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The coronavirus disease (COVID-19) caused by SARS-CoV-2 is creating tremendous human suffering. To
date, no effective drug is available to directly treat the disease. In a search for a drug against COVID-19, we
have performed a high-throughput X-ray crystallographic screen of two repurposing drug libraries against
the SARS-CoV-2 main protease (Mr™), which is essential for viral replication. In contrast to commonly
applied X-ray fragment screening experiments with molecules of low complexity, our screen tested already
approved drugs and drugs in clinical trials. From the three-dimensional protein structures, we identified 37
compounds that bind to MP™. In subsequent cell-based viral reduction assays, one peptidomimetic and six
non-peptidic compounds showed antiviral activity at non-toxic concentrations. We identified two allosteric
binding sites representing attractive targets for drug development against SARS-CoV-2.
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Infection of host cells by SARS-CoV-2 is governed by the com-
plex interplay of molecular factors from both the host and the
virus (Z, 2). Coronaviruses are RNA-viruses with a genome of
approximately 30,000 nucleotides. The viral open-reading
frames are expressed as two overlapping large polyproteins,
which must be separated into functional subunits for replica-
tion and transcription activity (7). This proteolytic cleavage is
primarily accomplished by the main protease (MP©), also
known as 3C-like protease 3CLP™ or nsp5. MP™ cleaves the vi-
ral polyprotein pplab at eleven distinct sites. The core cleav-
age motif is Leu-Gln,(Ser/Ala/Gly) (I). MP® possesses a
chymotrypsin-like fold appended with a C-terminal helical
domain, and harbors a catalytic dyad comprised of Cysl45
and His41 in its active site, which is formed by four major
pockets that are labeled according to their position relative
to the scissile bond of the substrate (Fig. 1) (). The active site
is located in a cleft between the two N-terminal domains of
the three-domain structure of the monomer, while the C-ter-
minal helical domain is involved in regulation and dimeriza-
tion of the enzyme (Fig. 1A). Due to its central involvement
in virus replication, MP™ is recognized as a prime target for
antiviral drug discovery and compound screening activities
aiming to identify and optimize drugs which can tackle coro-
navirus infections (3). Indeed, a number of recent publica-
tions confirm the potential of targeting MP™ for inhibition of
virus replication (I, 2, 4).

In order to find drug candidates against SARS-CoV-2, we
performed a large-scale X-ray crystallographic screen of MP®
against two repurposing libraries containing 5953 unique
compounds from the “Fraunhofer IME Repurposing Collec-
tion” and the “Safe-in-man” library from Dompé Farmaceu-
tici S.p.A. (5).

In contrast to crystallographic fragment-screening exper-
iments, repurposing libraries are chemically more complex
(fig. S1A) (6, 7). Thus they likely bind more specifically and
with higher affinity (8). Due to the higher molecular weights,
we performed co-crystallization experiments at a physiologi-
cal pH-value of 7.5 instead of compound soaking into native
crystals (9).

From the 5953 unique compounds in our screen, we ob-
tained X-ray diffraction datasets from 2381 unique com-
pounds, which were subjected to automated structure
refinement followed by cluster analysis (10) and pan dataset
density analysis (PanDDA) (11) (table S1). We observed addi-
tional electron-density, indicating binding to MP®, for 43
compounds, which were classified as hits, representing 37
unique compounds (tables S1, S2, and S3). From these, the
binding mode could be unambiguously determined for 29
molecules (Fig. 1A and table S4). The majority of hits were
found in the active site of the enzyme. Of the 16 active-site
binders, six covalently bind as thioethers to Cysi45, one com-
pound binds covalently as a thiohemiacetal to Cysl45, one is
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zinc-coordinated and eight bind non-covalently. The remain-
ing 13 compounds bind outside the active site at various lo-
cations (Fig. 1A).

Of the 43 hits from our X-ray screen, 37 compounds were
available in quantities required for testing their antiviral ac-
tivity against SARS-CoV-2 in cell assays (table S2). Nine com-
pounds, that reduced viral RNA (VRNA) replication by at least
two orders of magnitude in Vero E6 cells (fig. S2), were fur-
ther evaluated to determine the effective concentrations that
reduced not only vRNA but also SARS-CoV-2 infectious par-
ticles by 50% (ECso) (Fig. 2). Additionally, AT7519 and ifen-
prodil, which showed slightly lower vRNA-level reduction,
were included due to their distinct binding sites outside of
the active site. From these eleven, seven compounds (AT7519,
calpeptin, ifenprodil, MUT056399, pelitinib, tolperisone, tri-
glycidyl isocyanurate) exhibited at least one hundredfold re-
duction in infectious particles in combination with either
selectivity indices (SI = CCs / ECs0) greater than five or no
cytotoxicity in the tested concentration range and are consid-
ered antivirally active (table S5).

In the following we focus on a more detailed description
of the eleven compounds analyzed in the secondary screen,
which are grouped according to their different binding sites.
The remaining hits are described in the supplementary text
and figs. S3 to S5.

Tolperisone, HEAT and isofloxythepin bind covalently to
the active site. Tolperisone is antivirally active (ECs, = 19.17
uM) and shows no cytotoxicity (CCso > 100 uM) (Fig. 2),
whereas HEAT (ECso = 24.05 uM, CCs = 55.42 uM) and
isofloxythepin (ECso = 4.8 uM, CCso = 17 uM) show unfavora-
ble cytotoxicity. For all three compounds, only breakdown
products are observed in the active site. Tolperisone and
HEAT are 3-aminoketones, but we only observe the part of
the drug containing the ketone (2,4'-dimethylpropiophenone
and 2-methyl-1-tetralone), while the remaining part with the
amine group is missing. The breakdown product binds as a
Michael acceptor to the thiol of Cysl45, independently con-
firmed for HEAT by mass spectrometry (fig. S6 and table S6).
The decomposition of tolperisone and HEAT was detected in
both the crystallization and cell culture conditions (fig. S7)
and is reported to be pH-dependent (72). The parent com-
pounds can be regarded as pro-drugs (I3, 14). In the X-ray
structures the aromatic ring systems of tolperisone (Fig. 3A)
and HEAT (Fig. 3B) protrude into the S1 pocket and form van
der Waals contacts with the backbone of Phel40 and Leul4l
and the side chain of Glul66. In addition, the keto group ac-
cepts a hydrogen bond from the imidazole side chain of
His163. Tolperisone is used as a skeletal muscle relaxant (15).
The X-ray structure suggests that isofloxythepin binds simi-
larly as a fragment to Cys145 (Fig. 3C).

Triglycidyl isocyanurate has antiviral activity (ECs =
30.02 uM, CCsp > 100 uM) and adopts a covalent and non-
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covalent binding mode to the active site. In both modes, the
compound’s central ring sits on top of the catalytic dyad
(His41, Cysl145) and its three epoxypropyl substituents reach
into subsites S1’, S1 and S2. The non-covalent binding mode
is stabilized by hydrogen bonds to the main chain of Gly14:3
and GIn166, and to the side chain of His163. In the covalently
bound form, one oxirane ring is opened by nucleophilic at-
tack of Cysi45 forming a thioether (Fig. 3D). Triglycidyl iso-
cyanurate has been tested as an antitumor agent (16).

Calpeptin shows the highest antiviral activity in the
screen (ECso = 72 nM, CCso > 100 uM). It binds covalently via
its aldehyde group to Cys145, forming a thiohemiacetal. This
peptidomimetic inhibitor occupies substrate pockets S1to S3,
similar to the peptidomimetic inhibitors GC-376 (17, 18), cal-
pain inhibitors (19), N3 (2), and the o-ketoamide 13b (Z). The
peptidomimetic backbone forms hydrogen bonds to the main
chain of His164 and Glul66, whereas the norleucine side
chain maintains van der Waals contacts with the backbone of
Phel40, Leul41 and Asnl42 (Fig. 3E). Calpeptin has known
activity against SARS-CoV-2 MP™ in enzymatic assays (I7).
The structure is highly similar to the common protease inhib-
itor leupeptin (fig. S3A), which served as a positive control in
our X-ray screen but was not further tested in antiviral as-
says. In silico docking experiments also suggested calpeptin
as a possible M binding molecule (table S7). Calpeptin also
inhibits cathepsin L (20) and dual targeting of cathepsin L
and MP¥ is suggested as attractive path for SARS-CoV-2 inhi-
bition (19).

MUT056399 binds non-covalently to the active site (ECso
= 38.24 uM, CCs > 100 uM). The diphenyl ether core of
MUT056399 blocks access to the catalytic site consisting of
Cys145 and His41. The terminal carboxamide group occupies
pocket S1 and forms hydrogen bonds to the side chain of
His163 and the backbone of Phel40 (Fig. 3F). The ethyl-phe-
nyl group of the molecule reaches deep into pocket S2, which
is enlarged by a shift of the side chain of Met49 out of the
substrate binding pocket. MUT056399 was developed as an
antibacterial agent against multidrug-resistant Staphylococ-
cus aureus strains (21).

Quipazine maleate showed moderate antiviral activity
(ECs = 31.64 uM, CCso > 100 uM). In the X-ray structure, only
the maleate counterion is observed covalently bound as a thi-
oether (supplementary text and fig. S3B). Maleate is observed
in structures of six other compounds showing no antiviral ac-
tivity. The observed antiviral activity is thus likely caused by
an off-target effect of quipazine.

In general, the enzymatic activity of MP™ relies on the ar-
chitecture of the active site, which critically depends on the
dimerization of the enzyme and the correct relative orienta-
tion of the subdomains. This could allow ligands that bind
outside of the active site to affect activity. In fact, we discov-
ered two such allosteric binding sites of MP™
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Five compounds of our X-ray screen bind in a hydropho-
bic pocket in the C-terminal dimerization domain (Fig. 4, A
and B), located close to the oxyanion hole in pocket S1 of the
substrate-binding site. One of these showed strong antiviral
activity (Fig. 2). Another compound binds in between the cat-
alytic and dimerization domains of MPr,

Central to the first allosteric binding site is a hydrophobic
pocket formed by I1e213, Leu253, GIn256, Val297 and Cys300
within the C-terminal dimerization domain (Fig. 4A). Pe-
litinib, ifenprodil, RS-102895, PD-168568 and tofogliflozin all
exploit this site by inserting an aromatic moiety into this
pocket.

Pelitinib shows the second highest antiviral activity in our
screen (ECso = 1.25 uM, CCso = 13.96 uM). Its halogenated ben-
zene ring binds to the hydrophobic groove in the helical do-
main which becomes accessible by movement of the Gln256
side chain (Fig. 4A). The central 3-cyanoquinoline moiety in-
teracts with the end of the C-terminal helix (Ser301). The
ethyl ether substituent pushes against Tyr118 and Asni42
(from loop 141-144: of the S1 pocket) of the opposing protomer
within the native dimer. The integrity of this pocket is crucial
for enzyme activity (22). Pelitinib is an amine-catalyzed Mi-
chael acceptor (23), developed as an anticancer agent to bind
to a cysteine in the active site of the tyrosine kinase epidermal
growth factor receptor inhibitor (24). But from its observed
binding position it is impossible for it to reach into the active
site and no evidence for covalent binding to Cys145 is found
in the electron-density maps.

Ifenprodil and RS-102895 bind to the same hydrophobic
pocket in the dimerization domain as pelitinib (Fig. 4B; fig.
S4, A and B; and supplementary text). Only ifenprodil (ECs
= 46.86 uM, CCsy > 100 uM) shows moderate activity. RS-
102895 (ECso = 19.8 uM, CCs = 54.98 uM) interacts, similar
to pelitinib, with the second protomer by forming two hydro-
gen bonds to the side and main chains of Asnl42 while the
other compounds exhibit weaker or no interaction with the
second protomer. PD-168568 and tofogliflozin bind the same
site but are inactive (Fig. 4B and fig. S4, C and D).

The second allosteric site is formed by the deep groove
between the catalytic domains and the dimerization domain.
AT7519 is the only compound in our screen that we identified
bound to this site (Fig. 4C). Though it has only moderate ac-
tivity, we discuss it here because this site may be a target. The
chlorinated benzene ring is engaged in various van der Waals
interactions to loop 107-110, Val202, and Thr292. The central
pyrazole has van der Waals contacts to I1e249, Phe294 and its
adjacent carbonyl group forms a hydrogen bond to the side
chain of GIn110. The terminal piperidine sits on top of Asni51
and forms hydrogen bonds to the carboxylate of Asp153. This
results in a displacement of loop 153-155, slightly narrowing
the binding groove. The Co-atom of Tyrl54 moves by 2.8 A,
accompanied by a conformational change of Asp153 (Fig. 4D).
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This allows hydrogen bonding to the compound and the for-
mation of a salt-bridge to Arg298. Arg298 is crucial for dimer-
ization (25). The mutation Arg298Ala causes a reorientation
of the dimerization domain relative to catalytic domain, lead-
ing to changes in the oxyanion hole and destabilization of the
S1 pocket by the N terminus. AT7519 was evaluated for treat-
ment of human cancers (26). The potential of allosteric inhi-
bition of MP® through modulation of Arg298 has been
independently demonstrated by mass spectrometry (27).

Our X-ray screen revealed 43 compounds binding to MP©,
with seven compounds showing antiviral activity against
SARS-CoV-2. We present structural evidence for interaction
of these compounds at active and allosteric sites of M, alt-
hough we may not exclude that off-target effects played a role
in the antiviral effect in cell culture, in particular for com-
pounds with low selectivity index. Vice versa, missing antivi-
ral activity of compounds binding clearly to MP™ in the crystal
might be due to rapid metabolization in the cellular environ-
ment. Calpeptin and pelitinib showed strong antiviral activity
with low cytotoxicity and are suitable for preclinical evalua-
tion. In any case all hit compounds are valuable lead struc-
tures with potential for further drug development, especially
since drug-repurposing libraries offer the advantage of
proven bio-activity and cell-permeability (28).

The most active compound, calpeptin binds in the active
site similar to other members of the large class of peptide-
based inhibitors that bind as thiohemi-acetals or -Ketals to
Mpre (29). In addition to this peptidomimetic inhibitor, we
discovered several non-peptidic inhibitors. Those compounds
binding to the active site of M contained new Michael ac-
ceptors based on p-aminoketones (tolperisone and HEAT).
These lead to the formation of thioethers and have not been
described as prodrugs for viral proteases. We also identified
a non-covalent binder, MUT056399, blocking the active site.
Besides this common active-site inhibition, we discovered
compounds that inhibit the enzyme through binding at two
allosteric sites of MP™,

The first allosteric site (dimerization domain) is in direct
vicinity of the S1 pocket of the adjacent monomer within the
native dimer. The potential for antiviral inhibition through
this site is demonstrated by pelitinib. The hydrophobic na-
ture of the residues forming the main pocket is conserved in
all human coronavirus MP® (fig. S8). Consequently, potential
drugs targeting this binding site may be effective against
other coronaviruses. The potential of the second allosteric
site as a druggable target is demonstrated by the observed
moderate antiviral activity of AT7519.
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Fig. 1. X-ray screening of drug-repurposing libraries reveals compound binding sites distributed across the
complete MP© surface. (A) Schematic drawing of MP® dimer structure. Protomer A in white, protomer B in red. For
clarity, the 29 binding compounds (yellow sticks) are only depicted on one of the two protomers. Catalytic residues
H41 and Cysl45, active site and two allosteric drug binding sites are highlighted. (B) Close-up view of active site
with peptide substrate bound (blue sticks), modeled after SARS-CoV MP© (PDB 2Q6G). Scissile bond is indicated
in yellow and with green arrow. Substrate binding pockets S1°, S1, S2 and S4 are indicated by colors.
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Fig. 2. Effect of selected
compounds on SARS-CoV-2
replication in Vero E6 cells. The
VRNA yield (solid circles), viral titers
(half-solid circles), and cell viability
(empty circles) were determined by
RT-gPCR, immunofocus assays,
and the CCK-8 method,
respectively. ECso for the viral titer
reduction is shown. Individual data
points represent mean + SD from
three independent replicates in one
experiment.
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Fig. 3. Covalent and non-covalent binders in the active site of MP. Bound compounds
are depicted as colored sticks while the surface of MP™ is shown in grey with selected
interacting residues as sticks. Substrate binding pockets are colored as in Fig. 1.
Hydrogen bonds are depicted by dashed lines. (A) tolperisone. (B) HEAT, (C)
isofloxythepin, (D) triglycidyl isocyanurate, (E) calpeptin, (F) MUT056399.
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Fig. 4. Screening hits at allosteric sites of MP™. (A) Close up view of the binding site in the dimerization domain
(protomer A, grey cartoon representation), close to the active site of the second protomer (protomer B, surface
representation) in the native dimer. Residues forming the hydrophobic pocket are indicated. Pelitinib (dark green)
binds to the C-terminal o-helix at Ser301 and pushes against Asnl42 and the g-turn of the pocket S1 of protomer B
(residues marked with an asterisk). The inset shows conformational change of GIn256 (grey sticks) compared to
MPre apo structure (white sticks). (B) RS-102895 (purple), ifenprodil (cyan), PD-168568 (orange) and tofogliflozin
(blue) occupy the same binding pocket as pelitinib. (C) AT7519 occupies a deep cleft between the catalytic and
dimerization domain of MP™, (D) Conformational changes in the AT7519 bound MP™ structure (grey) compared to
the apo structure (white).
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