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1 Introduction

The mass of the SM-like Higgs boson, discovered by ATLAS and CMS [1-3], is now an electroweak
precision observable, thanks to its outstandingly accurate determination at the LHC [4-6], and it plays
an important role in constraining the allowed parameter space of Beyond-the-Standard-Model (BSM)
theories. On the one hand, the Higgs mass is a prediction in supersymmetric theories (see Ref. [7] and
references therein for a recent review) and interestingly it depends most heavily on the electroweak
couplings and scale — quantities that are already known from other observations — while it is only
at loop level that a dependence on the scale of supersymmetric particles appears. This property has
spurred significant developments in precision scalar-mass calculations, advanced in recent years by
the KUTS initiative [8-54] as described in the report [7]. On the other hand, in non-supersymmetric
theories, the Higgs mass is not a prediction by itself, but it can be used to extract the Higgs quartic
coupling and, in turn, investigate the stability of the electroweak vacuum. In this context, a precise
calculation is essential to produce reliable results on vacuum stability (see Refs. [55-59] for works in
the SM) and to correctly appreciate the potential impact of new particles [60-65].

We refer the interested reader to Ref. [7] and references therein for an in-depth review of Higgs-
mass computations, and we only recall here the main steps involved (applicable for any BSM theory).
The standard calculational technique begins with the extraction of SM-like parameters — namely the
electroweak and strong gauge couplings, the quark and lepton Yukawa couplings, and the Higgs vacuum
expectation value (vev) — from observables. Adding then the BSM parameters to these, the Higgs
(and other particle) masses can be calculated, along with any other desired predictions. The relevant
observables for the electroweak sector are typically, as in calculations in the SM, either Mz, My, a(0)
or Mz,Gr,a(0) where Mz are the Z and W boson masses, «(0) is the fine-structure constant
extracted in the Thompson limit, and G is the Fermi constant. This latter quantity is extracted from
muon three-body decays, whereas the others are related essentially to self-energies. In general, this
extraction of the SM-like couplings and the Higgs vev can be performed at one-loop for any theory,
but the two-loop relationships are only known for the SM and a small subset of other models in certain
limits.

At the tree level, the expectation value v of the Higgs boson is related to the other parameters in
the theory by the requirement that the theory be at the minimum of the potential. To be concrete,
consider the Higgs potential of the SM, V = p? |[H|* + A|H|*; then the minimisation condition gives

0=p*+ 02 (1.1)

Since we do not have an observable for 2 we typically use this equation to eliminate it, giving the
Higgs mass to be

mi = p? + 3 0% =202, (1.2)

However, once we go beyond tree level, there are several possible choices. The approach typically
taken in BSM theories, and in the SM in Ref. [66], is to insist that the expectation value v is a fixed
“observable”, and instead keep solving for ;i order-by-order in perturbation theory. In this way,

R st =-xv?—- >t 1.
17 Av v oh |, Av o ths (1.3)

where AV are the loop corrections to the effective potential, and then the Higgs pole mass M}, reads
1

MP =2X0% — =ty + I, (M) = 220% + AM}, (1.4)
v

where I1p, (M }% ) is the Higgs self-energy evaluated on-shell. One of the chief advantages of this approach
is that tadpole diagrams do not appear in any processes, since they vanish by construction.



On the other hand, while this is in principle a straightforward procedure to follow, it is complicated
by the fact that the self-energies and effective potential implicitly depend on p2. In Landau gauge,
or the gaugeless limit, this leads to the “Goldstone Boson Catastrophe” at two loops [67-70] — its
solution appears by consistently solving the above equation order by order [27,33]. Indeed, one way
to formalise this is as a finite (or possibly IR-divergent) counterterm for y?:

1
L=+ 0>+ AvP)vh — 3 (12 +0p® +3AV*)R2 + ..., (1.5)
where §p% = —% tp. Another drawback is that it manifestly breaks gauge invariance, since the loop

corrections above depend on the gauge; and it also means that the expectation value v is not an MS
parameter, so the renormalisation-group equations for the expectation value are no longer just given
by those of 2 and A, but have extra contributions [71,72].

However, there is a further drawback to the above procedure which we wish to highlight in this
paper. When considering a BSM theory with additional scalars that may have an expectation value,
it is typical to take the same approach as for the scalar field in the SM and fix their expectation
values, solving the additional tadpole equations for other dimensionful parameters — for example, their
mass-squared parameters, or sometimes a cubic scalar coupling. To take the example of a real singlet
S with mass-squared Lagrangian parameter m?g — not to be confused with the pole mass, which we
denote Mg — and expectation value vg, this means that analagously to eq. (1.3),

1 0A
m% = (m%)tree ~ s aa;/ (1.6)
If the loop corrections are not large, and vg is not small, this is completely acceptable — so for models
such as the NMSSM there is generally no problem. However, if we consider a different theory or regions
of the parameter space where vg is small, for example if mg > v and vg x v? (as may be found in
examples of EFT matching [41]) then we can easily find the case that dm¥% > (m%)tree. This makes
the calculation unreliable.

The archetypal example of this problem is the case where the neutral scalar obtaining an expecta-
tion value actually comes from an SU(2) triplet T with expectation value vy and mass-squared m%
— for example in Dirac-gaugino models [73-76]. In that case, vy oc v?/m?2 multiplied by other dimen-
sionful parameters of the theory. Moreover, we require that vp < 4 GeV from electroweak-precision
constraints, generally requiring mp 2 1 TeV. So then

1

1 3 2
Taov = 6.2 © O(TeV?) ~ 2.5 x O(TeV?) , (1.7)

Sma ~
i. e. we see that there is a severe problem whenever vp/myp is of the order of a loop factor.

Moreover, for such cases where vg is small, this procedure works in the opposite way to that which we
would desire. In BSM theories the scalar expectation values beyond v are not top-down inputs or tied
closely to some observables, whereas we may typically want to define the masses and couplings as fixed
by some high-energy boundary conditions (for example constrained or minimal SUGRA conditions
where soft masses have a common origin). In this case we would like to solve the tadpole equations for
vg; even if this would typically lead to coupled cubic equations, nowadays it is almost trivial to solve
them numerically, or start from an approximation.

In this paper we will instead examine an alternative procedure, proposed by Fleischer and Jegerlehner
in examining Higgs decays in the SM [77], which has the potential to solve both of these issues. Instead
of taking the expectation values as fixed, we take them to be the tree-level solutions of the tadpole
equations. This means that we do not work at the “true” minimum of the potential and must include
tadpole diagrams in all processes. While this implies the addition of some new Feynman diagrams in
the Higgs mass calculation, it is not technically more complicated than including finite counterterm
insertions for ;2. This approach has the additional advantages that, since the Lagrangian is specified in



terms of MS parameters only, the result is manifestly gauge independent, and the expectation values
are just the solutions to the tree-level tadpole equations. For these reasons, it has been used and
advocated in the SM, in particular at two loops in Ref. [57]; and applied to certain extensions of the
Two Higgs Doublet Model (THDM) when considering decays [78-81]. We also note that this approach
is closely related to the various on-shell renormalisations used in e. g. [82-85] in the THDM and the
Minimal Supersymmetric Standard Model (MSSM).

In the example of the SM at the one-loop order, this would mean

9 6Av
T2

o)+ 10 (m3) (1.8)
h

M} =2\v
where the superscripts in brackets indicate the loop order, and we put the momentum in the self-energy
at the tree-level Higgs mass in order to respect the order of perturbation theory. In other words, the
tadpole contribution is suppressed by the mass-squared of the Higgs, although — since m% =2\0v%
here we find that they have a very similar form to the previous approach. On the other hand, in
the case of a heavy singlet or triplet the contributions to the singlet self-energy would be similarly
suppressed by m%, and we can have mg much greater than the triplet coupling — so the corrections to
the singlet mass would be well under control.

On the other hand, in the BSM context this approach was proposed by [86] for the following very
different reason: by no-longer forcing the electroweak expectation value to have its observed value,
we allow new physics to disturb the electroweak hierarchy. In the above approach, the contribution
—6Av tg) = —% tg) is effectively the contribution from a shift in v. We can view the calculation as

P
my,

equivalent to counterterms for the expectation value 6(Mv, where

Lo~ (2 + 20 vh— (i +320%) 6Woh — ... (1.9)
so that now
1
R —C (1.10)
m2 "

In this case, if there is heavy new physics at a scale A > my,, then we shift the Higgs expectation value
up to that new scale suppressed only by a loop factor. Indeed in Ref. [86] the proposal was to use

omy _ 1 [ 3,0y (1, 2
= —— 1 + 10, (m3) (1.11)

as as a measure of fine-tuning of the theory.

Another perspective on the difference between the two approaches is given by viewing the SM as an
EFT. In this case, in the EFT the SM receives corrections to both 2 and A at the matching scale from
integrating out heavy states which can be done with v = 0. As discussed in Ref. [27], when expanding
in v, in order to respect gauge invariance we must have:

AV = AV, + % AViplyeg V2 +O(0h) + ...,
yn (m) = AVinl,—g + O (v7) (1.12)

and therefore t, = v AVyy| v—0 T -+ This shows that the EFT-matching correction to p?, which is
AVpply—o, and the origin of the hierarchy problem, correspond to t;/v to lowest order in v. Hence in
the “standard” approach of eq. (1.4) this cancels out and leaves only corrections proportional to v?
— whereas in the modified approach it remains and gives a large shift to the Higgs mass.

However, the reappearance of the hierarchy is a problem for the light Higgs mass, whereas the
problem we wished to solve actually appeared in new, heavy states! If we wish to explore theories



which may remain natural while having heavy states, such as those in Ref. [86], then the modified
tadpole approach should work best. There must consequently be some trade-off between losing control
of the light Higgs and losing control of the heavier states (and losing gauge invariance too). In section 2
we will set up the necessary general formalism and explore this in detail for a toy model.

However, there are two potential solutions to allow us to have the best of both worlds:

1. Retain counterterms for u? as in eq. (1.5) for the SM Higgs, but only for them. This is somewhat
tricky to automate, since we must make a special case of the electroweak sector, and we also lose
gauge invariance.

2. For cases where the tuning of the hierarchy becomes large, use EFT pole matching [26] with the
modified treatment of tadpoles. This way, the heavy states remain entirely under control, we
keep the heavy masses and couplings as top-down inputs (that remain genuinely MS or ﬁ,), and
we have gauge invariance built-in.

In section 4 we will adopt the second approach for the example of the general NMSSM (and apply it
specifically to the variant known as the uNMSSM [63]). We establish the necessary formalism for the
matching and give a detailed examination, via implementing the computation in a modified SPheno
[87,88] code generated from SARAH [13, 16, 33,89-93].

2 Treatment of tadpoles for theories with heavy scalars

For a general renormalisable field theory, once we have solved the vacuum minimisation conditions and
diagonalised the mass matrices, we can write the potential in terms of real scalar fields {¢;} as

1 1 1
V = const + 5 m; o7 + G disk G G5 O+ 57 Aiji i 5 bk D - (2.1)
If we take the standard approach and fix the expectation values, adjusting the mass parameters order
by order in perturbation theory, then as described in [27] we can write the pole masses as

(M2 = m2 4+ Ay + 11 (m2) = m? + AM2. (2.2)

(3

To define the shifts A; in a general way, we must start from some basis of fields {qb?} split into

expectation values and fluctuations so that qﬁ? =v; + QB? and then diagonalise the fields via é? = R;; ¢;.
In the simplest case where we solve the tadpole equations for some mass-squared parameters in the
original basis and where we ignore pseudoscalars, we can then write

1 AV 1

L 2 - Y2v _ 2 (M)

Ay = § R}, oo |~ § R} Ry o 6. (2.3)
k k 140=0 k,l

The generalisation to solving for other variables (such as cubic scalar couplings) and to include pseu-
doscalar mass shifts is given in [33].

On the other hand, taking the modified approach and including the tadpole diagrams, the pole
masses up to one loop are simply

(MZ?)(I) = m? — % Qjjj tgl) + Hgil) (m?) = mf + f[fll) (m?) , (2.4)

J

where we have defined ﬂij (p2) for later use to be the self-energies including the tadpoles. The ex-
pressions for the tadpoles and self-energies at one loop can be found e. g. in [27,94]; this calculation
is therefore more straightforward to automate, being purely diagrammatic in nature. An explicitly
gauge-invariant expression for this (i.e. one where there are no gauge parameters present) will be
given in future work.



2.1 A toy model

Let us now apply these general expressions to the simplest toy model that can illustrate the differ-
ences of prescriptions for dealing with radiative corrections to tadpoles. This consists of the abelian
Goldstone model coupled to a real singlet S, and has scalar potential

1 1 1 1 1
V =p?H* + R |H|* + §m§ S? +asy S|H|* + 3 Asn S? | H* + 508 S3 4 TR st (2.5)
with the fields

~

(v+h+iG), S=vs+ S, (2.6)

v and vg denoting the Higgs and singlet vacuum expectation values (vevs), respectively. The minimi-
sation conditions at the tree level yield the conditions

1 1
—M2:Z/\U2+G,SHU3+§)\SHU%7 (27)
1 1 1 1
(m?g + B AsH v2> Vg = 5 asg v? — ) as U?s* 6 As U% (2.8)

that lead to the tree-level (squared) mass matrix for the scalars (which do not mix with the massless
pseudoscalar):

M2 — 3 AV asgv + ASH v VS (2.9)
tree asg v+ ASgvUg m%—{—%)\SHUQ—{—aSvS%—%)\Sv% ' '

The one-particle irreducible one-loop contributions to the one- and two-point functions (see figure 1)
of this toy model are given by

1 1
75@(1) = 153 5 il A(m?2), (2.10)
1 1 1
HE;)(Pz) =162 [2 Nijkw A(my) — o @ikl @jkl B(p*, mi,m?)] (2-11)

with A and B denoting the scalar one-point and two-point one-loop integrals in the conventions of
e.g. [27,94], and p? denoting the external momentum. In the approach of keeping the vevs fixed, we
find for the one-loop pole masses:

1

(Mz?)(l) =m; — R} L tﬁf) — R} — tfql) + i (m3) (2.12)
v vg

where tg) = 8AV/8h}h§:0, tgl) = 8AV/85|hS:0. Thus the tadpole corrections suffer from the
division by the vev; in particular, the mass predictions can become numerically unstable in scenarios

O O |

tadpole topologies self-energy topologies connected tadpole topologies

Figure 1: left: one-loop tadpole diagrams; middle: one-loop self-energy diagrams appearing in standard and
modified calculation; right: additional self-energy diagrams in the modified approach.



with a small singlet vev. Let us see this in practice for our example when m% is large; in this case

CLSHU2 1 —
~N —_—— ~ mg
vs Ty R (afﬁsv ! ) (2.13)

If we take v small and just look at the singlet mass in the limit p?> — 0 for simplicity,* we have

1 2
AMg ~ Ilgs(0) — —ts D _AsTgl

logm% —1) +... 2.14
vs 9 0 (Ogms )+ ( )

When the system is really decoupled and v = 0, then vg ~ m% / ags and this expressions remains well-
controlled, but when 0 < v < mg — which is the case we are interested in — we instead have

asm

AME x log m% (2.15)

16 2 agy v?
which can be very large compared to m%

If we take the modified approach to tadpoles, then the relevant generic expression for the self-energy
is
1 1

1 1
— Niikk A(mz) — fa-klale(pz,mz,le) — — ik ak”A(m%)] ; (2.16)
1672 |27 2 2m? Y

(1) _
1L;; (p2) =

and for our example

=

2 2 2
W (m2) ~ I O_GSH“A 2y _ 9SF 42 L _Fk aSH_)\ 2 Too m2 9,17
SS(mS) ss(0) 2m% (mS) Qm% (ms) +... 9 m% s | mg logmg. (2.17)

Provided that asy < my, this is well under control, in contrast to the previous “standard” approach.

2.2 Numerical examples

We turn in this section to some numerical examples, to illustrate the different behaviours of the two
approaches to tadpoles in the toy model defined in eq. (2.5). For this purpose, we present results for
the one-loop pole masses Mj; and Mg computed diagrammatically both in the standard approach —
following eq. (2.2) — and in the modified approach of equation (2.4). For all the following figures, we
set A = 0.52, to reproduce a mass of the Higgs-like state near 125 GeV, and we also fix Agg = 0 and
As =1/24.

In figure 2, we show first M} (left side) and Mg (right side) as a function of the trilinear cou-
pling asp, at tree level (green curves) and at one loop in the standard (red curves) and modified
(blue curves) schemes for the tadpoles. We choose here a scenario with a large Lagrangian mass term
mg = 2000 GeV and a non-zero trilinear self-coupling ag = 100 GeV for the singlet (and we also fix
the renormalisation scale to be @ = 2000 GeV). Consequently, we find ourselves exactly in the dan-
gerous region 0 < v < mg, c.f. eq. (2.15), and as expected from our theoretical discussion, we find
that the standard treatment of the tadpoles breaks down. On the one hand, for M} one can observe
that the radiative corrections are larger in the standard approach and lead to larger variations of the
loop-corrected mass than in the modified tadpole scheme. On the other hand, more strikingly, the
results for Mg in the standard approach are manifestly spurious. Indeed, while the loop corrections
in the modified scheme remain very small (the green tree-level and blue one-loop curves are almost
superimposed), in the standard scheme the corrections are huge: for large agy 2 v — meaning not too

* This limit is not implemented in our code and serves only the more lucid presentation. In fact, an off-shell evaluation
of the self-energies implies unphysical behaviour of Higgs-mass predictions [95].
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Figure 2: M, (left) and Ms (right) as a function of agg. ms = @ = 2000 GeV, as = 100 GeV, A = 0.52, Agg = 0,
As = 1/24. The tree-level values are shown with the green curves, while the red and blue curves correspond to
the one-loop results using respectively the standard (eq. (2.2)) and modified (eq. (2.4)) treatments of tadpoles.

125 2500 ]
— tree level

1201 2000f  — one loop, std. ]
— — — one loop, mod.
(E 115k E 1500} ]
< )
= 110} — tree level ] = 1000¢ ]

— omne loop, std.
5001 ]
105} — one loop, mod.
500 1000 1500 2000 2500 500 1000 1500 2000 2500
mg [GeV] mg [GeV]

Figure 3: M), (left) and Ms (right) as a function of ms. Q = ms, asg = 150 GeV, as = 100 GeV, A = 0.52,
Asa =0, As = 1/24. The colours for the different curves are the same as in figure 2.
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Figure 4: M}y, (left) and Ms (right) as a function of asg. ms = 1000 GeV, Q = 5000 GeV, as = 0 GeV, A = 0.52,
Asg =0, As = 1/24. The colours for the different curves are the same as in figure 2.
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Figure 5: M}, (left) and Mg (right) as a function of asy. ms = Q = 500 GeV, as =0 GeV, Asg =0, A = 0.52,
As = 1/24. The colours for the different curves are the same as in figure 2.

small values of the singlet vev vg — they already amount to several hundred GeV, and if one decreases
as (thereby increasing AMZ, c.f. eq. (2.15)) the singlet pole mass becomes tachyonic below asy = v.

Next, in figure 3, we fix the trilinear coupling asy = 150 GeV and now consider M}, (left) and Mg
(right) as a function of the Lagrangian mass term mg. We also set @@ = mg and ag = 100 GeV. Once
again, with our choice of a non-zero singlet trilinear self-coupling ag and relatively small agy — hence
also a small singlet vev — we expect the standard approach to exhibit instabilities. For M), (left side
of figure 3) both approaches behave relatively well and no instability seems to occur, although the
radiative corrections are significantly larger in the standard scheme. However, for Mg the calculation
in the standard approach (red curve) once again breaks down when mg is increased — equivalently for
small vg — while the loop corrections to Mg in the modified approach (blue curve) remain minute.

In figure 4, we illustrate the behaviour of eq. (2.17). We plot once more M}, (left) and Mg (right)
as a function of the trilinear coupling agg, but now for a scenario where ag =0 (in order to avoid
large corrections AM g in the standard scheme), and with mg = 1000 GeV and @ = 5000 GeV so as
to increase the size of the logarithms @m% For small values of agpy, both schemes (red and blue
curves) produce very similar results, however, as agy becomes larger the radiative corrections to M
as well as Mg increase significantly in the modified tadpole scheme, leading to less reliable predictions
(especially for agy 2 300-400 GeV).

Finally, we present in figure 5 an example of scenario in which both ways to treat the tadpole
contributions give reliable results. We take a small singlet mass parameter mg = 500 GeV, set ag = 0
and maintain agy < 200 GeV. We observe here that the radiative corrections to M} and Mg remain
well behaved in both approaches.

3 Pole mass matching with tadpole insertions

When matching two theories via pole masses, care must be taken that subleading logarithms are
correctly subtracted. The best way to do this is to expand the expressions on both sides of the
matching relation in terms of the same parameters; the most efficient way to do this is to use those
of the high-energy theory (HET) even though this adds a layer of complication because it is the SM
parameters that we know from the bottom-up observations. To this end we require the shifts in the
vacuum expectation value as well as gauge, Yukawa and of course quartic couplings.

The most straightforward way to match the vacuum-expectation value of the Higgs is via matching
the Z mass, which gives (see e. g. [26,29, 41]):

4

v = vher + 5 [ (0) - TI40)] + O("). (3.1)
Y 2



If we match the one-loop Higgs mass in the SM to the HET, where the light Higgs mass at tree level
is mg, then we have

2 Asn vdns + Th (2 Asn 8 ) = mg + T (mf) (3.2)
Asvt = 5 | m -+ T () — LY (md) — —— o [F1857(0) ~ F134(0)] |
2vgET Vit (95 + 93)

It should be noted that — in order to preserve gauge invariance, and cancel large logarithms exactly
without introducing spurious subleading ones — the matching of the quartic coupling should be per-
formed according to this equation, as opposed to performing some iteration, matching eigenvalues of
the mass matrices, or separately matching the expectation values and Higgs mass (as performed in
some codes) [32,51]. With the prescription of including tadpole diagrams, this leads to

. 1 . 1
HthHhh—ahhkjtk, HZZ Enzz—gZZkﬁtk. (33)
my, my,
In the SM with £ D —Agu |H|* we have
. 6\v 3 . 2M?2
M =) — =M =1y — =M, 13 =n%y - —Z gV, (3.4)
h vmy,
and so
ssM M s sM Mh sM 3 .sM L, 2,8\ 2 mp e
Iy — 5 Uz =11, _7HZZ_;th +;th =AMgy — w5 U (3.5)

Z7Z
M M3 M

where the AMZ,, is now just the standard set of vacuum conditions as in egs. (1.4) or (2.2). So what
we have shown is that the modified treament of tadpoles cancels out exactly in the matching of the
light Higgs, for the SM part. Of course, the shift in the matching condition should only depend on the
Lagrangian parameters, which are not affected by the treatment of tadpoles, so the same is true for
the matching in the HET part up to terms of higher order in v.

We have already implicitly shown how the change in scheme affects the matching of the gauge
bosons; now for fermions we have

I_‘FiFj (p) =1 (p — mp) 51']' +1 [p (PL 25 (pg) + Pgr 23 (p2)) + Py, XAJ;S;L (p2) + Pg iij(pQ)} . (3.6)
For fermions at one loop we can write the mass-matrix corrections as
1
5mF:—ZSL—§(ERm+mEL). (3.7)

This means that our tadpole shift just affects
1 ik OV

oxS = xS — , 3.8
where 7% are the Yukawa couplings, that can be written in terms of Weyl spinors {1} as
L ik
LD —§y 1/12 ”l/Jj ¢k (3.9)

To match the Yukawa couplings via the pole masses of the quarks, the matching of the electroweak
expectation value must also be included; working in the basis with diagonalised Yukawa couplings, we

10



can match the diagonal elements as (using Y = y*#" for h the SM Higgs and a general fermion F)
1
MF:vYF—ESL—g(ZRm—FmEL), (3.10)

1 1 1
Ydu = Ypr + p— [(5mF)HET — (Omp)™ — — yheT tr + — Y t%M}
HET my, my

F
- o [ ) - 1340)]
= ¥l + [ Gme) ™ — )™ — L e - JEEE (157 0) - 1 0)]
VHET my, 2 M %

where we once again see that the shift in the tadpole scheme cancels out exactly in the SM part. This
procedure is particularly important since the shift to the expectation value arising in eq. (3.1) is very
large, as discussed in the introduction. In this case, since the corrections to u? — and therefore also to
v? — are very large, it becomes impractical in an implementation to actually use the “correct” value
of v in the high-energy theory. Indeed, this can even become impossible, if 612 is such that p? would
become positive in the SM! Instead, provided we take v much less than the matching scale, we can just
treat it as perturbation parameter to extract the SM values. In our numerical calculation in the next
section we do exactly this: we just use the SM value of v in both high- and low-energy theories, but use
the correct shifts of the expectation values in the matching of the parameters. This is very similar to
a standard EFT calculation, which assumes e. g. in split supersymmetry that the heavy Higgs masses
are tuned according to the mixing angle given as an input, and takes v = 0 explicitly, since we are not
interested in corrections to Lagrangian parameters of order v? / M? where M is the matching scale.

4 Application in the yYNMSSM

In the introduction, we explained that the modified treatment of tadpoles can be useful for stability
under perturbation theory of heavy scalar masses when they are associated with a small expectation
value. In section 2 we showed how it worked in practice in a toy model. In section 3 we described how,
for theories where the new scalars are substantially above the electroweak scale, it can be practically

applied via EFT matching of the pole masses. Here, we shall apply this technique to a real test case,
the uNMSSM.

4.1 NMSSM, yNMSSM and GNMSSM
The superpotential of the most general form of the NMSSM — the GNMSSM — is [96, 97|

1 1
WGNMSSM:YUQ-HUU—YdQ-HdD—YeL-HdE+§/£S3+(u+)\S)Hu-Hd+£S+§/ASSQ

and the supersymmetry-breaking terms in the Higgs sector are

Veott D m% [S|? + my, | Hul? + miy, |Hy)?
1

+ (BMHU~Hd+T,\SHu-Hd+3

THS3+;BSS2+§SS+h.c.>. (4.1)

Once the singlet develops an expectation value, we can write effective terms

1 1 1 1
MCHE/L—FEA'US, BCHEBM+\/iT)\US+)\<£+\/§/,LSUS+2K/'U%>, (42)
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and the tadpole equations become

2 2 M% 1 2
OZ—Beﬁcotﬁ—i-mHu+Meﬁ—7025+§)\05,
2

M 1
0= —Beﬁrtanﬁ—l-m%{d+N3H+TZCQ,B+§)\S%,

1
Ozvs(BS-l-m%-F,u%v-f-Qlﬁf)+EU§(TK+3I€HS)+,{2U§V

1
2+/2

The first two lines are essentially modified versions of the MSSM tadpole equations with an extra
term from the A coupling. The third line, however, is the crucial one for our discussion. In a general
non-supersymmetric theory, we can redefine singlet fields to remove their tadpole terms. However,
in the GNMSSM, which has tadpole parameters £ in the superpotential and &g in the soft-breaking
terms, we can only remove one of these, or the combination v/2 g & + v/2 5.

Clearly in the GNMSSM, it is most logical to choose a linear combination of the singlet tadpole
terms £ and &g (or just one) as the variable to be eliminated by the tadpole equations. However, this
is not possible in the NMSSM or uNMSSM, since these terms vanish by the assumption of (at least

partial) Zs symmetry. Then aside from (m%{u, m%{d) or (u, B,,), the dimensionful parameter that we

+V2pus €+ V2&s + v2<2)\,ueg—(T)\+2/<;)\vs+u5)\)52,3>. (4.3)

can now choose for elimination via the singlet tadpole equation is one of {m%, Lot T, T, H}.
Let us consider the case that the singlet is rather heavier than the SM-like Higgs, so that v? / m% < 1.
In the uNMSSM, neglecting all terms that break the Z3 symmetry except for 1 and B, we find

22 p — 1Ty s9
Vg = —’1)2 (anQB s (44)
S

where the true value can be found numerically.
The logical choice for this case is to solve for T). In this case we have

242 OAV
ATy = 2\[ (4.5)

v 893 Ovg

and the terms in the mass matrix become
1) (1) 2 (1)
vgt t magvus +t
M}%OhOD_QSS +O(%, M}%os :—M—F (46)
u'tu vesgcg myg uR v Sg

Note that this is in the “flavour basis” before we diagonalise the fields at tree level, so the contributions
to the light Higgs and heavy singlet masses are o tg) / m?g

On the other hand, this choice leads to a (potentially very) large quantum correction to Ty. Suppose
we want to investigate gauge-mediation scenarios where trilinears are small (nearly vanishing), or are
otherwise specified by the top-down inputs — this would be completely inappropriate. Furthermore,
we have to not only take into account shifts in the masses but also the couplings — this is moderately
cumbersome to implement at one-loop, but much more so if we want to compute the two-loop correc-
tions. Indeed, it is not included in the algorithm to generate “consistent vacuum equations” of [27,70],
which assumes that the parameters that we solve the tadpole equations for only affect scalar masses.

To solve both of these issues the simplest choice is to solve for m%, and this leads to exactly the

same problem as in the toy model, that the corrections to the singlet mass scale as tgl) / vg leading
to numerical instabilities for tiny vg. Hence this model is an excellent prototype for comparing the
different approaches to solving the tadpole equations.
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4.2 Numerical comparison of tadpole schemes

We present in this section numerical investigations of several scenarios of the uNMSSM illustrating
the differences between the two approaches to the treatment of tadpoles. For this, we compare results
obtained using the original version of SPheno code obtained directly from SARAH (for the model SMSSM),
as well as with a version of the Fortran output extensively modified according to the prescriptions
described in section 3. We have devised three types of scenarios:

e Scenario 1: large singlet vev and intermediate \;
e Scenario 2: small singlet vev and small A;
e Scenario 3: small singlet vev but large .

Table 1 summarises the values taken for the BSM input parameters relevant for SPheno — note that
we have adjusted the soft terms mg (scalar mass) and Ag (scalar trilinear coupling) in order to obtain
a mass for the lightest Higgs boson within the interval [123 GeV, 127 GeV]. We should also emphasise
that the numbers in table 1 are given to SPheno as high-scale inputs (as this only requires a limited
set of values). We then convert these into low-scale input parameters using the standard version of
the uNMSSM SPheno code, and the plots presented in the following are obtained by varying one of
the low-scale inputs. In light of the analytic expressions in the previous section, we can expect the
two approaches to the tadpoles to give relatively similar results in scenario 1, where the singlet vev
is large. However, in scenarios 2 and 3, the singlet vev is taken to be small, so that the differences
between the two schemes should be more pronounced. Scenario 3 furthermore allows us to investigate
the effect of increasing the coupling A.

We show first in figure 6 the behaviour of the lightest Higgs mass Mj, (left side) and of the additional
CP-even Higgs-boson masses M}y, and My, (right side) as a function of the superpotential coupling
A. The tree-level values are shown in green, while the one-loop results using the standard and the
modified treatments of tadpoles are in red and blue respectively. Among the two BSM states ho
and hg, the former is singlet-like while the latter is doublet-like, in this figure. As can be seen in
the right-hand side plot of figure 6, the heavy Higgs bosons receive only minute mass corrections in
either of the approaches for tadpoles. For the lightest scalar mass My, , the results in the two schemes
are also in excellent agreement. However, we have cut off the plot before A = 0.19 because beyond
this value perturbativity is lost: in the standard approach the singlet-like pseudoscalar Higgs becomes
tachyonic at one loop (from a tree-level mass of 750 GeV!). If we continued the plot into this regime

T This private code is not intended for public release, although it is available on request from the authors. The new
functionality should eventually be made available in a future release of SARAH.

Scenario 1 2 3
mo [GeV] 2000 1500 1500
A 0.1 0.01 0.15
K 0.005 0.05 0.05
Ty [GeV] 1000 1000f 75001
vg [GeV] 3000 1.0 1.0f
11 [GeV] 500 200 200
s [GeV] 0 ~200 ~200
¢[Gev?] | 1.0-10% | 1.7-105 | 5.0 - 10*
B, [GeV?] | 2.0-10° | 1.0-10° | 4.0 10°

Table 1: Definitions of the input parameters in the considered uNMSSM scenarios. Some of the BSM parameters
are not modified, and remain the same for the three scenario. Namely, we take: tanf = 10, mi2 =2 TeV,
Ap =3 TeV, By =0, ma =500 GeV, T, = —0.5 GeV. The renormalisation scale is kept at @@ =3 TeV for all
computations. Finally, the numbers marked with a “t” are varied for some of the parameter scans.
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Figure 6: M), (left) and My, and My, (right) as a function of A, in scenario 1. The other inputs are taken as
in table 1. Tree-level values are shown with green curves, while the red and blue curves correspond to the pole
masses computed at one loop, respectively with the standard and modified approaches to the tadpoles. The colour

coding of the figures remains the same for all figures in this section.
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Figure 7: My, (left) and My, and My, (right) as a function of the soft trilinear coupling T, in scenario 2. The
values of the other BSM parameters are taken as in table 1.
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Figure 8: My, (left) and My, and My, (right) as a function of vg, in scenario 2. Input values for the other BSM

parameters are given in table 1.
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we would see the predictions diverging, with the standard approach predicting ever decreasing masses
and the modified approach increasing ones for larger A (compare 104 GeV and 138 GeV respectively
for A =0.3).

Next, we turn to scenario 2, 7. e. we consider a small A = 0.01 and small singlet vev vg =1 GeV.
Figure 7 shows the behaviour of the CP-even masses as a function of the soft trilinear coupling T}, at
tree level and one loop (the colouring of the curves is the same as previously explained). We should
emphasise that we have made sure to fulfill constraints from vacuum stability (and the absence of a
charge-breaking minimum) on T} — see Ref. [63] — and the tree-level mass of the charged Higgs boson
remains positive for the entire range of T) investigated here. While for M}, (left side) and M}, (lower
curves of the right-side plot) it seems essentially impossible to distinguish the two approaches to the
tadpole treatment, the radiative corrections to M}, — the mass of the singlet-like scalar — are clearly
much larger with the standard method, and the result of the modified scheme is certainly more reliable.
As a concrete comparison, we have for the intermediate value T\ = 2 TeV a one-loop correction to
My, of 2752 GeV (1. e. 24% of the tree-level result) in the standard approach, but only of —4.5 GeV in
the modified scheme.

We can confirm that the large difference between the two treatments of the tadpoles arises from the
small value of the singlet vev vg. Indeed, in figure 8, we present the same three CP-even scalar masses
for vg varying between 0.5 and 100 GeV. One can observe that the results using both approaches for
all three masses are in good agreement for large values of the singlet vev. A short comment should
be made for My, : indeed, as vg increases the results from the two schemes seem to grow apart, and
it is somewhat difficult to determine which one should be trusted more in this case. We note that
the radiative corrections to Mj, keep increasing with vg in the standard approach while their size
remains relatively stable in the modified scheme. On the other hand, if we consider the situation for
vg 2 0.5 GeV, the breakdown of the standard approach for small singlet vevs becomes obvious. Indeed,
considering the different results for the mass M}, of the CP-even singlet-like scalar at vg = 0.5 GeV,
the one-loop corrections in the standard scheme amount to 6.5 TeV — in other words, 40% of the
tree-level result — compared to only —3.3 GeV (-0.02% of the tree-level mass) in the modified scheme.

Finally, we consider the third type of scenario, 7. e. what happens if we keep a small singlet vev
vg = 1 GeV but increase the coupling A to 0.15. In figure 9, we present the CP-even scalar masses as a
function of T — having once again made sure to maintain vacuum stability [63]. Considering first the
masses of the two doublet-like scalars 1 and ho, we observe an excellent agreement of the results from
the two tadpole schemes for low to intermediate values of T — for 0 < Ty < 4 TeV. However, as T)
becomes larger, the corrections to M}, and M}, in the modified approach start growing out of control.
This appears similar to the loss of accuracy of the modified scheme that we encountered in the toy model
of section 2 when increasing the trilinear coupling agp, which plays the same role as Ty — see eq. (2.17)
and figure 4. Turning however to the singlet-like mass M, we find (as in figure 7 for scenario 2) that
the radiative corrections are huge with the standard treatment of tadpoles, but remain well-behaved
with the modified one. Interestingly, having increased the value of A has not made the breakdown of
the standard calculation for the singlet-like mass more severe than in scenario 2. Nevertheless, the
one-loop result Mj, using the modified tadpole scheme is undoubtedly more reliable here.

Finally, we present in figure 10 the behaviour of the CP-even scalar masses as a function of the
singlet vev vg — restricting our attention to the low range 0.5 GeV < wvg <5 GeV. As can be read
from table 1, we have chosen for this figure a large value of the soft trilinear coupling Ty = 7.5 TeV,
which corresponds to the right parts of the plots in figure 9. Therefore, it is not surprising that we
observe some discrepancy between the results of the two tadpole schemes for all three masses, as
discussed above. More interestingly, we can compare the size of the loop corrections to Mj, in the
two approaches, as we vary vg. On the one hand, in the standard approach, the one-loop corrections
increase from 2.3 TeV (19% of the tree-level result) for vg = 2.5 GeV to as much as 9 TeV (40% of
the tree-level mass) for vg = 0.75 GeV, for instance. On the other hand, in the modified scheme, the
effects remain minute and vary from —46 GeV for vg = 2.5 GeV to —3.6 GeV for vg = 0.75 GeV (this
amounts to —0.38% and —0.02% of the results at tree level, respectively).
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Figure 9: My, (left) and My, and My, (right) as a function of Ty, in scenario 3. The other BSM inputs are
taken as in table 1.
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Figure 10: My, (left) and My, and My, (right) as a function of vg, in scenario 3. The values of the other
relevant inputs are given in table 1.

5 Conclusions

We have shown the advantages and limitations of taking a different prescription for the solution of
tadpole equations. In contrast to previous applications of this technique, in the SM or as a measure
of fine-tuning, we have shown that it can be very useful when new scalars having a small expectation
value are present in the theory, and in the case that they are much heavier than the electroweak scale, it
is best employed via the matching of pole masses in an EFT approach. While this technique offers the
advantages of perturbative stability for the heavy scalar masses, easy generalisability (the corrections
are simply computed diagramatically rather than via taking derivatives of the tadpole equations) and
gauge invariance, it can also lead to numerical instabilities in extracting the light Higgs mass, and the
loss of the ability to match the electroweak expectation value.

In future work, other than a general numerical implementation in SARAH, it would be interesting to
explore a hybrid approach (along the lines of option 1 described at the end of the introduction), where
only the electroweak expectation value is fixed by appropriate counterterms. On the other hand, we
intend to consider the corrections at two loops in this approach, and we shall also provide general
expressions for the one-loop self-energies which are explicitly gauge independent.
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