zero thickness), but rays

brought to a focus by a positive diffractive lens accrue a wavelength of path for each period of

the structure, as was noted above. If we consider a plane wave focused by a diffractive lens, a
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ray intersecting at y must traverse an extra distance y2/(2f) to reach the focus at f , compared

with the axial ray, and it will take it longer to get there. Thus, we see that Eqn. 2.4 holds too for

a diffractive lens, for which V =−1 [21]. Furthermore, for the achromatic doublet consisting of a

thin zone plate with fD = f0 in contact with a thin negative refractive lens with fR =−2f0, the

pulse front—initially ahead of the wavefront in the refractive lens—is brought back in coincidence

with the wavefront by the extra path length required of the diffractive lens. The propagation delay

due to the linear dispersion, ∆T , is zero. This is to be expected since the achromat transports

all wavelengths of the pulse to the focus without changing the relative phases of these spectral

components. Also, it was shown [20] that Eqn. 2.4 holds for any composite lens system when f

is replaced by the distance li from the last lens to the image, such that ∆T ∝ ∂li/∂λ. A smaller

degree of stretching of the pulse may be caused by the group-velocity dispersion, proportional to

V (2) as indicated by Eqn. 2.3. As seen below, this too can be mostly eliminated in apochromatic

designs.

(b) Separated lenses

Skinner [12] examined the case when the diffractive and refractive lenses are separated from each

other by some distance d, and found that this extra degree of freedom enabled the design of

an apochromatic system where the quadratic dependence of the image position is brought to

zero, leaving a predominantly cubic behaviour. Poulsen et al. [13] also analysed this situation

in the context of using a CRL together with a diffractive lens. CRLs are required for a practical

achromatic system, for the same reason they are needed for focusing and imaging—the focal

length of a single refractive lens is just too long. Since the principal plane of a negative CRL is

situated between the first and last lenses of the stack (as will be detailed in Sec. 3), the smallest

achievable value of d in this situation is greater than zero. While the focal length of the system of

two thin lenses of focal lengths fa and fb can be found from the lens maker’s formula as

1

fA
=

1

fa
+

1

fb
− d

fafb
, (2.5)

it is the position of the image from the lens that must not vary with wavelength. In a compound

imaging system consisting of two (or more) lenses, a focal length invariant to wavelength does

not necessarily imply that the image position will remain at a constant distance from the lens since

the position of the back principal plane may vary with wavelength. (The back principal plane is

where rays emanating back from the image would appear to intersect incident parallel rays from

a source at infinity.) To choose an image plane we thus consider the case of the source at z =−∞
with the z axis defining the optical axis, corresponding to a probe-based microscope. In this case

the distance of the image from the second lens, li is found via

1

li
=

1

fb
+

1

fa − d
, (2.6)

since the intermediate focus formed by the first lens is at a distance lo = fa − d in front of the

second lens, as depicted in Fig. 1 (a). In that figure, the first lens is refractive with fa = fR and

it is diverging such that fa < 0. Lengths that are negative are depicted in the figure by arrows

pointing to the left, including lo in Fig. 1 (a). Equation 2.6 holds both in this case of a diverging

lens (fa < 0) followed by a positive lens (fb > 0) as well as the opposite case where it may be that

l0 = fa − d is positive as shown in Fig. 1 (b) where fa = fD .

As with the doublet lens (for which d= 0), achromatic focusing conditions can only be found

for separated lenses when the refractive lens has a negative focal length and the diffractive lens

is positive. There are thus two possible configurations: one where the refractive lens is followed

by the diffractive lens (fa = fR, fb = fD), and the other in which these lenses are swapped (fa =

fD , fb = fR). We call the first the Type I configuration and the second Type II. The ratio of the

focal lengths of the refractive to the diffractive lenses at the achromatic condition for d > 0 is no

longer −2, and we set fD = f0λ0/λ and fR = αf0λ
2
0/λ

2. The achromatic condition can be found
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For a Type I achromatic system, we obtain the solution

αI =−1 +
d

f0
±
√

1− 2d

f0
, (2.8)

with only the choice of the minus sign giving a positive image distance li. An achromat can only

be formed when d < f0/2. Setting λ= λ0 +∆λ and expanding li in a Taylor series at ∆λ= 0 gives

li = f0β

[

1 + ν(2)
(

∆λ

λ

)2

+O

(

∆λ

λ

)3
]

, (2.9)

where

βI =
li(∆λ= 0)

f0
= 1 +

1
√

1− 2d/f0
(2.10)

is the ratio of the image distance to f0, and

ν
(2)
I =− (βI − 3)βI

2(βI − 1)
(2.11)

is the quadratic dispersion coefficient of the system with respect to the position of the image plane

(distinct from the dispersion V (2) with respect to the focal length). Equation 2.9 confirms that the

system is achromatic since there is no linear dependence on ∆λ. Together with Eqn. 2.11, this

equation also reveals the remarkable effect that the system becomes apochromatic, whereby the

quadratic dispersion is nulled, at a particular separation d which sets the image distance to be

3f0 (that is, βI = 3). From Eqn. 2.10, this apochromatic condition is found when d= 3f0/8 and

α= fR(0)/fD(0) =−9/8.

The overall focal length of the system, given by Eqn. 2.5, is fA = 9f0/4 for this condition. This is

slightly longer than the focal length of fA = 2f0 obtained for the doublet consisting of two lenses

in contact. It should be noted that ∂fA/∂λ 6= ∂li/∂λ (or V 6= ν) when the lenses are separated.

A consequence of this is that while various wavelengths are brought to focus to the same image

plane, the image magnification will vary with wavelength. Thus, achromatic focusing only occurs

for a source located on axis. The image of an off-axis source point will be dispersed laterally (as

in an aberration-free spectrometer).

A similar analysis applied to the Type II system gives a solution for the ratio of the refractive

focal length to the diffractive focal length given by

αII =−2

(

1− d

f0

)2

. (2.12)

It is found that the image distance as a function of ∆λ at the achromatic condition follows Eqn. 2.9

with

βII = 2
(1− d/f0)

2

1− 2d/f0
(2.13)

and

ν
(2)
II =

1− 3d/f0
(1− 2d/f0)(1− d/f0)

. (2.14)

At d= f0/2 it is seen from Eqn. 2.13 that the image is formed at infinity and, as for the Type I

system, a real image can only be achieved when d < f0/2. The quadratic dispersion of Eqn. 2.14

is expressed in terms of d/f0 as this gives a more compact form than using β (the opposite was

true for the Type I case in Eqn. 2.11). It can be immediately seen that an apochromatic condition

is achieved at d= f0/3. In this case αII =−8/9, βII = 8/3, and fA = 4f0.

Plots of the relative focal lengths and image distances as a function of the normalised lens

spacing d/f0 are given in Fig. 2. The Type I system gives higher focusing power (shorter focal

length) for all lens spacings, and thus is the preferable configuration for high resolution imaging.

The apochromatic condition for a Type I system gives a performance almost as good as that of the

doublet.
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a b

Figure 2. Plots of (a) the power, and (b) the image distance for thin-lens achromats as a function of the separation of the

lenses. All distances are normalised to the focal length of the diffractive lens, f0. Type I systems are depicted with solid

lines and Type II with dashed lines, and the apochromatic conditions are shown by the circles.

As discussed in Sec. 2 (a), the achromatic condition of ∂li/∂λ= 0 ensures that all rays of a

short pulse are brought to the focus at the same time, ∆T = 0. Calculation of propagation times

through the lens systems can therefore serve as an independent check of the derivations of the

achromatic conditions, and are given in Appendix A.

3. Paraxial Optics of Thick Refractive Lenses

A typical value of the refractive index decrement δ of light materials (such as diamond, for

example) is about 10−6 at a wavelength of 0.05 nm (a photon energy of 24.8 keV). A bi-convex

lens with surfaces of radius R has a (negative) focal length of fR =−R/(2δ) which is therefore of

the order of meters for lens radii of the order of micrometers. This compares with the millimeter

focal lengths of high-resolution MLLs which have apertures up to about 100µm and which we

would like to pair in an achromat. Such pairing, as seen above, requires lenses with focal lengths

of comparable magnitude. As is now common practise, stacking N positive refractive lenses in a

row along the optical axis sums their focusing powers to modify the focal length by a factor of

1/N . The same is true for negative lenses.

It is clear that to create a high-resolution achromat, such a negative CRL will require many

hundreds or even thousands of lens elements. Rays traversing this lens will not be deflected in

one particular plane as was assumed for the analysis of Sec. 2 but will be gradually nudged as

they pass through each element. Different wavelengths will deflect by slightly different amounts

and thus follow different trajectories. In the limit of many lens elements, these trajectories will

appear curved.

In paraxial optics, as a consequence of treating each lens element as a linear system, any

composite lens can be assigned two principal planes, Uo and Ui, and two focal planes, Fo and

Fi, that together describe the total linear system [22]. The curved trajectories of rays can then be

ignored and instead the ray geometry can be described solely by the intersections of straight rays

with these planes, indicated in Figs. 1 (c) and (d) for the refractive lens. Collimated rays parallel

to the optical axis and impinging on the front of the lens will leave the rear of the lens to converge

at the image of the source on the rear focal plane Fi (for a positive lens) or appear to diverge from

the rear focal plane Fi (for a negative lens), in both cases as if focused by a thin lens located at the

rear principal plane Ui. That is, the incident collimated rays appear to intersect the outgoing rays

at Ui. Likewise, rays originating from the front focal plane Fo (or which would converge upon

the front focal plane in the case of a negative lens) will be collimated by the composite lens, and

the front principal plane Uo stands at the place where each collimated ray appears to intersect

with the originating ray. The two principal planes coincide with each other and the plane of the

lens only when that lens is thin. As we will see below, for a negative thick refractive lens, Ui is
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downstream of Uo. When the source and image are at places other than, respectively, infinity and

the corresponding focal plane, the input ray that appears to intersect the front principal plane Uo

at a particular height (y, say) produces an output ray that appears to arise from the back principal

plane Ui at that same height y. Again, the entire thick lens seems to behave like a thin lens except

that there is a gap between Uo and Ui where rays are “teleported”, or shifted along the optical

axis, from one principal plane to the other (a point on Uo is imaged to a point on Ui with positive

unity magnification).

Based on this linear-systems approach of paraxial optics, several authors have developed

analyses of thick positive CRLs which can be used to describe the positions of their focal planes

and principal planes. One such approach is to use the matrix transfer of vectors of ray parameters

(position and direction), known as Gaussian optics. Given the transfer matrix for a single element,

the analysis of N equally spaced identical lenses requires evaluating its N th power, which can be

done by diagonalising the matrix [23,24]. In the limit of a low focusing power per lens element,

each element can be treated as a matrix of differentials, leading to a set of coupled differential

equations for the compound lens [25,26]. This continuous representation of a CRL mimics the

behaviour of the curved trajectories of rays traversing a gradient refractive index (GRIN) lens.

Such a lens consists of an inhomogeneous medium where the refractive index varies continuously

and quadratically with distance y from the optical axis [19,27], equal to the average refractive

index of the CRL as projected along the optical axis, as given by

n(y) = n0

√

1 + g2y2 ≈ n0

(

1 +
g2y2

2
,

)

(3.1)

where g is the gradient of the refractive index (with dimensions of inverse length) and is defined

here for a diverging (negative) lens where the refractive index increases with y. For a negative

CRL composed of identical bi-convex lenses of refractive index n0 = 1− δ, thickness T , surfaces

of radius R, and without any further gap between them, the average refractive index at a height

y is

n̄(y) =

(

n0

(

T − y2

R

)

+
y2

R

)

1

T
= 1− δ +

δy2

RT
. (3.2)

Comparing this with Eqn. 3.1 shows that g2 = 2δ/(n0RT )≈ 2δ/(RT ), and thus g∝ λ. We assume

the refractive index profile is invariant with the coordinate z, equivalent to a CRL made of

identical lens elements. Note that this comparison need not serve only as a simple analogy to give

a simpler analysis of CRLs, but it also shows that a thick X-ray GRIN lens (made by concurrent

depositions of two materials, for example [28]) makes a suitable alternative to a compound lens.

Here, we refer to either the CRL or GRIN lens as a thick refractive lens, abbreviated as a TRL.

The paraxial optics of GRIN lenses are well known and the continuous curved trajectories of

rays can be computed by solving the ray equation [27,29]

d

du

[

n(r)
dr

du

]

=∇n(r), (3.3)

where r is the position vector of the ray and du is the path element along the ray. For a diverging

lens with a refractive profile of Eqn. 3.1, ray trajectories can be written as a linear combination of

solutions to Eqn. 3.3 as

y(z) =A cosh gz +B sinh gz =C cosh g(z − z0), (3.4)

where the lengths A and B (or C and z0) are determined from the position, y0, and direction, y′0, of

the ray entering the lens at z = 0. Since y′(z) =Cg sinh g(z − z0), then z0 =−1/g tanh−1(y′0/gy0)

and C2 = y20 − (y′0/g)
2. This set of solutions can be compared with those of a positive lens where

the parabolic refractive profile decreases with position y as n(y) = n0(1− g2y2/2). In that case

the trajectories are described by sums of sines and cosines, instead of the hyperbolic sines and

cosines of Eqn. 3.4, to give rays that converge to the optical axis. For our negative lens, we

consider incident rays parallel to the optical axis, whereby y′0 = 0 so C = y0 and z0 = 0, giving
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y(z) = y0 cosh gz and y′(z) = y0g sinh gz. Exiting the lens at z =L, these rays will appear to

diverge from a point a distance

s=
−1

g tanh gL
(3.5)

from the rear face of the lens, as depicted in Fig. 1 (c). The focal length is then

fR =
−1

g sinh gL
(3.6)

and so the distance of rear surface of the lens from the back principal plane of the lens is given by

w= fR − s=
tanh(gL/2)

g
. (3.7)

As expected, the focal length fR is negative (Fi is upstream of Ui), and we find the rear surface is

located a positive distance w from Ui. Since the compound lens is invariant to inversion in z, the

front surface is located a negative distance −w from Uo and the front focal plane Fo is located a

positive distance −fR from the principal plane Uo. (For a positive lens Fi is downstream from Ui

and Fo upstream from Uo.)

For a given refractive gradient g, as set by the radius, thickness, and refractive index of the

lens elements in the case of a CRL, the focal length reduces in magnitude as the length of the

lens L increases. However, the rate that the focal plane moves forward does not keep up with

the increase in the length of the lens and so the principal plane Ui actually moves further from

the exit surface as the lens extends. The overall scale of the lens and the focal length is set by the

length 1/g, and as we will see below, this sets the scale and focal length of the achromatic system.

As seen above, g∝ λ and hence ∂g/∂λ= g/λ. The dispersion of the TRL, in terms of the

position of the virtual image relative to the exit of the lens, is thus given by

λ

s

∂s

∂λ
=

g

s

∂s

∂g
=−

(

1 +
2gL

sinh 2gL

)

. (3.8)

This approaches the thin-lens value of −2 as L→ 0 and tends to −1 as L→∞. The delay between

the pulse front and the wavefront of a collimated beam focused by the negative TRL is derived in

the Appendix and given by Eqn. A 12. It is found that ∆T follows the same expression of Eqn. 2.4

(for a thin lens) but with the focal length f replaced with s.

4. Achromats Utilising Thick Refractive Lenses

The paraxial optics formalism may seem to suggest that the analysis of the separated thin-lens

achromats of Sec. 2 could apply in the case of thick refractive lenses, by setting the distance d to

the separation of the appropriate principal plane of the thick lens to the diffractive lens. This

was essentially the assumption of Poulsen et al. [13], who analysed a Type II system formed

by a diffractive lens and a CRL. However, that approach assumes that the dispersion of the

refractive lens remains constant at −2, which Eqn. 3.8 shows is not the case. We therefore modify

the approach of Sec. 2 to account for a separation of the principal planes that is wavelength

dependent. In the following we avoid approximations of previous analyses by using the full

analytical expressions of Eqns. 3.6 to 3.7 for the TRL. We consider imaging systems that focus

a source located at −∞. We introduce the gap D between the exit or entrance surface of the

TRL and the diffractive lens, as shown in Fig. 1 (c) and (d). As previously, the diffractive lens is

considered a thin lens such that its principal planes coincide with the plane of the lens. We expect

in the limit L→ 0 that we reproduce the results of Sec. 2.

(a) Type I Systems

For the Type I system, referring to Fig. 1 (c), the (positive) distance between the rear principal

plane Ui of the TRL and diffractive lens is d=D + w. Given the negative focal length of the

TRL, the negative object distance for the diffractive lens (that is, the distance to the virtual image
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created by the TRL) is lo = fR − d= s−D. The image working distance bI, here equal to the

image distance li of the diffractive lens, is given by

1

bI
=

1

fD
+

1

s−D
. (4.1)

Using Eqn. 3.5 and substituting g= g0λ/λ0 and fD = fD0λ0/λ, we compute ∂(1/bI)/∂λ at λ= λ0
in a similar fashion to the procedure in Sec. 2. The stationary value of 1/bI (and thus also of bI) is

then found to occur for

fD0 g0 =
(cosh g0L+ γg0L sinh g0L)

2

g0L+ cosh g0L sinh g0L
(4.2)

where the gap between the lenses relative to the length of the TRL has been parameterised as

γ =D/L.

The image position for an achromatic system obeying the condition of Eqn. 4.2, for λ= λ0, is

given by

bI,0 g0 =
2(cosh g0L+ γg0L sinh g0L)

2

g0L(2 + γ − γ cosh 2g0L)
(4.3)

which is positive for positive values of γ and L, as long as cosh 2g0L< (2 + γ)/γ, giving a useable

achromat that creates a real focus. When the two lenses are in contact, D= 0, Eqn. 4.3 simplifies

to

bI,0 g0 =
cosh2 g0L

g0L
(4.4)

which is positive for all values of g0L.

(b) Type II Systems

In the Type II system the refractive lens images a converging beam instead of a collimated one

and thus we must consider both principal planes of this lens. The distance from the diffractive

lens to the front principal plane of the TRL is now given by d=D + w, as seen in Fig. 1 (d), which

is equal to the expression for the Type I system. Now, however, lo = fD − d= fD −D − w so that

1

li
=

1

fR
+

1

lo
=

fR + fD − w −D

fR (fD − w −D)
. (4.5)

Noting further from Fig. 1 (d) that bII = li − w, we obtain

bII = s− f2R
fD + s−D

. (4.6)

Again, using Eqns. 3.5 and 3.6, and the wavelength-dependent expressions for g and fD , the

stationary value of 1/bII with respect to wavelength occurs when

fD0 g0 =
cosh 2g0L+ γg0L sinh 2g0L+ 2γg20L

2 ±
√

1 + 2γ sinh 2g0L+ 4(1 + γ)g20L
2

2g0L+ sinh 2g0L
. (4.7)

Only the positive root gives a solution where bII is positive. The image position for this achromatic

condition at λ= λ0 is then

bII,0 g0 =
1− 2g0L tanh g0L+

√

1 + 4(1 + γ)g20L
2 + 2γg0L sinh 2g0L

2g0L+ tanh g0L

(

1−
√

1 + 4(1 + γ)g20L
2 + 2γg0L sinh 2g0L

) (4.8)

When D= 0 (γ = 0), Eqn. 4.8 simplifies to

bII,0 g0 =
1− 2g0L tanh g0L+

√

1 + 4g20L
2

2g0L+ tanh g0L

(

1−
√

1 + 4g20L
2

) (4.9)

which is positive for all values of g0L.
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(c) Achromatic and Apochromatic Conditions

Equations 4.2 and 4.7 show that the solutions for achromatic focusing depend only on the

parameters g0L and γ, and the required diffractive-optic focal length (and hence overall focal

length and image distance) are proportional to the length 1/g0. This length thus determines the

scaling of the imaging system and sets limits on the achievable resolution of the system. Of course,

the zone plate or MLL must be produced with the appropriate focal length to meet that scaling,

but in practise, after determining the focal lengths of the refractive and diffractive lenses, one

would adjust the length L of the TRL and the distance D between them to achieve the achromatic

condition. Graphs of fD0 and b0g0 are shown in Fig. 3 as a function of g0L for different relative

gaps γ for Type I and Type II systems. The smallest values of fD0 and b0 are obtained when the

diffractive lens is in contact with the TRL, γ = 0. This is not the doublet of Sec. 2 where the focal

length of the refractive lens is −2 times that of the diffractive lens, since the principal planes of

the lenses are still separated by d= fR − s. For a Type I system, the smallest value of bI,0 (which

will give the highest NA for a given aperture of the diffractive lens) is then 2.233/g0 at a value of

L= 0.772/g0. For a Type II system with γ = 0, the image distance is decreased as g0L is increased,

with bII,0 → 1/g0 as g0L→∞. However, as will be seen below, this does not necessarily give the

highest NA.

The achromatic behaviour of the lens systems can be checked by evaluating the image position

b as a function of the wavelength. This is obtained by expanding b as evaluated in Eqns. 4.1 or

4.6, using the wavelength-dependent expressions of the focal length of the diffractive lens fD and

the working distance s of the refractive lens. Setting λ= λ0 +∆λ, we obtain (with the help of a

symbolic mathematics program)

b= b0

[

1 + ν(2)
(

∆λ

λ0

)2

+O

(

∆λ

λ

)3
]

. (4.10)

As expected, there is no linear dependence of b on wavelength. For a Type I system, the

dimensionless coefficient for the quadratic dependence on wavelength is given by

ν
(2)
I =

4g0L(1 + γ) sinh g0L+ γ cosh 3g0L+ ((4g20L
2 − 1)γ − 4) cosh g0L

2(γ cosh 2g0L− 2− γ)(cosh g0L+ g0Lγ sinh g0L)
. (4.11)

For the Type II system, the expression for ν(2) is rather long and not very illuminating, and thus is

not given here. Expressions of ν(2) for both types do take on simpler forms when γ = 0, whereby

ν
(2)
I = 1− g0L tanh g0L (4.12)

ν
(2)
II =− g0L

g0bII,0
(4.13)

As with achromats constructed from thin lenses, the second-order dispersion ν(2) can be made

to vanish in certain situations, to give an apochromat. For lenses in contact, γ = 0, this occurs in

a Type I system when tanh g0L= 1/(g0L) as seen from Eqn. 4.12. This has only one solution

for positive g0L, which is g0L= 1.1997. For other values of γ the solution to ν(2) = 0 can be

found numerically. This value of g0L for apochromatic Type I systems is plotted in Fig. 4 (a)

as a function of γ between 0 and 2. The plot shows that as the gap between the lenses increases,

the required setting of g0L for apochromatic imaging decreases from 1.1997. Fig. 4 (c) shows

the corresponding magnitude of the focal length of the TRL, −fR0 in blue, along with the focal

length of the diffractive lens, fD0 in green and the image distance b0 in orange. The smallest

magnitudes of these focal lengths and image distance, achieved when γ = 0, are found to be

fR0 =−0.6627/g0, fD0 = 0.8336/g0, and bI,0 = 2.731/g0.

The Type II configuration has no apochromatic solution when γ = 0. The plot of the solution

to ν(2) = 0 is plotted in Fig. 4 (b) and indicates that as γ → 0, the apochromatic condition requires

g0L→∞ and −fR0 → 0. Any non-zero gap between the lenses—even an infinitesimal one—does

give apochromatic solution, as seen in Figs. 4 (b) and (d).
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scaling of the optical system the length of the TRL is reduced. This may have the advantage of

increasing the transmission of the TRL. The effect on the NA and resolution are examined below

in Sec. 6.
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Figure 4. Dependence of the TRL lens parameter g0L on the relative gap of the lenses γ for the apochromatic condition

of a (a) Type I and (b) Type II lens system. The corresponding focal lengths and image distances of −fR0 (blue), fD0

(green), and b0 (orange) in the apochromatic condition, in units of 1/g for a (c) Type I and (d) Type II lens system.

(d) Thin-lens Limit

The limit of the thin lens of Sec. 2 is difficult to discern from Figs. 3 and 4, since we must examine

the extremes of the parameter g0L (the abscissa in Fig. 3) and the overall scaling by 1/g0 (the

ordinate). The thin-lens limit certainly requires L→ 0 so that w→ 0 as per Eqn. 3.7, ensuring that

the principal planes of the refractive lens coincide. However, this limit does not give a finite focal

length, since fR →−1/(g20L) as L is reduced. The combined limit of L→ 0, 1/g0 → 0 does lead to

a finite focal length—equal to zero. To recover a finite non-zero focal length we must arrange that

L approaches zero faster than 1/g0 does. Given the limiting behaviour of fR, we can achieve that

by setting 1/g0 =
√
−fL, for which fR → f and w→ 0 as L→ 0. In addition, as L is reduced the

normalised gap between the lenses, γ =D/L becomes larger, and thus we see the thin-lens limit

occurs in the graphs of Fig. 3 towards small g0L and large γ.

5. Bandwidths and Propagation Delays of Imaging Systems

A change in wavelength alters the image distance b. The range of wavelengths that can

be tolerated therefore depends on how much defocus can be tolerated in the image. For a

diffraction-limited imaging system with a square aperture, the depth of focus is given by

DOF=
2λ

NA2
=

8δ2r
λ

, (5.1)
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Assuming that the limiting aperture is given by the size of the diffractive lens, the NA of a Type I

system is approximately yD/b where yD is the aperture radius. For a Type II system, the extreme

ray leaves the rear principal plane of the TRL at a height yR = yD(fD −D − w)/fD , to travel

a distance li = bII + w to the image plane, giving NA= yR/li. Plots of the achievable NA of the

lens system, in units of yDg are given in Fig. 7 for apochromatic lens systems as a function of the

relative gap γ. For a given refractive gradient g, Type I systems give about twice the NA of Type II

systems. As γ → 0, the NA of the Type II system approaches 0. A maximum of NA= 0.151yDg is

obtained for Type II systems when γ = 0.150, and the NA falls off slowly as the gap is increased.

0.0 0.5 1.0 1.5 2.0
0.0

0.1

0.2

0.3

0.4

N
A
/(gy

D
)

Figure 7. Numerical aperture of Type I (solid lines) and Type II (dashed lines) apochromats, as a function of the relative

gap between the refractive and diffractive lenses. The NA is plotted in units of yDg.

7. Considerations and Examples Using MLLs

For short wavelengths (high photon energies) multilayer Laue lenses (MLLs) give much higher

efficiencies than zone plates fabricated by lithographic techniques. They are also able to achieve

higher spatial resolution, since the layers in MLLs can be smaller than 1 nm. However to reach

optimal diffracting efficiency across the entire pupil of the lens, the layers must be tilted to ensure

Bragg’s law is satisfied [1]. For an MLL focusing a collimated beam to a focal point a distance

fD beyond the lens, the layers should all lay on the surfaces of cones (for an axisymmetric lens)

or planes (for a 1D lens) with a common apex located a distance 2fD from the lens. This is the

requirement for MLLs in Type II achromats. In a Type I system, however, the MLL forms an image

of the virtual image created by the TRL, a distance −lo = d− fR from the MLL. In this case the

layers of the MLL must lie on cones or planes that converge at a point upstream of the MLL a

distance RC from the lens, found from 1/(2RC) = 1/lo + 1/li. An interesting case is therefore

when −lo = li = bI,0 = 2fD0 since then all the layers in the MLL must be parallel to each other

and the optical axis. A comparison of Eqns. 4.2 and 4.3 yields

bI,0
fD0

=
2g0L+ sinh 2g0L

g0L(2 + γ − γ cosh 2g0L)
(7.1)

which approaches 2 as g0L→ 0 (the thin-lens solution) for any value of γ, but approaches this

value faster as γ is reduced. Such a system can make a non-wedged MLL useful for imaging at

high resolution (and achromatic) by the addition of a TRL, at the cost of doubling the image

working distance and the achievable spot size. As an example, consider a negative TRL of

a length L= 0.3/g0 which has a focal length of −1.015/g0. The achromat condition requires

fD0 = 1.767/g0. With the lenses in contact (γ = 0) Eqn. 4.3 gives bI,0 = 3.642/g0, which is 2.06

times the focal length of the MLL. A ray trace of this lens is given in Fig. 8.
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I system with γ = 0 is less than the working distance of a Type I or II system with γ = 0.5. More

combinations are possible when the gradients of the two TRLs are not equal.

Table 1. Examples of Type I apochromat designs with γ = 0. The resolution is computed for a diffractive lens of 100µm

radius.

E δ 1/g fD fR fA w L b δr DOF

(keV) (10−6) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (nm) (µm)

8.0 11.41 1.32 1.10 −0.88 2.00 −0.71 1.59 3.62 2.80 0.41

15.5 3.00 2.58 2.15 −1.71 3.90 −1.39 3.10 7.05 2.82 0.80

40.0 0.45 6.67 5.56 −4.42 10.06 −3.58 8.00 18.21 2.82 2.06

100 0.073 16.55 13.80 −10.97 24.98 −8.89 19.86 45.22 2.80 5.07

500 0.0029 83.05 69.23 −55.03 125.33 −44.59 99.63 226.88 2.81 25.53

15.5 3.00 8.16 6.81 −5.41 12.32 −4.38 9.80 22.31 8.92 7.96

Some design examples are given in Table 1 of thick-lens apochromatic systems with γ = 0,

the case depicted in Fig. 6 (a). It was seen above that the lens systems scale with the refractive

gradient, g, which ideally should be as large as possible. At a wavelength of 0.08 nm (15.5 keV

photon energy), the refractive index decrement of diamond is δ= 3× 10−6. Constructing a

diamond CRL with bi-convex lenses of radius R= 20µm and height h= 1µm gives 1/g0 =

2.58mm. The smallest possible lens distances for a Type I apochromatic system (at γ = 0) is

then bI,0 = 2.731/g0 = 7.05mm, fD0 = 0.834/g0 = 2.15mm, and fR0 =−0.663/g0 =−1.71mm.

The length of the CRL is L= 1.1997/g0 = 3.10mm. If the radius of theCTRL is 20µm (matching

the radius of curvature) then the NA of the focussed beam is 0.020/7.05 = 0.0028, providing a spot

size of δr = 14.1 nm. However, if the aperture of the CRL is increased to 100µm, then a resolution

of δr = 2.8 nm would be achieved with NA= 0.014. This could be realised in a CRL since the

parabolic profile y2/(2R) of the lens elements can be continued to y >R (see, e.g. [31]).

Considering the design of achromatic lens systems at harder X-ray energies, we note that the

gradient g for a particular material and construction scales linearly with wavelength, and thus

the focal lengths and image distance for lenses in the apochromatic condition scale inversely

with wavelength. Thus, the achievable diffraction-limited spot size, dependent on the ratio of

the wavelength to the numerical aperture, remains constant. However, as the wavelength (and

NA) is reduced the depth of focus increases inversely with wavelength for a given spot size. This

means that ∆b/b remains about the same for a given imaging resolution, and thus so too does the

relative bandwidth ∆λ/λ.

The concept is suitable for very high photon energies. Table 1 shows examples for 100 keV and

500 keV. The latter requires a TRL length of 99.6mm if made from the same diamond material and

with the same parameters as considered above. However, at these photon energies the absorption

of materials is vastly reduced, making other materials suitable for the task. For example, at

500 keV, Mo gives an increase in g by a factor of 1.6 times compared with diamond. This reduces

the focal lengths, which in turn decreases the achievable resolution to 2.8 nm/1.6 = 1.8 nm. The

design for Mo requires a TRL of 62mm length. The attenuation length of Mo at 500 keV is 104mm,

so the lens has a transmission of 55%. A similar resolution and higher transmission can be

achieved with Cu.

8. Conclusion

While it is generally well appreciated that diffractive lenses such as zone plates and multilayer

Laue lenses exhibit a strong dependence of focal length on wavelength and, relatedly, an increase

in the duration of short pulses due to the differences in path lengths of rays propagating from the

lens to the focus, it is perhaps not as well known that such effects are even greater in refractive

lenses. This result can be surprising, given that focusing in a refractive lens can be explained as a
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consequence of Fermat’s principle of least time. Instead, due to the variation of refractive index

with wavelength (which is strong in the X-ray regime), a short pulse will take longer to reach

the focus of a positive refractive lens when traversing the outer edge of the lens than as along

the axis. However, the different behaviours of diffractive and refractive lenses allow systems to

be constructed where the dispersion of one lens is offset by the dispersion of the other. Since the

dispersion of a refractive lens is twice that of a refractive lens, this requires a negative power that is

half that of the diffractive lens (that is, a negative lens with twice the focal length of the diffractive

lens), to yield a system that has a residual positive focusing effect. In this case the meridional rays

travel faster in the refractive lens than the axial rays (see Appendix A) to compensate the time lost

along the longer path length of the diffractive lens.

We exhaustively explored the design space of achromatic systems consisting of a refractive

and a diffractive lens, using a paraxial analysis. Two lenses give enough degrees of freedom to

find both achromatic and apochromatic designs. Apochromaticity is defined as when both the

linear and quadratic dependencies of the image position on wavelength are removed, to leave a

cubic dependence that can give three distinct wavelengths that are focused to exactly the same

plane. Additional degrees of freedom in the design space could be introduced by adding a third

lens (such as a positive diffractive lens surrounded by refractive lenses of lower power) but such

schemes lead to greater complexity and lower efficiency. It is also possible to increase the design

space by changing the dispersion of the refractive lens by operating near an absorption edge of the

refractive material [11]. We did not explore that case here, but this is attractive when bandwidths

are limited to less than about 0.2%. In our study we showed that achromatic imaging could

be achieved at high resolution (spot sizes considerably below 10 nm) over a relative bandwidth

of about 1%. Apochromatic imaging extends this to up to 20%, but only if the rocking-curve

width of the diffractive lens allows. In such designs, pulses as short as 2 as could be focused to a

3 nm spot size without significant distortion of the pulse in time, for a mean X-ray wavelength of

0.08 nm (15.5 keV photon energy).

The systems analysed here give an image position that is stationary with wavelength, but,

except for the thin-lens doublet, their focal lengths do vary considerably with wavelength. This

implies that the magnification of the image is wavelength dependent, which leads to a transverse

dispersion of the image of an extended source or of the image of a point source that is displaced

from the optical axis. For imaging at 3 nm imaging, for example, the angular misalignment of the

source should be less than about 10µrad.

There are two topologies of the positive-focus two-lens achromat designs. The Type I

configuration consists of a negative refractive lens followed by a positive diffractive lens, and

a Type II has the order of lenses reversed. Type I systems have the advantage of achieving higher

NA for a given lens size. The configuration giving the shortest focal length and highest NA is

a Type I system in which the refractive lens is in contact with the diffractive lens. However, any

realisable system for high-resolution imaging must necessarily be made with a refractive lens that

is thick in order to achieve the required focal length for the design that pairs with the short focal

length of the diffractive lens. In the X-ray regime this then requires a negative CRL comprised

of many biconvex thin lenses. This system cannot be treated as a thin lens in the analysis of an

achromatic system. Not only does the focal length of the CRL vary with wavelength, but so too

does the position of the principal plane of the lens. Our analysis accounts for a change in distance

between the principal planes of the refractive and diffractive lenses as a function of wavelength

by applying the well-established paraxial optics formalism of GRIN lenses. We are not aware that

is has previously been pointed out, but cylindrical GRIN lenses composed of a material whose

refractive index varies quadratically with radius, are equivalent to CRLs in the limit of a large

number of lenses. The achromatic lens systems we present can be constructed using either CRLs

or X-ray GRIN lenses, which we refer to as thick refractive lenses.

A. Propagation times of composite lens systems
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(a) Thin-lens achromats

The derivations of the achromatic conditions can be confirmed by calculating the propagation

times of rays through systems consisting of lenses separated by d. For a Type I system the delay

of the pulse front relative to the wavefront is found from the sum of the negative delay of the pulse

front in the refractive lens and the positive delay due to the extra path length of the diffractive

lens. The delays for each of the lenses are give by Eqn. 2.4) with the appropriate dispersion, such

that

∆T =∆TR +∆TD =
y2R
cfR

+
y2D
2cfD

, (A 1)

where yR is the height of the ray at the refractive lens and yD is the height of the same ray at

the diffractive lens. Even though the diffractive lens does not focus a collimated beam, as was the

assumption in the derivation of Eqn. 2.4, this equation still holds. This can be seen from the fact

that the additional path length from the wavefront incident on the diffractive lens and from that

lens to the wavefront converging onto the focus is given by

∆l1 +∆l2 =
y2D
−2l0

+
y2D
2li

=
y2D
2fD

. (A 2)

Noting that yD = (1− d/fR)yR, Eqn A 1 then becomes

∆TI =
y2R
c

(

1

αf0
+

1

2f0

(

1− d

αf0

)2
)

=
y2R

2cα2f0

(

d2

f20
− 2α

d

f0
+ α(α+ 2)

)

, (A 3)

for which ∆TI = 0 has the same solution as given by Eqn. 2.8.

For the Type II system, yR = yD(1− d/fD), so that Eqn. A 1 becomes

∆TII =
y2D
c

(

1

αf0

(

1− d

f0

)2

+
1

2f0

)

=
y2D

2cαf0

(

2
d2

f20
− 4

d

f0
+ α+ 2

)

(A 4)

This expression evaluates to zero for the solution given by Eqn. 2.12.

(b) Thick refractive lenses

The delay of rays traversing a negative TRL can be determined by calculating the time of flight

along trajectories C of rays by integrating over arc length elements du as

Tg =

∫
C

1

vg(r)
du=

∫L
0

1

vg(r(z))

∣

∣

r
′(z)

∣

∣ dz (A 5)

where the group velocity vg in the inhomogeneous material obeys

1

vg
=

1

c

(

n− λ
∂n

∂λ

)

=
n0

c

(

1− g2y2

2

)

(A 6)

for the refractive index profile given in Eqn. 3.1. For collimated rays incident on the TRL parallel

to the optic axis, the trajectories are

r(z) = (y0 cosh gz, z) (A 7)

for which, in the paraxial approximation,

∣

∣

r
′(z)

∣

∣≈ 1 +
g2y20
2

sinh2gz. (A 8)
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Therefore,

Tg =
n0

c

∫L
0

(

1− g2y20
2

cosh2gz

)(

1 +
g2y20
2

sinh2gz

)

dz

≈ n0

c

∫L
0

(

1− g2y20
2

)

dz

=
n0

c

(

L− g2y20
2

L

)

. (A 9)

Meridional rays travel faster through the lens than the axial ray. The difference of the propagation

of a pulse to the phase front can be determined by making a similar line integral of the optical

path nr(z) through the lens, as

Tφ =
n0

c

∫L
0

(

1 +
g2y20
2

cosh2gz

)(

1 +
g2y20
2

sinh2gz

)

dz

≈ n0

c

∫L
0

(

1 +
g2y20
2

cosh 2gz

)

dz

=
n0

c

(

L+
gy20
4

sinh 2gL

)

. (A 10)

so that

∆TR = Tg − Tφ =−gy20
4c

(2gL+ sinh 2gL) , (A 11)

where we have made a further approximation that n0 ≈ 1. Equation A 11 can be expressed in

terms of the transverse coordinate at the exit of the lens, yi = y0 cosh gL, so that

∆TR =−gy2i
2c

tanh gL

(

1 +
2gL

sinh 2gL

)

=− y2i
2cs2

λ
∂s

∂λ
(A 12)

where the last equality follows from Eqns. 3.5 and 3.8. This expression for the pulse front delay is

in agreement with the result of Bor [20] as given by Eqn 2.4 when f is replaced with the distance

s of the back focal plane to the lens exit. ∆TR → 0 as L→ 0 and ∆TR →−y2i g/(2c) as L→∞.

(c) Thick-lens achromats

Using the result of Eqn. A 12 the pulse front delay in a Type I system can be written as

∆TI =−gy2R
2c

tanh gL

(

1 +
2gL

sinh 2gL

)

+
y2D
2cfD

, (A 13)

where yR = yi is the height of the ray at the exit of the TRL and, from Fig. 1 (c), yD = (1−D/s)yR,

is the height of the ray on the diffractive lens. That is,

∆TI =
y2R
2c

(

−g tanh gL

(

1 +
2gL

sinh 2gL

)

+
1

fD
(1 +Dg tanh gL)2

)

. (A 14)

The solution to ∆TI = 0 is the same as the expression given by Eqn. 4.2.

The calculation of the delay through the TRL in a Type II achromatic system is not so amenable

to analysis. Numerical simulations confirm that the delay in this system is given by Eqn. 2.4 with

the focal length replaced by the image distance from the lens exit, b.
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