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Generating high-quality laser-plasma accelerated electron beams requires carefully balancing a plethora

of physical effects and is therefore challenging—both conceptually and in experiments. Here, we use

Bayesian optimization of key laser and plasma parameters to flatten the longitudinal phase space of an

ionization-injected electron bunch via optimal beam loading. We first study the concept with particle-in-

cell simulations and then demonstrate it in experiments. Starting from an arbitrary set point, the plasma

accelerator autonomously tunes the beam energy spread to the subpercent level at 254 MeV and

4.7 pC=MeV spectral density. Finally, we study a robust regime, which improves the stability of the laser-

plasma accelerator and delivers sub-five-percent rms energy spread beams for 90% of all shots.
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In a laser-plasma accelerator (LPA) [1,2], an intense laser

pulse excites a trailing plasma wave that can trap and

accelerate electrons from the plasma background. The

plasma wave supports accelerating fields that surpass those

of modern radio-frequency based machines by orders of

magnitude, which has led to the demonstration of few-

femtosecond [3,4], GeV-level electron beams over only cm

distances [5,6].

Despite rapid progress of the field, however, providing

the high-quality electron beams demanded by applications

[7–9] is still a major challenge. Generating high-brightness

laser-plasma electron beams requires carefully balancing a

multitude of physical effects that nonlinearly couple laser

and plasma parameters. Furthermore, probing the mecha-

nisms of a laser-plasma accelerator is typically associated

with high cost. Particle-in-cell (PIC) [10] simulations, that

adequately cover the physics involved, require high tem-

poral and spatial resolution, and are computationally very

expensive. Optimizing LPAs in experiments is further

complicated by the limited repetition rates and stability

of today’s drive lasers that typically constrain the available

knowledge of the system to a few noisy measurements.

Bayesian optimization (BO) is a method designed to find

optima of a costly to evaluate black-box function f based

on limited and noisy measurements [11] and therefore

seems well suited to optimize the complex parameter space

of particle accelerators. Only recently, this approach was

successfully applied to maximize the pulse energy of the

Linac coherent light source (LCLS) x-ray free-electron

laser [12].

In this Letter, we experimentally demonstrate the use

of Bayesian optimization to improve the beam quality

and stability of a laser-plasma accelerator. Based on

particle-in-cell simulations, we first demonstrate the

method’s capability to autonomously optimize the shape

of the beam’s longitudinal phase space by controlling only

a few experimentally accessible laser and plasma param-

eters. We then use the same algorithm to tune those

parameters in the experiment and, starting from noise,

optimize the accelerator to deliver subpercent energy

spread beams at 254 MeV and few-10 pC bunch charge.

By slightly adapting the BO algorithm, we find a regime

which drastically improves the stability of these beams.

Bayesian optimization is an optimization strategy that is

relevant for problems where an objective function f, i.e.,
the quantity that one wants to improve, is expensive to

probe or, as in most cases, takes a long time to evaluate. The

idea of BO is to make use of a surrogate model, i.e., a

mathematical model that approximates the real objective

function and is much faster and/or cheaper to evaluate.

Oftentimes, the surrogate model is generated through

Gaussian process regression [13], a machine learning
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technique which returns a probability distribution of

possible functions compatible with previous evaluations.

Thus, the model can not only predict the most probable

value of f at an unexplored location but it also provides an

uncertainty for this prediction. Since the goal is to maxi-

mize the objective function with as few direct evaluations

as possible, BO uses the surrogate model to determine the

most promising points to evaluate. To do so, the model

predictions and their uncertainties are combined into an

acquisition function which describes the strategy to deter-

mine the next parameters to sample. One of the most

commonly used acquisition functions is expected improve-

ment [11], i.e., the expected value of the improvement of a

new measurement over the current best sample. The

parameters which maximize the acquisition function are

selected as the input for the next direct evaluation. Other

choices of acquisition functions include upper confidence

bound [14], knowledge gradient [15], and entropy search

[16]. After the evaluation, the model is refined with the

newly gathered information. This process is repeated

iteratively to find the input parameters that maximize the

objective function.

Here, we apply Bayesian optimization to a laser-plasma

accelerator, which uses localized ionization injection in

combination with optimal beam loading to generate high-

quality electron beams [17]. To separate the injection from

the acceleration of the electron bunch, we use a plasma

profile as shown in Figs. 1(d)–1(f). In a short region of

nitrogen-doped hydrogen, inner shell electrons are first

injected via ionization injection [18–20] and then sub-

sequently accelerated in a plasma density plateau (n0)
formed from pure hydrogen. The final electron energy

spread is determined by the initially injected phase space,

the accumulation of correlated energy spread induced by

the strong accelerating gradient, and an effect known as

beam loading [21–25], which is driven by the current

profile of the injected bunch and modifies the longitudinal

accelerating field. When balancing those effects, the

combined wakefield and beam loading field effectively

result in a constant accelerating field over the entire bunch

length [17]. In turn, every variation of the system that has

an effect on the bunch charge, current profile, or the

amplitude of the wakefield, will directly influence the

energy spread of the accelerated electron bunch.

The influence of the dominant parameters deviating from

the optimum setting can be summarized as follows. Higher

laser energies drive a stronger wakefield, but also increase

the injected charge due to higher intensity in the N2-doped

region, which overloads the wakefield and results in a

positively chirped bunch. The focus position determines the

laser intensity in the injection region and thus the bunch

charge. Shifting the focus toward the end of the plasma can

therefore compensate higher laser energies and overloading

the wake. The charge of the beam can also be controlled by

the N2 concentration as it determines the density of

electrons available for injection. However, since the outer

shells of nitrogen release five electrons to the plasma

background, the N2 concentration also scales the plasma

density peak at the beginning of the target and the negative

density gradient between doped and pure hydrogen. The

change of the plasma wavelength in this transition roughly

determines the length of the injected bunch. Finally, the

plasma density in the plateau sets the plasma wavelength

and wakefield amplitude, which limits the bunch length and

its final energy. Although the main influence of each of

these parameters is conceptually known, their complex

interplay, as well as dynamic effects like the evolution of

the drive laser and the wake make it difficult to study the

system beyond such simple considerations. Particle-in-cell

simulations that capture the full physics are required.

In the following, we combine the Bayesian approach

with the spectral, quasicylindrical PIC code FBPIC [26,27]

to identify the optimum working point in the complex

parameter space that generates high-quality electron beams.

To optimize the spectral density of the electron bunch,

we maximized the objective function f ¼
ffiffiffiffi

Q
p

Ẽ=ΔE. Here,
Ẽ is the median energy and ΔE is the median absolute

deviation (mad) of the energy, which was found to be the

most robust measure for the beam energy spread. Reducing

the energy spread at the same time as maximizing the beam

charge is for example of interest to drive a future free-

electron-laser [7] which puts limitations on the allowed

spectral width of the electron beam while the radiation

output scales strongly with the beam charge and current.

The objective function uses a scaled bunch charge,
ffiffiffiffi

Q
p

, so

as to promote beams with smaller energy spread over

higher charge beams. We varied parameters that are easily

FIG. 1. Optimization PIC simulations of localized ionization

injection: longitudinal electron phase spaces (a)–(c) and corre-

sponding setups (d)–(f) with tunable nitrogen-hydrogen mixture

(purple) and pure hydrogen (blue) region, plasma density (gray)

and variable laser energy and focus position (red line). (g) The

objective function,
ffiffiffiffi

Q
p

Ẽ=ΔE, a measure for the spectral density,

improves during the optimization.
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accessible in the experiment: the N2 concentration, the

overall gas (plasma) density, the laser energy and focus

position.

Figures 1(a)–1(c) show the electron phase spaces after

exiting the plasma for selected steps of the optimization

which was seeded by running five simulations with random

input parameters. Initially, panels (a),(d), the electron phase

space has a positively correlated energy spread which is a

sign that the wakefield is overloaded. This happens because

the laser diffracts so that in the second half of the profile the

wakefield is too weak to support the charge of the beam.

The optimization algorithm compensates this by shifting

the laser focus toward the end of the density profile and by

increasing the laser energy, panels (b),(e). The wakefield is

now strong enough to support the full charge throughout

the entire plasma so that the phase space of the beam

flattens. By further shifting the focus downstream and

reducing the laser energy, panels (c),(f), the intensity in the

injection region is decreased. This constrains the injection

process and therefore the initial energy spread of the beam

so that its slice energy spread is reduced. Additionally, an

increase of the N2 concentration increases the charge of the

beam and its length due to the plasma density ramp that is

now at the transition between the mixed and pure gas

region. Because the front of the electron beam is now closer

to the drive laser it experiences a weaker accelerating field

and consequently its energy is lower. Finally, the optimized

beam has a charge of 52 pC and an energy of 258 MeVwith

an energy spread of 0.7% (mad). This value is close to the

slice energy spread of 0.4% at the center of the beam and

limited only by the bunch tail, which contains ∼10% of the

charge. The normalized transverse beam emittances are 1.5

and 0.3 mm mrad in x and y, respectively, where x is the

laser polarization plane (the evolution of the transverse

beam properties is shown in [28]).

After confirming that low energy spread beams are

theoretically possible in a carefully optimized setup, we

realized this scenario in an experiment using the LUX

plasma accelerator [32,33].

Figure 2 shows the experimental setup. The Ti:sapphire

drive laser ANGUS delivered pulses with up to 2.6 J

(∼1% rms stability) energy and 39 fs FWHM

(∼2.5% rms stability) pulse length that were focused by

a 2 m focal length off-axis parabola to a FWHM spot size of

25 μm with 1 Hz repetition rate. The laser energy was

controlled with an attenuator consisting of a thin-film

polarizer in combination with a motorized wave plate.

The pulse energy was measured with a pyroelectric sensor

using the leakage through a transport mirror. The focus

position of the laser was fine-tuned by shifting the

motorized lens of a beam expander behind the last amplifier

stage so that the beam reached the focusing parabola with

slight initial defocus. The defocus was measured with a

wave front sensor behind the parabola to infer the focus

position. To compensate drifts of the system, the attenuator

and the lens were controlled and stabilized in closed loop

with the energy and wave front measurements.

The target consisted of a microstructured sapphire plate

[17]. A 5-mm long square channel (500 μm edge length)

was continuously filled from two inlets of which the first

was supplied with a mixture of N2 and H2 and the second

with pure H2. The N2 concentration and gas pressure were

controlled via three independent mass-flow controllers.

These five parameters resembled the same degrees of

freedom that we used in the simulations presented above.

In addition, they provided control over the differential

pressure between the front and the back of the target, which

determines the transition between the mixed and pure gas

regions. After the target an electromagnetic quadrupole

doublet captured the accelerated beams and focused them

onto the scintillating screen of an electromagnet dipole

spectrometer. At the imaged energy, the spectrometer had a

resolution of 0.1%. In a range of �20 MeV around

the focused energy, the resolution was better than 1%.

The beam charge was measured with a cavity-based dark-

current monitor.

Again, we used f ¼
ffiffiffiffi

Q
p

Ẽ=ΔE as a measure for the

spectral density. Using the online measured laser energy

and defocus, the actual machine inputs were mapped to a

measured objective function. Thereby, the surrogate model

could attribute fluctuations of the objective function to

variations of the recorded laser parameters and the model

could be trained with consistent single shot data. To

account for remaining noise, caused by measurement errors

and variations of hidden laser parameters, we extended the

surrogate model with a white noise kernel.

We set the quadrupole doublet to image 270 MeV

electron beams onto the spectrometer. Beams with an

energy far off this set point were ignored by the optimi-

zation, due to the reduced energy resolution of the

spectrometer and the apparently larger energy spread.

To start the optimization, we acquired data at ten random

input settings. For each iteration, the optimization gathered

six shots and fed these individually to the surrogate model,

FIG. 2. Setup of the LUX accelerator. The laser energy and focus

position in the plasma source with variable gas flows are controlled

with a movable lens and an attenuator. Circular inset: plasma

density (blue and green) and the laser envelope from a particle-in-

cell simulation. The laser drives a spherical plasma cavity in the

back of which an electron beam is injected and accelerated.
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maximized the acquisition function on the updated model,

and then determined a new set point. Changes to the gas

system took a few seconds to have an effect. Therefore, the

machine was not tuned after every shot but by measuring

six shots at each machine setting the jitter of the laser

parameters could be used to locally explore the objective

function. Figure 3 shows the evolution of the system during

the optimization process. The initial beam, panel (a), has a

spectrum with a small peak and a pedestal toward higher

energies, which indicates that the beam still has a correlated

energy spread from un-matched beam loading. After a few

iterations, panel (b), a well-defined peaked spectrum is

measured. Slight adjustments increase the energy of the

beams to ∼260 MeV, panel (c). The decrease of the relative

energy spread that comes at the cost of beam charge results

in the improvement of the objective function. By balancing

the relevant laser and plasma parameters the algorithm was

able to find a setting with subpercent energy spread starting

from initially random conditions after a runtime of 45 min.

The fluctuations of the objective function around (c) can be

attributed to jitters of the laser parameters [17].

To characterize the accelerator performance at this set

point, we adopted the focusing to image a beam energy of

250 MeV for best spectral resolution. Figure 4 shows the

average spectrum of the 100 best of 2500 recorded events,

which we consider representative for operation at the

optimized settings. On average, these beams had 31 pC

and an energy of 254 MeV with 0.88% rms (0.68% mad)

energy spread.

By building the surrogate model on the basis of all

individual events, the algorithm aimed at settings where the

best possible beam could be generated, regardless of how

frequently these would occur. The drive laser parameters, in

particular the laser energy and focus position, still vary

slightly from shot to shot and were the main source of

electron beams deviating from the optimum. By including

the actual measurements of those parameters, the model

could interpret fluctuations of the objective function to a

large degree. However, variations of other hidden laser

parameters, that could not be recorded online, still were

substantial and reduced the precision of the model.

To improve the stability of the plasma accelerator, we

modified the optimization algorithm: instead of feeding the

surrogate model with individual shots, we collected 20

shots at each setting. We then determined the most frequent

objective value [28] to train the model together with the

averaged input parameters. Thereby, the algorithm favored

settings, where the majority of the beams had a high

quality, and thus balanced beam quality and stability.

Figure 5 shows a comparison between a reference

machine setting and a setting obtained with this modified

approach. The reference setting is manually tuned and

produces slightly higher energy spread than the beams from

Fig. 4. The stability of the electron energy spectrum under

the presence of shot-to-shot fluctuations of the drive laser is

significantly improved: 90% of the accelerated beams have

an energy spread smaller than 5%, compared to 60% of the

beams in our reference case. The relative charge stability is

similar with 45% in the optimized and 38% in the reference

case. Both settings share similar laser conditions, but the

stability-optimized setting has a lower N2 concentration

(3.6% compared to 10%), and ∼70% plasma density in the

plateau.

The reason for the improved stability becomes evident

when comparing the correlations between the bunch charge

and the laser focus position—a main characteristic of

localized ionization-injection schemes [17]. For the stabil-

ity-optimized setting, the correlation of beam charge with

focus position is significantly reduced. In both cases the

relative energy spread has a clear optimum for the same

FIG. 3. Experimental optimization of LPA electron beams:

(a)–(c) Measured energy spectra; (d) measured objective function

(dots) with the cumulative best result (blue line); (e)–(g) Input

parameters with shot to shot measurements of the laser energy,

focus position, and gas flows for each input setting.

FIG. 4. Energy spectrum at optimized settings: averaged

spectrum (black) and standard deviation (gray area) over the

best 100 of 2500 measured shots with a Gaussian fit (σE;fit, blue)

and corresponding statistics. The energy spectra are normalized

to their respective median energy, to eliminate the effects of shot-

to-shot energy variations (1.5% rms) from the statistics.
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focus position. However, deviations from the optimum

increase the energy spread less in the optimized case. To

further elucidate the differences between both regimes, we

have modeled them using PIC simulations: as a result of the

lower N2 concentration and plasma density plateau, the

injected beams are significantly shorter in the high-stability

regime. As a variation in focus position mainly changes the

charge density of the injected bunch, the total charge

fluctuation is smaller for shorter beams. A comparison

of the longitudinal phase spaces for both settings [Fig. 5(e)]

shows that even though both cases develop roughly the

same energy chirp for the same variation of the focus

position, the shorter bunch length results in a smaller

projected energy spread. Consequently, tuning the bunch

length we can trade bunch charge and spectral density for

robustness against intensity fluctuations. The set points

found with the optimization method were still used after

several weeks and gave comparable performance.

In conclusion, we have studied a localized ionization

injection target, which generates high spectral density and

low energy spread electron beams through optimization of

beam loading. Providing electron beams for applications

requires finding the optimal working point of laser and

plasma parameters for high-quality beams within a com-

plex parameter space and then operating consistently at this

setting. We have introduced Bayesian optimization as a tool

to identify an optimized working point and, by proper

choice of the objective function, a new regime of high

stability. After finding a new regime, it is however crucial to

elucidate the underlying physics using correlations and

high-statistic measurements supported by simulations. To

demonstrate this concept we have traced stability improve-

ments back to a shortened bunch length, which reduces the

influence of energy chirp on the projected beam energy

spread. We could generate high-quality low energy spread

electron beams just by tuning readily accessible experi-

mental parameters.

Furthermore, BO is a very promising tool to optimize the

charge, divergence, and betatron photon yield in a laser-

plasma accelerator in real time [34]. Further optimizing the

spatiotemporal properties of the drive laser, additional

improvements might be achieved [35–37] and the use of

physics-informed surrogate models [12] could speed up the

optimization.

Combining together Bayesian optimization, PIC simu-

lations, and access to real-time measurements and control

settings in one system provides a powerful tool for the

design and operation of laser-plasma accelerators leading to

the demonstrated stable, high-quality beams. It can guide

our understanding of the complex interplay between the

experiment parameters and will thus become an important

method for the development and operation of future laser-

plasma accelerators.
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