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Abstract We study the event shape variables, transverse

energy–energy correlation TEEC (cos φ) and its asymme-

try ATEEC (cos φ) in deep inelastic scattering (DIS) at

the electron–proton collider HERA, where φ is the angle

between two jets defined using a transverse-momentum (kT )

jet algorithm. At HERA, jets are defined in the Breit frame,

and the leading nontrivial transverse energy–energy corre-

lations arise from the 3-jet configurations. With the help of

the NLOJET++, these functions are calculated in the leading

order (LO) and the next-to-leading order (NLO) approxima-

tions in QCD at the electron–proton center-of-mass energy√
s = 314 GeV. We restrict the angular region to −0.8 ≤

cos φ ≤ 0.8, as the forward- and backward-angular regions

require resummed logarithmic corrections, which we have

neglected in this work. Following experimental jet-analysis

at HERA, we restrict the DIS-variables x , y = Q2/(xs),

where Q2 = −q2 is the negative of the momentum trans-

fer squared q2, to 0 ≤ x ≤ 1, 0.2 ≤ y ≤ 0.6, and

the pseudo-rapidity variable in the laboratory frame (ηlab)

to the range −1 ≤ ηlab ≤ 2.5. The TEEC and ATEEC

functions are worked out for two ranges in Q2, defined by

5.5 GeV2 ≤ Q2 ≤ 80 GeV2, called the low-Q2-range, and

150 GeV2 ≤ Q2 ≤ 1000 GeV2, called the high-Q2-range.

We show the sensitivity of these functions on the parton dis-

tribution functions (PDFs), the factorization (µF ) and renor-

malization (µR) scales, and on αs(M2
Z ). Of these the cor-

relations are stable against varying the scale µF and the

PDFs, but they do depend on µR . For the choice of the scale

µR =
√

〈ET 〉2 + Q2, advocated in earlier jet analysis at

HERA, the shape variables TEEC and ATEEC are found
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perturbatively robust. These studies are useful in the analy-

sis of the HERA data, including the determination of αs(M2
Z )

from the shape variables.

1 Introduction

Event shape variables involving the energy-momentum vari-

ables of hadrons and jets have played a crucial role in test-

ing Quantum Chromodyamics (QCD), providing a detailed

comparison with the experimentally measured shapes in high

energy collisions and in determining the strong interaction

coupling constant αs(Q2). Of these, the energy–energy cor-

relation (EEC) and its asymmetry (AEEC), introduced by

Basham et al. in e+e− annihilation [1,2] have received a

lot of experimental and theoretical attention. Next-to-leading

order (NLO) corrections in αs(Q2) were calculated long ago

for the EEC in e+e− annihilation, using a number of differ-

ent methods to regulate the soft and collinear divergences

[3–10]. Accurate numerical results for the EEC are available

from the program Event 2, based on the dipole subtraction

technique [11,12]. EEC has also been calculated to NNLO

accuracy in perturbative QCD [13,14] and in the next-to-

next-to-leading logarithms (NNLL) [15]. Recent advances

in theoretical calculational techniques have led to a renais-

sance of interest in this topic. In particular, an analytic NLO

calculation of the EEC in e+e− annihilation [16,17], and

an all-order factorization formula for the EEC in the back-

to-back limit [18–21], are now available. We also mention

here the derivation of the EEC function in the maximally

supersymmetric N = 4 super-Yang-Mills theory in the NLO

accuracy [22], which has been recently extended up to NNLO

accuracy [23]. Experimental measurements of EEC in e+e−

annihilation are discussed in [24–28].
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Following EEC in e+e− annihilation, transverse energy–

energy correlation (TEEC) and the corresponding asymmetry

(ATEEC) were introduced in hadronic collisions at the SPP̄S

[29], but did not evoke much experimental interest. With the

advent of the LHC era, NLO corrections were calculated in

pp collisions [30]. They have been used by the ATLAS col-

laboration for comparison with data and in the determination

of αs(M2
Z ) from these shape functions [31,32]. Recently,

TEEC in the dijet back-to-back limit in hadronic collisions

has been derived, achieving an impressive perturbative sim-

plicity [33]. Currently the TEEC-data in pp collisions are

restricted in their theoretical interpretation to NLO accuracy.

What concerns deep inelastic scattering (DIS), event shape

variables have also received a lot of theoretical attention [34–

39]. Prominent among them are the thrust-distribution, 1-

jettiness, jet-broadening, and the C parameter, which have

been calculated to very high accuracy in fixed order (NNLO)

[39], and in the resummed leading logarithms (N 3L L) [38].

Some of these event shape variables have been measured by

the H1 [40] and ZEUS [41] collaborations at HERA. The def-

initions of these shape variables together with some others,

such as the jet shape, can be seen in [42], where DIS and pho-

toproduction experiments at HERA are reviewed. However,

to the best of our knowledge, the transverse energy–energy

correlation between the final state jets in deep inelastic scat-

tering has neither been calculated nor measured so far. Anal-

ogous to the TEEC for hadronic collisions [29,30], TEEC in

DIS is introduced in Eq. (1) in the next section. It involves

transverse energy correlations in two jets, defined by a jet-

definition and jet algorithm, separated by an azimuthal angle

φ. We calculate TEEC and its asymmetry in DIS at HERA

under realistic experimental conditions.

Jets at HERA are defined in the Breit frame, in which the

exchanged photon is at rest and the incoming and outgoing

quarks are along the z direction. In this frame, the involved

hadronic final states have zero total transverse momentum,

and thus the leading nontrival transverse energy–energy cor-

relation comes from the 3-jet configurations. To match the

measurements of jets at HERA, we adopt the transverse-

momentum (kT ) algorithm to classify the jets [43] and calcu-

late the TEEC and its asymmetry (ATEEC) in the kinematic

conditions employed typically in H1 and ZEUS. The calcu-

lations are done in the NLO accuracy in the central angular

region, −0.8 ≤ cos φ ≤ 0.8. This avoids the back-to-back

angular configuration, i.e., near φ = π , where the leading

logs (LL) and the next-to-leading logs (NLL), αm
s (µ) lnn τ

(m ≤ n) in the variable τ = ln(1 + cos φ)/2, have to

be resummed. For the fixed-order perturbative calculations,

we have used the NLOJET++ package [44,45] and have

tested it against the distributions obtained by Madgraph [46].

To achieve numerical stability, we have generated 109 DIS

events at HERA (
√

s = 314 GeV), allowing us to reach an

statistical accuracy of a few percent over most of the phase

space.

Being weighted by the product of transverse energies of

jets, both the TEEC and ATEEC are expected to be insensi-

tive to the parton distribution functions (PDFs). To quantify

this, we use two PDF sets of relatively recent vintage, the

CT18 [47], and MMHT14 [48]. The main theoretical uncer-

tainty in the jet physics comes from the scale-dependence,

of these the so-called factorization scale µF enters through

the PDFs, and the partonic matrix elements depend essen-

tially on the renormalization scale µR . Detailed studies done

for the inclusive jet and dijet data at HERA show that the

µF -dependence of the cross sections is small, but the µR-

dependence is substantial in the NLO accuracy [49,50]. We

study these dependencies in TEEC and ATEEC, following

the choice of the nominal scale, µ0 =
√

〈ET 〉2 + Q2, where

〈ET 〉 denotes the average of ET , as advocated in these papers.

Varying the scales in the range “µF = [0.5, 2]µ0”, we find

that the µF -dependence is small in the TEEC, not exceeding

5% over the cos φ range, but the µR-dependence is found

to be significant. Thus, NNLO improvements are needed to

reduce the µR-uncertainty. However, fitting the HERA data

on TEEC may also effectively reduce the allowed µR-range.

Finally, we show the sensitivity of the TEEC and ATEEC on

the strong coupling constant αs(M2
Z ), for three representa-

tive values αs(MZ ) = 0.108, 0.118, 0.128. With the nominal

choice of the scales µF = µR = µ0, and the current central

value of αs(MZ ) = 0.118 [51], we show that the differential

distributions TEEC(cos φ) and ATEEC(cos φ) are remarak-

bly stable perturbatively in both the Q2-ranges. This remains

to be tested in the NNLO accuracy. Our study presented here

makes a good case for using the TEEC in DIS-data as a pre-

cision test of perturbative QCD, following similar anayses

done for the high energy pp data at the LHC.

The rest of this paper is organized as follows. Section 2

collects the definitions of TEEC and its asymmetry. Exper-

imental cuts to calculate these functions are stated in this

section together with the jet algorithm used and the jet defi-

nitions. In Sect. 3, we present the numerical results calculated

at next-to-leading order in αs and estimate the uncertainty in

the shape variables TEEC and ATEEC arising from the dif-

ferent PDFs, and the scale-dependence by varying the scale

µF and µR . Of these, the µR-dependence is substantial. Fix-

ing the scale µR to the nominal value µ0, which provides a

good fit of the inclusive-jet and dijet data at HERA [49,50],

we show the sensitvity of the TEEC and ATEEC on αs(M2
Z ).

A comparison of the LO and NLO results is also presented

here. We summarise our results in the last section. A check

of the NLOJET++ calculation is shown in Appendix-A at

the LO, by using the package MadGraph5_aMC@NLO [46]

with the MMHT14 PDF set.
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2 Transverse energy–energy correlation and its

asymmetry

In the Breit frame, the transverse energy–energy correlation

in γ (q) + p → a + b + X involving hadrons or jets is

expressed as:

1

σ ′
d	′

d cos φ

≡

∑

a,b

∫

d ET d cos φab
dσγ p→a+b+X

d ET d cos φab

2ET,a ET,b

|
∑

i ET,i |2
δ(cos φab − cos φ)

∫

d ET dσγ p→a+b+X /d ET

=
1

N

N
∑

A=1

1

� cos φ

∑

pairs in � cos φ

2E A
T a E A

T b

(E A
T )2

, (1)

where ET,a and ET,b are transverse energies of two jets or

hadrons. The δ-function assures that these hadrons or jets

are separated by the azimuthal angle φ, and the cross section

σ ′ and 	′ indicate kinematic cuts on the integrals, defined

later. The second expression is valid for a sample of N hard-

scattering multi-jet events, labelled by the index A. The asso-

ciated asymmetry (ATEEC) is then defined as the asymmetry

between the forward (cos φ > 0) and backward (cos φ < 0)

parts of the TEEC:

1

σ ′
d	′asym

d cos φ
≡

1

σ ′
d	′

d cos φ
|φ −

1

σ ′
d	′

d cos φ
|π−φ . (2)

Due to the factorization of the amplitudes in QCD, the

denominator of the first equation in Eq. (1) dσγ p→a+b+X /d ET

can be written as a convolution of the parton distribution

functions(PDFs) fq/p(x1), where x1 is the fractional energy

of the proton carried by the parton q, and the parton level

cross section. In the leading order, this is given by σγ q→b1b2 .

As the for numerator, it can also be expressed as the convo-

lution of PDFs with 2 → 3 parton level subprocess, in the

leading order, such as γ q → qgg. Thus, TEEC is calculated

from the following expression:

1

σ ′
d	′

d cos φ
=

∑

j,a,b

∫

d ET d cos φab f j/p(x1) ⋆ dσγ j→b1b2b3/(d ET d cos φab)
2ET,a ET,bδ(cos φ−cos φab)

|
∑

i ET,i |2
∑

j f j/p(x1) ⋆ σγ j→b1b2

, (3)

where the symbol ⋆ stands for the convolution and j represents

quarks and gluons. Which processes are included in the cal-

culations of the TEEC depends on the theoretical accuracy.

In NLO, this involves 2 → 2, 2 → 3 and 2 → 4 partonic

subprocesses. Some representative Feynman diagrams of the

subprocess are shown in Fig. 1. In the upper row of Fig. 1,

we show the leading order (LO) (a), NLO real (b) and NLO

virtual diagrams (c) which enter in the calculations of the

numerator of Eq. (3). In the lower row of this figure, the

Feynman diagrams of the subprocess in the denominator of

Eq. (3) are shown. Of these, (d, e) are LO diagrams, and the

NLO virtual corrections are represented by the diagram ( f ).

The NLO real diagram in inclusive two jet cross section are

the same as the LO diagrams of three jet cross section of

which we have shown a representative diagram (a) in Fig. 1.

As defined in Eq. (3), the TEEC correlation 1
σ ′

d	′

d cos φ
is

a normalized variable. In particular, the dependence of the

TEEC on the PDFs is compensated to a large extent. Thus,

to a good approximation, a factorized result is expected,

1

σ ′
d	′

d cos φ
∼

αs(µ)

π
F(cos φ), (4)

which can be perturbatively improved by including higher

orders.

We calculate the TEEC and ATEEC close to experimental

conditions used by the HERA experiments H1 and ZEUS,

which assume a certain selection criteria based on physical

cuts on the kinematic variables. They are defined as follows:

The basic DIS kinematic variables x and y = Q2/(sx) satisfy

0 < x < 1, 0.2 < y < 0.6. (5)

Besides, we restrict the range of the pseudo-rapidity in the

laboratory frame (ηlab) as

− 1 < ηlab < 2.5. (6)

The pseudorapidity is related to the polar angle θ , defined

with respect to the proton beam direction, by ηlab =
− ln tan(θ/2). We also use the right-handed co-ordinate sys-

tem of the H1 collaboration, in which the positive z-axis is in

the direction of the proton beam, and the nominal interaction

point is located at z = 0.

We calculate the TEEC and ATEEC in the Breit frame used

by experiments at HERA. In this frame, transverse energy ET

is z-axis boost invariant and γ p → j j j X is the nontrivial

process at the leading order. The cuts for the transverse energy

of dijet and trijet events, defined in the Breit frame, are as

follows:

5 GeV < 〈ET 〉2 < 50 GeV

5.5 GeV < 〈ET 〉3 < 40 GeV, (7)

where the 〈ET 〉2 and 〈ET 〉3 denote 1
2
(E

jet1
T + E

jet2
T ) and

1
3
(E

jet1
T + E

jet2
T + E

jet3
T ), respectively. These cuts are con-

sistent with the measurement at HERA [49]. Following the

practice in the HERA experimental analysis, we use the kT
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(a) (b) (c)

(d) (e) (f)

Fig. 1 Representative Feynman diagrams of the partonic subprocess in γ ∗ + p scattering which are included in the numerator (first line) and

denominator (second line) of Eq. (3). Here, the virtual photon is denoted by a wavy line and the gluon by a curled line

jet-algorithm [51], where the distance measure of partons

(i, j) is given by

di j = min(k2
ti , k2

t j )
(ηi − η j )

2 + (φi − φ j )
2

R2
,

di B = k2
ti . (8)

Here B represents the “beam jet” of the proton: particles

with small momenta transverse to the beam axis, and R is

the cone-size parameter of the jet which we set to R = 1.0

in our calculation. We use two different PDF sets, CT18 [47]

and MMHT14 [48], and explore the uncertainty on the TEEC

(cos φ) and ATEEC (cos φ) distributions from these two sets

in the next section.

It has become customary to determine the QCD coupling

constant at the scale µ = MZ [52]. To determine αs(M2
Z )

from TEEC (cos φ) and ATEEC (cos φ) in DIS, the cross

section can be expressed as:

σ =
∑

k

∫

dx fk(x, µF )σk(x, µF , µR), (9)

where k denotes a parton (quark or gluon), fk(x, µF ) is the

parton density, and σk(x, µF , µR) is the partonic cross sec-

tion, which depends on the renormalization scale µR and the

fatorization scale µF . The partonic cross section is calculated

in perturbative QCD as an expansion in αs :

σk =
∑

n

αn
s (µR)σ

(n)
k (x, µR, µF ). (10)

As the µF -dependence is very mild on TEEC, as shown later,

the dominant scale-dependence of the cross section enters

through the scale µR , i.e., from αs(µR), which we relate

to αs(M2
Z ) on an event-by-event basis in our simulations.

The µR dependence of αs is given by renormalization group

equation

µR

dαs

dµR

= β(αs). (11)

Table 1 Dijet cross sections at HERA with
√

s =314 GeV in the two

〈ET 〉2-bins defined in the text and the corresponding HERA data from

the Table 7 in H1 collaboration [49]

Bin1 Bin2

σHERA[pb] 299 ± 9.9 ± 52.3 185 ± 3.7 ± 13.9

σNLOJET++[pb] 298.03 ± 3.93 199.9 ± 3.04

In the NLO calculation, the two-loop β-function is used for

transcribing αs(µ) to αs(M2
Z ) with a certain scale µ which

is revelent for the jets defined above. The coupling constant

αs(µ) is given as

αs(µ) =
1

b0 log(µ2/�2)

[

1 −
b1 log(log(µ2/�2))

b2
0 log(µ2/�2)

]

,

b0 =
33 − 2n f

12π
, b1 =

153 − 19n f

24π2
. (12)

Here, n f is the number of quark flavors, which is determined

by the scale µ, we have set n f = 5, and � is the QCD

parameter, which is determined by the value of αs(M2
Z ).

In the LO calculation, we set b1 = 0 in the above expres-

sion. In our numerical results, we present TEEC(cos φ) and

ATEEC(cos φ) calculated in the LO and NLO for the same

value of αs(M2
Z ), which implies a different value of � in

the LO and NLO. As already stated, the αs(µ)-dependence

enters essentially through µ = µR . Since µR is not deter-

mined uiquely, there will remain a residual scale-dependence

in the differential distributions for TEEC (cos φ) and ATEEC

(cos φ). In the next section, we show the dependence of TEEC

(cos φ) and ATEEC (cos φ) at HERA on the scales µF , µR

and αs(M2
Z ).

Before ending this section, we remark that very recently

another shape variable involving the azimuthal angle cor-

relation of the lepton and hadron in DIS process has been
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Fig. 2 Differential distribution 1/σ ′d	′/d(cos φ) and its asymme-

try 1/σ ′d	′asym/d(cos φ), calculated in Next-to-Leading order for the

low-Q2 range 5.5 GeV2 < Q2 < 80 GeV2 for the ep center-of-mass

energy
√

s = 314 GeV at HERA. The two input PDFs are indicated

on the upper frames. The lower frames show �[TEEC(cos φ)]PDF and

�[ATEEC(cos φ)]PDF, defined in Eq. (15)

Fig. 3 Differential distribution 1/σ ′d	′/d(cos φ) and its asymmetry 1/σ ′d	′asym/d(cos φ) as in Fig. 2, but for the high-Q2 range 150 GeV2 <

Q2 < 1000 GeV2 at HERA

proposed and calculated in [53], which is defined as

ℓH T EC(cos φ) ≡ 	a

∫

dσℓp→ℓ+a+X

ET,ℓET,a

ET,ℓ	i ET,i

× δ(cos φla − cos φ)

= 	a

∫

dσℓp→ℓ+a+X

ET,a

	i ET,i

× δ(cos φla − cos φ), (13)

where the sum runs over all hadrons and cos φℓa is the cosine

of the azimuthal angle between the lepton and the hadron. As

seen in the second of the above equation, transverse energy of

the lepton drops out of this variable. As opposed to the shape

variable TEEC, defined here in Eq. (1) for DIS, as well as

the EEC/TEEC variables defined earlier in e+e− annihila-

tion [1,2] and pp collisions [29], which involve (transverse)

energy weighted azimutal angle correlations between two jets

or hadrons, the shape variable defined in [53] is the azimuthal

angle correlation between the lepton and a hadron (or a jet)

weighted by the transverse energy of a single hadron (or jet).

We emphasize that ℓH T EC(cos φ), defined in [53] and Eq.

(13), while interesting in its own right, is a different vari-

able from TEEC. Lepton-jet correlation in DIS has also been

studied in [54], and revisited very recently in [55], where a

detailed derivation of the formalism used and a phenomeno-
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Fig. 4 Fatorization scale dependence of the differential distribution

1/σ ′d	′/d(cos φ) and its asymmetry 1/σ ′d	′asym/d(cos φ) in the

leading order (upper frames), and the next to leading order (lower

frames), varying µF in the range [0.5, 2] × µ0, where µ0 is the nom-

inal scale defined in the text, calculated with the MMHT14 PDFs for

the low-Q2: 5.5 GeV2 < Q2 < 80 GeV2 at HERA. The correspond-

ing µF -dependence is also shown in terms of R[TEEC(cos φ)]µF
and

R[ATEEC(cos φ)]µF
, defined in Eq. (16)

logical study relevant for the jet production at HERA are

carried out.

3 Results for TEEC (cos φ) and its asymmetry ATEEC

(cos φ) in DIS process at HERA

For the numerical results presented here in the LO and NLO

accuracy, we have used the program NLOJET++ [44,45].

As a cross check on our calculations, we have also used

the program Madgraph to calculate the leading order TEEC

and ATEEC functions. The errors shown for the TEEC and

ATEEC are of statistical origin, resulting from the Monte

Carlo phase space integration. To compare with the results

obtained using NLOJET++, parton-level events are gener-

ated in MadGraph5_aMC@NLO [46] with the MMHT14

PDF set. The distributions obtained from the two packages

agree well in both the low-Q2 (5.5 GeV2 < Q2 < 80 GeV2)

and high-Q2 (150 GeV2 < Q2 < 1000 GeV2) ranges. The

details are given in Appendix A. From now on, we shall work

only with the NLOJET++.

We have generated 109 events to obtain the LO and NLO

results in each of the two Q2 ranges. This large statistics is

required to obtain an accuracy of a few percent in NLO, which

enables us to meaningfully calculate the various parametric

dependences intrinsic to the problem at hand. At the very out-

set, we have calculated the two-jet cross sections at
√

s = 314

GeV for the ranges of the DIS variables given in the preceding

section and compared them with the corresponding HERA

data [49] in Table 1. The NLOJET++ results are obtained
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Fig. 5 Fatorization scale dependence of the differential distribution 1/σ ′d	′/d(cos φ) and its asymmetry 1/σ ′d	′asym/d(cos φ) in the leading

order (upper frames) and the next to leading order (lower frames) as in Fig. 4, but for the high-Q2 range 150 GeV2 < Q2 < 1000 GeV2 at HERA

from the jet clusters using parton-level cross sections and the

HERA data refer to the hadron-level cross section. While the

two are not identical, this comparison should hold to a good

first approximation. The two-jet events selected for this com-

parison are defined by the following two bins in 〈ET 〉2 and

the Q2-range given below:

5.5 GeV2 < Q2 < 8 GeV2,

bin1 : 5 GeV < 〈ET〉2 < 7 GeV,

bin2 : 7 GeV < 〈ET〉2 < 11 GeV. (14)

Theoretical cross sections are obtained using the CT18

[47] PDFs, the scales set to the values µR = µF =
√

〈ET 〉2 + Q2, and αs(MZ ) = 0.118. The NLO cross sec-

tions are in excellent agreement with the HERA data.

We start by showing the differential distributions 1
σ ′

d	′

d cos φ
,

defining TEEC (cos φ), and its asymmetry, 1
σ ′

d	′asym

d cos φ
,

ATEEC (cos φ), for the two PDF sets CT18 [47] and

MMHT14 [48]. They are presented for the low-Q2 range

(5.5 GeV2 ≤ Q2 ≤ 80 GeV2) and the high-Q2 range (50

GeV2 ≤ Q2 ≤ 1000 GeV2) in Figs. 2 and 3, respectively.

The left frame in these figure shows TEEC (cos φ) and the

right frame ATEEC (cos φ), calculated in the NLO accuracy.

We restrict cos φ in the range [−0.8, 0.8] to avoid the

regions φ ≃ 0◦ and φ ≃ 180◦ which will involve self-

correlations (a = b) and virtual corrections to 2 → 2 pro-

cesses. In calculating these functions, we use αs(MZ ) =
0.118 and have set the fatorization (µF ) and the renormal-

ization (µR) scales to the following values: µF = µR =
µ0 =

√

〈ET 〉2 + Q2. This scale-setting is discussed in the

analysis of the jet-data by the H1 Collaboration [50]. The

effect of varying the scale µF which enters in the PDFs has

little effect in the inclusive- and dijet- cross sections [50],

which we also find for the TEEC (cos φ) and ATEEC(cos φ),

shown later in this section. We quantify the uncertainty on

the TEEC (cos φ) and ATEEC (cos φ) from the two input
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Fig. 6 Renormalization scale dependence of the differential distribu-

tion 1/σ ′d	′/d(cos φ) and its asymmetry 1/σ ′d	′asym/d(cos φ) in

the leading order (upper frames) and the next to leading order (lower

frames) varying µR in the range [0.5, 2] × µ0, where µ0 is the nom-

inal scale defined in the text, calculated with the MMHT14 PDFs for

the low-Q2: 5.5 GeV2 < Q2 < 80 GeV2 at HERA. The correspond-

ing µR-dependence is also shown in terms of R[TEEC(cos φ)]µR
and

R[ATEEC(cos φ)]µR
, defined in Eq. (17)

PDFs by the following ratios:

�[TEEC(cos φ)]pdf

≡
TEEC(cos φ)CT18 − TEEC(cos φ)MMHT14

TEEC(cos φ)CT18

�[ATEEC(cos φ)]pdf

≡
ATEEC(cos φ)CT18 − ATEEC(cos φ)MMHT14

ATEEC(cos φ)CT18
. (15)

The PDF-related uncertainties �[TEEC(cos φ)]pdf and

�[ATEEC(cos φ)]pdf are shown in the lower frames in these

figures. We note that, within our statistics, the former are well

below 5% for most of the range. The asymmetry becomes

increasingly small as one approaches cos φ ≃ 0, and it

would require much higher statistics to reduce the numerical

error on �[ATEEC(cos φ)]pdf near the end-point. It should

be stressed that when showing the ratios in the lower frames,

the statistical errors have been neglected.

Next, we present the fatorization-scale and the renormalization-

scale dependence of the TEEC (cos φ) and ATEEC (cos φ),

by fixing the other parameters to their nominal values, and use

the MMHT14 PDF set. Fixing µR = µ0, we vary µF in the

range µF = [0.5, 2]µ0 and show the µF -dependence in Figs.

4 and 5 for the low-Q2 range 5.5 GeV2 < Q2 < 80 GeV2

and the high-Q2 range 150 GeV2 < Q2 < 1000 GeV2,

respectively, in the LO and the NLO accuracy. The µF -

uncertainty on TEEC (cos φ) and ATEEC (cos φ) are plotted

in the lower frames of these Figs. 4 and 5 in terms of the

ratios R[TEEC(cos φ)]µF
and R[ATEEC(cos φ)]µF

defined
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Fig. 7 Renormalization scale dependence of the differential distribution 1/σ ′d	′/d(cos φ) and its asymmetry 1/σ ′d	′asym/d(cos φ) in the

leading order (upper frames) and the next to leading order (lower frames) as in Fig. 6, but for the high-Q2 range: 150 GeV2 < Q2 < 1000 GeV2 at

HERA

below

R[TEEC(cos φ)]µF
≡

TEEC(cos φ)µF =xµ0,µR=µ0

TEEC(cos φ)µR=µF =µ0

,

x ∈ [0.5, 2],

R[ATEEC(cos φ)]µF
≡

ATEEC(cos φ)µF =xµ0,µR=µ0

ATEEC(cos φ)µR=µF =µ0

,

x ∈ [0.5, 2]. (16)

The µF -dependence shown for R[TEEC(cos φ)]µF
and

R[ATEEC(cos φ)]µF
is the resulting envelope by varying

the scale µF in the indicated range and the statistical errors

arising from the numerical integration of the phase space.

The statistical errors of TEEC (cos φ) and ATEEC (cos φ)

are about 3%. The µF -dependence of TEEC (cos φ) is small,

decreasing for the high-Q2 range. It is comparatively smaller

for the asymmetry ATEEC (cos φ), except for the last bin,

where the numerical integration has a large statistical error.

The µR-dependence in the corresponding Q2-ranges are

shown in Figs. 6 and 7, respectively. Here, we fixed µF =
µ0, and varied µR in the range µR = [0.5, 2]µ0. One

notices marked improvement in the µR-dependence from

the LO to NLO. The µR-uncertainty on TEEC (cos φ) and

ATEEC (cos φ) are plotted in the lower frames of Figs.

6 and 7 in terms of the ratios R[TEEC(cos φ)]µR
, and

R[ATEEC(cos φ)]µR
, defined in Eq. (17).

R[TEEC(cos φ)]µR
≡

TEEC(cos φ)µR=xµ0,µF =µ0

TEEC(cos φ)µR=µF =µ0

,

x ∈ [0.5, 2],

R[ATEEC(cos φ)]µR
≡

ATEEC(cos φ)µR=xµ0,µF =µ0

ATEEC(cos φ)µR=µF =µ0

,
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Fig. 8 Upper frames: Dependence of the differential distribution

1/σ ′d	′/d(cos φ) (left) and its asymmetry 1/σ ′d	′asym/d(cos φ)

(right) on the QCD coupling constant αs(M2
Z ) for three indi-

cated values of αs(M2
Z ) = 0.108, 0.118, 0.128 using the PDFs

of MMHT14 in the low-Q2 range at HERA setting the scales

µF = µR = µ0. Lower frames: The ratios R[TEEC(cos φ)]αs=0.108

and R[TEEC(cos φ)]αs=0.128 and R[ATEEC(cos φ)]αs=0.108 and

R[ATEEC(cos φ)]αs=0.128, defined in Eq. (18)

Fig. 9 Dependence of the differential distribution 1/σ ′d	′/d(cos φ) (left) and its asymmetry 1/σ ′d	′asym/d(cos φ) (right) on the QCD coupling

constant αs(M2
Z ) as in Fig. 8, but for the high-Q2 range at HERA

x ∈ [0.5, 2]. (17)

Based on these numerical results, we find that the com-

bined uncertaity due to the PDFs, and the µF and µR-scales,

is at about 10% in the TEEC (cos φ), and smaller in ATEEC

(cos φ).

Further reduction in the scale uncertainty requires addi-

tional input, which we anticipate from the NNLO improve-

ments as well as from the fits of the HERA data. This is

suggested by the detailed NLO- and NNLO-studies done for

the inclusive-jet and dijet data at HERA [50], which can be

summarized as follows: The effect of varying µF in the range

10–90 GeV on the jet cross sections is small, and this scale

can be fixed to a value within this range without risking a per-

ceptible change elsewhere, which is essentially in line what

we find in our analyis. The effect of varying the scale µR

is found more significant in the HERA jet-analysis. How-

ever, the choice µR =
√

〈ET 〉2 + Q2 yields a good fit of the

jet data in both the NLO and NNLO accuracy. The reduced

µR-dependence in the NNLO accuracy leads to a factor 2

improvement in the accuracy of αs(M2
Z ). Following [50], we

shall fix the scale µR to its nominal value in studying the

sensitivity of TEEC (cos φ) and ATEEC (cos φ) on αs(M2
Z ).

We now discuss the sensitivity of TEEC (cos φ) and

ATEEC (cos φ) on αs(M2
Z ). The results presented are
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Fig. 10 A comparison of the LO and the NLO differential distribution 1/σ ′d	′/d(cos φ) (left) and its asymmetry 1/σ ′d	′asym/d(cos φ) (right)

at HERA (
√

s = 314 GeV) in the high-Q2 range (upper frames) and low-Q2 range (lower frames), with µF = µR = µ0 =
√

〈ET 〉2 + Q2 and

αs(M2
Z ) = 0.118

obtained by making the nominal choice of the scales µF =
µR = µ0 and the MMHT14 PDFs. Results for three repre-

sentative values αs(M2
Z ) = 0.108, 0.118, 0.128 are shown,

which bracket most other determinations of this quantity,

with αs(M2
Z ) = 0.118 being the central value1 quoted by the

Particle Data Group [51]. They are shown in Fig. 8 (low−Q2

range) and Fig. 9 (high−Q2 range) at the NLO accuracy.

To quantify the αs(M2
Z )-sensitivity, we define the following

ratios:

R[TEEC(cos φ)]αs ≡
TEEC(cos φ)αs (M2

Z )

TEEC(cos φ)αs (M2
Z )=0.118

R[ATEEC(cos φ)]αs ≡
ATEEC(cos φ)αs (M2

Z )

ATEEC(cos φ)αs (M2
Z )=0.118

. (18)

1 The current PDG world average is αs(M2
Z ) = 0.1179 ± 0.0010.

They are shown in the bottom frames in Fig. 8 (low−Q2

range) and Fig. 9 (high−Q2 range) in terms of the ratios

R[TEEC(cos φ)]αs=0.128 and R[TEEC(cos φ)]αs=0.108. We

note that both R[TEEC(cos φ)]αs and the corresponding

ratio for the asymmetry R[ATEEC(cos φ)]αs show a marked

sensitivity on αs(M2
Z ). Hence, these shape functions at

HERA offer competitive avenues to determine αs(M2
Z ), and

we urge our experimental colleagues to undertake a detailed

data analysis of these variables at HERA.

A comparison of the LO and the NLO TEEC(cos φ) and

its asymmetry ATEEC (cos φ) at HERA (
√

s = 314 GeV) in

the high-Q2 range and the low-Q2 range are shown in Fig.

10. These results are obtained for the choice µF = µR =
µ0 =

√

〈ET 〉2 + Q2, αs(M2
Z ) = 0.118, and MMHT14 set

of PDFs. They show that theses correlations are remarkably

stable against NLO corrections. We conjecture that NNLO

corrections are, likewise, small. This remains to be shown

and we hope that our work will stimulate working them out.
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4 Summary

In this paper, we have studied for the first time, the transverse

energy–energy correlations TEEC (cos φ) and its asymmetry

ATEEC (cos φ) in deep inelastic scattering at the electron–

proton collider HERA at the center of mass energy
√

s = 314

GeV, where φ is the angle in the Breit frame between two jets

defined using a transverse-momentum (kT ) jet algorithm. We

use NLOJET++ to calculate these functions in the LO and the

NLO approximations in QCD for two ranges in the momen-

tum transfer squared Q2. In the LO, these results are checked

using the package MadGraph5_aMC@NLO [46] with the

MMHT14 PDF set. We show the sensitivity of these func-

tions on the PDFs, factorization (µF ) and renormalization

(µR) scales, and on αs(M2
Z ). With the various cuts in the

event generation matched with the ones in the measurements

by the H1 collaboration at HERA, these studies are poten-

tially useful in the analysis of the HERA data, including the

determination of αs(M2
Z ) from the shape variables.

An NNLO calculation for these shape variables is still

lacking. This has the consequence that significant renormali-

zation-scale dependence which enters in the partonic cross

sections remains. At the present theoretical accuracy fol-

lowed in this paper, this may compromise the precision on

αs(M2
Z ). Theoretical precision can be improved by includ-

ing the NNLO contribution, as shown for the dijet and inclu-

sive jet cross sections in in DIS [56–59]. However, the scale

uncertainty could also be reduced by analysing the HERA

data for the shape variables by narrowing the allowed range

of µR for which one gets a good quality fit. This is the case

in the analysis of the inclusive-jet and dijet HERA data, in

which the choice µR =
√

〈ET 〉2 + Q2 accounts well for the

H1 measurements, also in the NLO accuracy [50]. For this

choice of the µR scale, we have shown that the event shape

TEEC (cos φ) and its asymmetry are very sensitive to the

value of αs(M2
Z ). We hope that our case-study for the TEEC

and ATEEC at HERA, carried out at the NLO accuracy, will

help fous on the analysis of the data on these shape vaiables

with improved theoretical accuracy.
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Appendix-A

As a cross check on our calculations, we have also used

the program Madgraph to calculate the leading order TEEC

and ATEEC functions. To compare with the results obtained

using NLOJET++, parton-level events are generated in

MadGraph5_aMC@NLO [46] with the MMHT14 PDF set.

To that end, the following basic cuts in the lab frame are

imposed at the generator level in Madgraph:

plab
T, j > 2GeV, |ηlab

j,e| < 5, �Rlab
j j > 0.1. (19)

In the above, j denotes light-flavor quarks, and the angu-

lar distance in the η − φ plane is defined as �Ri j ≡
√

(ηi − η j )2 + (φi − φ j )2 with ηi and φi being the pseudo-

rapidity and azimuthal angle of particle i , respectively. The

momenta of the generated events are defined in the lab frame.

After the appropriate Lorentz transformation, the TEEC and

ATEEC distributions in the Breit frame can be constructed,

and the events are selected in the low and high Q2 ranges.

Given the available choices of the factorization and renormal-

ization scales in Madgraph, we set the scalesµF = µR = ET

with ET being the scalar sum of transverse energies of

all jets in both Madgraph and NLOJET++. The transverse

energy of each jet in the Breit frame is limited in the range

[4.5 GeV, 50 GeV] [49] to reduce the impact of the basic cuts

in Eq. (19), apart from the cuts on the transverse energies for

dijet and trijet events in Eq. (7). In Fig. 11, a comparison

of the LO TEEC (cos φ) distributions obtained using NLO-

JET++ and Madgraph is shown, using αs(M2
Z ) = 0.118. The

distributions obtained from the two packages agree well in

both the low-Q2 and high-Q2 ranges. In Fig. 11 the error

bars indicate the statistical errors, which are negligible for

the distributions obtained from NLOJET++.
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Fig. 11 Comparison of the LO differential distribution 1/σ ′d	′/d(cos φ) obtained using Madgraph and NLOJET++ in the low-Q2 range (left

frame) and the high-Q2 range (right frame)
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