
ar
X

iv
:2

1
0
1
.0

8
9
5
5
v
1
  
[p

h
y
si

cs
.a

cc
-p

h
] 

 2
2
 J

an
 2

0
2
1

Re-evaluation of Spin-Orbit Dynamics of Polarized e
+
e
− Beams in

High Energy Circular Accelerators and Storage Rings: an approach

based on a Bloch equation∗

Klaus Heinemann 1

Department of Mathematics and Statistics, University of New Mexico,
Albuquerque, NM 87131, USA

heineman@math.unm.edu

Daniel Appelö 2
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Abstract

We give an overview of our current/future analytical and numerical work on the spin polarization in
high-energy electron storage rings. Our goal is to study the possibility of polarization for the CEPC and
FCC-ee. Our work is based on the so-called Bloch equation for the polarization density introduced by
Derbenev and Kondratenko in 1975. We also give an outline of the standard approach, the latter being
based on the Derbenev-Kondratenko formulas.

Keywords: electron storage rings, spin-polarized beams, polarization density, FCC, CEPC, stochastic
. differential equations, method of averaging.
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1 Introduction

This paper is an update on a talk by K. Heinemann at the IAS Mini-Workshop on Beam Polarization in
Future Colliders on January 17, 2019, in Hong Kong.1 Our ultimate goal is to examine the possibility of
high polarization for CEPC and FCC-ee.

We will first briefly review the “standard” approach which is based on the Derbenev-Kondratenko for-
mulas.2 These formulas rely, in part, on plausible assumptions grounded in deep physical intuition. So
the following question arises: do the Derbenev-Kondratenko formulas tell full story? In fact there is an
alternative approach based on a Bloch-type equation for the polarization density3 which we call 3 the Bloch
equation (BE) and which we believe can deliver more information than the standard approach even if the
latter includes potential correction terms.4 So we aim to determine the domain of applicability of the
Derbenev-Kondratenko formulas and the possibility in theory of polarization at the CEPC and FCC-ee
energies. Of course both approaches focus on the equilibrium polarization and the polarization time. We
use the name “Bloch” to reflect the analogy with equations for magnetization in condensed matter.5 This
paper concentrates on the Bloch approach. The cost of the numerical computations in the Bloch approach
is considerable since the polarization density depends on six phase-space variables plus the time variable so
that the numerical solution of the BE, the BE being a system of three PDEs in seven independent variables,
is a nontrivial task which cannot be pursued with traditional approaches like the finite difference method.
However we see at least five viable methods:

1. Approximating the BE by an effective BE via the Method of Averaging and solving the effective
BE via spectral phase-space discretization, e.g., a collocation method, plus an implicit-explicit time
discretization.

2. Solving the system of stochastic differential equations (SDEs), which underlies the BE, via Monte-Carlo
spin tracking. See Ref. 6 for the system of SDEs underlying the BE.

3. Solving the Fokker-Planck equation, which underlies the BE, via the Gram-Charlier method.

4. Solving the BE via a deep learning method.

5. Solving the system of SDEs in a way that allows connections with the Derbenev-Kondratenko formulas
to be established.

We will dwell on Method 1 in this paper. We plan to validate this method by one of the other four
methods. More details on Method 1 can be found in Ref. 6. The method of averaging we use is discussed
in Refs. 7-12. One hope tied to Method 1 is that the effective BE gives analytical insights into the spin-
resonance structure of the bunch. Note that Methods 1-4 are independent of the standard approach. In
particular they do not rely on the invariant spin field. Note also that Methods 1-3 and 5 are based on
knowing the system of SDEs, which underlies the BE. For details of this system of SDEs, see the invited
ICAP18 paper of Ref. 6. Regarding Method 2 there is a large literature on the numerical solution of SDEs,
see Refs. 13, 14 and references in Ref. 15.

By neglecting the spin-flip terms and the kinetic-polarization term in the BE one obtains an equation
that we call the Reduced Bloch equation (RBE). The RBE approximation is sufficient for computing the
radiative depolarization rate due to stochastic orbital effects and it shares the terms with the BE that are
challenging to discretize. For details on our phase-space discretization and time discretization of the RBE,
see Refs. 6,16,17 and 18.

We proceed as follows. In Section 2 we sketch the standard approach. In Section 3 we present, for the
laboratory frame, the BE and its restriction, the RBE. In Section 4 we discuss the RBE in the beam frame
and in Section 5 we show how, in the beam frame, the effective RBE is obtained via the method of averaging.
In Section 6 we describe ongoing and future work.

3Note that in previous work we sometimes called it the full Bloch equation.

4



2 Sketching the standard approach based on the Derbenev-Kondratenko

formulas

We define the “time” θ = 2πs/C where s is the distance around the ring and C is the circumference. We
denote by y a position in six-dimensional phase space of accelerator coordinates which we call beam-frame
coordinates. In particular, following Ref. 19, y6 is the relative deviation of the energy from the reference
energy. Then if, f = f(θ, y) denotes the normalized 2π-periodic equilibrium phase-space density at θ and y

and ~Ploc = ~Ploc(θ, y) denotes the local polarization vector of the bunch we have

∫

dy f(θ, y) = 1 ,

∫

dy f(θ, y)~Ploc(θ, y) = ~P (θ) , (1)

where ~P (θ) is the polarization vector of the bunch at θ. For a detailed discussion about ~Ploc, see, e.g., Ref.
20. Here and in the following we use arrows on three-component column vectors.

Central to the standard approach is the invariant spin field (ISF) n̂ = n̂(θ, y) defined as a normalized
periodic solution of the Thomas-BMT-equation in phase space, i.e.,

∂θn̂ = LLiou(θ, y)n̂+Ω(θ, y)n̂ , (2)

such that

1.
∣

∣

∣
n̂(θ, y)

∣

∣

∣
= 1,

2. n̂(θ + 2π, y) = n̂(θ, y),

and where LLiou denotes the Hamiltonian part of the Fokker-Planck operator Ly
FP, the latter being introduced

in Section 3 below. For some of our work on the ISF see Refs. 21 and 22. The unit vector of the ISF on the
closed orbit is denoted by n̂0(θ) and it is easily obtained as an eigenvector of the one-turn spin-transport
map on the closed orbit.19 There are many methods for computing the ISF but none are trivial (for a
recent technique see Ref. 23). In fact the existence, in general, of the invariant spin field is a mathematical
issue which is only partially resolved, see, e.g., Ref. 21. The standard approach assumes that a function
PDK = PDK(θ) exists such that

~Ploc(θ, y) ≈ PDK(θ)n̂(θ, y) . (3)

Thus, by (1) and (3),

~P (θ) =

∫

dy f(θ, y)~Ploc(θ, y) ≈ PDK(θ)

∫

dy f(θ, y)n̂(θ, y) . (4)

The approximation (3) leads to2

PDK(θ) = PDK(∞)(1 − e−θ/τDK) + PDK(0)e
−θ/τDK , (5)

where τDK and PDK(∞) are given by the Derbenev-Kondratenko formulas

PDK(∞) :=
τ−1
0

τ−1
DK

, (6)

τ−1
DK :=

5
√
3

8

reγ
5
0~

m

C

4π2

∫ 2π

0

dθ
〈 1

|R|3 [1−
2

9
(n̂ · β̂)2 + 11

18

∣

∣

∣
∂y6

n̂
∣

∣

∣

2

]
〉

θ
, (7)

τ−1
0 :=

reγ
5
0~

m

C

4π2

∫ 2π

0

dθ
〈 1

|R|3 b̂ · [n̂− ∂y6
n̂]
〉

θ
, (8)

with

•

〈

· · ·
〉

θ
≡
∫

dy f(θ, y) · · ·

5



• b̂ = b̂(θ, y) ≡ normalized magnetic field, β̂ = β̂(θ, y) ≡ normalized velocity vector, γ0 ≡ Lorentz factor
of the reference particle, R(θ, y) ≡ radius of curvature in the external magnetic field, re ≡ classical
electron radius, m ≡ rest mass of electrons or positrons.

By (4) and for large θ

~P (θ) ≈ PDK(∞)

∫

dy f(θ, y)n̂(θ, y) , (9)

where PDK(∞) is given by (6) and where the rhs of (9) is the approximate equilibrium polarization vector.
Note that the latter is 2π-periodic in θ since f(θ, y) and n̂(θ, y) are 2π-periodic in θ. Defining

τ−1
dep :=

5
√
3

8

reγ
5
0~

m

C

4π2

∫ 2π

0

dθ
〈 1

|R|3
11

18

∣

∣

∣
∂y6

n̂
∣

∣

∣

2〉

θ
, (10)

we can write (7) as

τ−1
DK = τ−1

dep +
5
√
3

8

reγ
5
0~

m

C

4π2

∫ 2π

0

dθ
〈 1

|R|3 [1−
2

9
(n̂ · β̂)2]

〉

θ
. (11)

For details on (6), (7), (8), (10) and (11) see, e.g., Refs. 24 and 19.
We now briefly characterize the various terms in the Derbenev-Kondratenko formulas. First, τ−1

dep is

the radiative depolarization rate. Secondly, the term
reγ

5

0
~

m
C
4π2

∫ 2π

0 dθ
〈

1
|R|3 b̂ · n̂

〉

θ
in τ−1

0 and the term

5
√
3

8
reγ

5

0
~

m
C
4π2

∫ 2π

0 dθ
〈

1
|R|3

〉

θ
in τ−1

DK cover the Sokolov-Ternov effect. Lastly, the term− reγ
5

0
~

m
C
4π2

∫ 2π

0 dθ
〈

1
|R|3 b̂·

[∂y6
n̂]
〉

θ
in τ−1

0 covers the kinetic polarization effect and the term in τ−1
DK which is proportional to 2/9 covers

the Baier-Katkov correction.
We now sketch three approaches for computing PDK(∞) via the Derbenev-Kondratenko formulas. All

three approaches use (6) but they differ in how τ−1
0 and τ−1

DK are computed.

(i) Compute τ−1
0 via (8) and τ−1

DK via (7) by computing f and n̂ as accurately as needed.

(ii) Approximate τ−1
0 by neglecting the usually-small kinetic polarization term in (8) and by approximating

the remaining term in (8) by replacing n̂ by n̂0. Compute τ−1
DK via (11) where τ−1

dep is not computed via
(10) but via Monte-Carlo spin tracking and where the remaining terms in (11) are approximated by
using the n̂0-axis.

4

(iii) Compute τ−1
0 via (8) and τ−1

DK via (7) by linear approximation in orbit and spin variables via the
so-called SLIM formalism.19

Approach (ii) is the most practiced while approach (i) is only feasible if one can compute f and n̂ as accurately
as needed (which is not easy!). Approach (iii), which was historically the first, is very simple and is often
used for ballparking PDK(∞). Since the inception of the Derbenev-Kondratenko formulas correction terms
to the rhs of (10) have been suspected. See Refs. 4, 28 as well as Z. Duan’s contribution to this workshop.
These correction terms, associated with so-called resonance crossing, in turn associated with large energy
spread, are not as well understood as the rhs of (10), partly because of their peculiar form. Nevertheless,
careful observation of spin motion during the Monte-Carlo tracking in approach (ii), might provide a way to
investigate their existence and form.

4Prominent Monte-Carlo spin tracking codes are SLICKTRACK by D.P. Barber,19 SITROS by J. Kewisch,19 Zgoubi by F.
Meot,25 PTC/FPP by E. Forest,26 and Bmad by D. Sagan.27 This approach provides a useful first impression avoiding the
computation of f and n̂. For more details on this approach see Ref. 19. Monte-Carlo tracking can also be extended beyond
integrable orbital motion to include, as just one example, beam-beam forces. Note that Monte-Carlo tracking just gives an
estimate of τ−1

dep
but it does not provide an explanation. Nevertheless, insights into sources of depolarization can be obtained

by switching off terms in the Thomas-BMT equation. In principal such diagnoses can also be applied in approach (i). Such
investigations can the systematized under the heading of “spin matching”.19
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3 The Bloch equation and the Reduced Bloch equation in the

laboratory frame

In the previous section we used the beam frame and we will do so later. However the BE was first presented
in Ref. 3 for the laboratory frame and in that frame it also has its simplest form. In this section we focus
on the laboratory frame.

In a semiclassical probabilistic description of an electron or positron bunch the spin-orbit dynamics is
described by the spin-1/2 Wigner function ρ (also called the Stratonovich function) written as

ρ(t, z) =
1

2
[flab(t, z)I2×2 + ~σ · ~ηlab(t, z)] , (12)

with z = (~r, ~p) where ~r and ~p are the position and momentum vectors of the phase space and t is the time, and
where flab is the phase-space density of particles normalized by

∫

dzflab(t, z) = 1, ~ηlab is the polarization
density of the bunch and ~σ is the vector of the three Pauli matrices. As explained in Ref. 20, ~ηlab is
proportional to the spin angular momentum density. In fact it is given by ~ηlab(t, z) = flab(t, z)~Ploc,lab(t, z)

where ~Ploc,lab is the local polarization vector. Thus flab = Tr[ρ] and ~ηlab = Tr[ρ~σ]. The polarization vector
~Plab(t) of the bunch is ~Plab(t) =

∫

dz~ηlab(t, z) =
∫

dzflab(t, z)~Ploc,lab(t, z).
Then, by neglecting collective effects and after several other approximations, the phase-space density

evolves according to Ref. 3 via

∂tflab = Llab
FP (t, z)flab . (13)

Using the units as in Ref. 3 the Fokker-Planck operator Llab
FP is defined by

Llab
FP (t, z) := Llab

Liou(t, z) +
~Frad(t, z) + ~Qrad(t, z) +

1

2

3
∑

i,j=1

∂pi
∂pj

Eij(t, z) , (14)

where

Llab
Liou(t, z) := −∂~r ·

1

mγ(~p)
~p− ∂~p · [e ~E(t, ~r) +

e

mγ(~p)
(~p× ~B(t, ~r))] , (15)

~Frad(t, z) := −2

3

e4

m5γ(~p)
|~p× ~B(t, ~r)|2~p , (16)

~Qrad(t, z) :=
55

48
√
3

3
∑

j=1

∂[λ(t, z)~ppj]

∂pj
, (17)

Eij(t, z) :=
55

24
√
3
λ(t, z)pipj , λ(t, z) := ~

|e|5
m8γ(~p)

|~p× ~B(t, ~r)|3 , (18)

γ(~p) :=
1

m

√

|~p|2 +m2 , (19)

and with e being the electric charge of the electron or positron and ~E and ~B being the external electric and
magnetic fields.

The Fokker-Planck operator Llab
FP whose explicit form is taken from Ref. 3 is a linear second-order partial

differential operator and, with some additional approximations, is commonly used for electron synchrotrons
and storage rings, see Ref. 29 and Section 2.5.4 in Ref. 19. As usual, since it is minuscule compared to
all other forces, the Stern-Gerlach effect from the spin onto the orbit is neglected in (13). The polarization
density ~ηlab evolves via eq. 2 in Ref. 3, i.e., via that which we call the Bloch equation, namely

∂t~ηlab = Llab
FP(t, z)~ηlab +M(t, z)~ηlab

−[1 + ∂~p · ~p]λ(t, z)
1

mγ(~p)

~p× ~a(t, z)

|~a(t, z)| flab(t, z) , (20)

7



where

M(t, z) := Ωlab(t, z)− λ(t, z)
5
√
3

8
[I3×3 −

2

9m2γ2(~p)
~p~pT ] , (21)

~a(t, z) :=
e

m2γ2(~p)
(~p× ~B(t, ~r)) . (22)

The BE was derived in Ref. 3 from the semiclassical approximation of quantum electrodynamics and it is
a generalization, to the whole phase space, of the Baier-Katkov-Strakhovenko equation which just describes
the evolution of polarization along a single deterministic trajectory.30 Note also that, while the BE was
new in 1975, the orbital Fokker-Planck equation (13) was already known thanks to research of the 1950s,
e.g., Schwinger’s paper on quantum corrections to synchrotron radiation.31 The skew-symmetric matrix
Ωlab(t, z) takes into account the Thomas-BMT spin-precession effect. Thus in the laboratory frame the
Thomas-BMT-equation (2) reads as

∂tn̂lab = Llab
Liou(t, z)n̂lab +Ωlab(t, z)n̂lab . (23)

The quantum aspect of (13) and (20) is embodied in the factor ~ in λ(t, z). For example ~Qrad is a

quantum correction to the classical radiation reaction force ~Frad. The terms −λ(t, z)5
√
3

8 ~ηlab and

−λ(t, z) 1
mγ(~p)

~p×~a(t,z)
|~a(t,z)| flab(t, z) take into account spin flips due to synchrotron radiation and encapsulate the

Sokolov-Ternov effect. The term λ(t, z)5
√
3

8
2

9m2γ2(~p)~p~p
T ~ηlab encapsulates the Baier-Katkov correction, and

the term ∂~p · ~p λ(t, z) 1
mγ(~p)

~p×~a(t,z)
|~a(t,z)| flab(t, z) encapsulates the kinetic-polarization effect. The only terms in

(20) which couple the three components of ~ηlab are the Thomas-BMT term and the Baier-Katkov correction
term.

As mentioned above, there exists a system of SDEs underlying (20) (for details, see Ref. 6). In particular,
flab and ~ηlab are related to a spin-orbit density Plab = Plab(t, z, ~s) via

flab(t, z) =

∫

R3

d~s Plab(t, z, ~s) , (24)

~ηlab(t, z) =

∫

R3

d~s ~s Plab(t, z, ~s) , (25)

where Plab satisfies the Fokker-Planck equation corresponding to the system of SDEs in Ref. 6. These SDEs
can be used as the basis for a Monte-Carlo spin tracking algorithm, i.e., for Method 2 mentioned in Section
1 above. This would extend the standard Monte-Carlo spin tracking algorithms, which we mentioned in
Section 2 above, by taking into account all physical effects described by (20), i.e., the Sokolov-Ternov effect,
the Baier-Katkov correction, the kinetic-polarization effect and, of course, spin diffusion.

If we ignore the spin-flip terms and the kinetic-polarization term in the BE then (20) simplifies to the
RBE

∂t~ηlab = Llab
FP (t, z)~ηlab +Ωlab(t, z)~ηlab . (26)

The RBE models spin diffusion due to the effect of the stochastic orbital motion on the spin and thus contains
those terms of the BE which are related to the radiative depolarization rate τ−1

dep. This effect is clearly seen
in the SDEs (see, e.g., (28) and (29)).

4 The Reduced Bloch equation in the beam frame

In the beam frame, i.e., in the accelerator coordinates y of Section 2, the RBE (26) becomes

∂θ~η = Ly
FP(θ, y)~η +Ω(θ, y)~η . (27)

Because the coefficients of Ly
FP are θ-dependent, the RBE (27) is numerically and analytically quite complex.

So we first approximate it by treating the synchrotron radiation as a perturbation. Then, in order to solve

8



it numerically to determine the long-time behavior that we need, we address the system of SDEs underlying
(27) and apply the refined averaging technique presented in Ref. 32 (see also 7), for the orbital dynamics,
and extend it to include spin. The averaged SDEs are then used to construct an approximate RBE which
we call the effective RBE.

The system of SDEs underlying (27) reads as 5

dY

dθ
= (A(θ) + ǫRδA(θ))Y +

√
ǫR
√

ω(θ)e6ξ(θ) , (28)

d~S

dθ
= [Ω0(θ) + ǫSC(θ, Y )]~S , (29)

where the orbital dynamics has been linearized in Y and Ω = Ω0 + ǫSC has been linearized in Y so that

C(θ, Y ) =

6
∑

j=1

Cj(θ)Yj . (30)

Also, A(θ) is a Hamiltonian matrix representing the nonradiative part of the orbital dynamics and Y has
been scaled so that ǫR is the size of the orbital effect of the synchrotron radiation. Thus ǫRδA(θ) represents
the orbital damping effects due to synchrotron radiation and the cavities,

√
ǫRξ(θ) represents the associated

quantum fluctuations, ξ is the white noise process and e6 := (0, 0, 0, 0, 0, 1)T . In the spin equation (29), Ω0

is the closed-orbit contribution to Ω so that ǫSC(θ, Y ) is what remains and C(θ, Y ) is chosen O(1). Hence
ǫS estimates the size of Ω−Ω0. Both Ω0(θ) and C(θ, Y ) are, of course, skew-symmetric 3× 3 matrices. We
are interested in the situation where ǫR and ǫS are small in some appropriate sense.

Eqs. (28) and (29) can be obtained by transforming the system of SDEs in Ref. 6 from the laboratory
frame to the beam frame.33 However, since in this section we only deal with the RBE (not with the BE),
(28) and (29) can also be found in older expositions on spin in high-energy electron storage rings, e.g., Ref.
34. Note that these expositions make approximations as for example with the linearity of (28) in Y and the
linearity of C(θ, Y ) in Y .

With (28) and (29) the evolution equation for the spin-orbit joint probability density P = P(θ, y, ~s) is
the following spin-orbit Fokker-Planck equation

∂θP = Ly
FP(θ, y)P − ∂~s ·

(

(

Ω(θ, y)~s

)

P
)

, (31)

where Ly
FP is the orbital Fokker-Planck operator. The phase-space density f and the polarization density ~η

corresponding to P are defined by

f(θ, y) =

∫

R3

d~s P(θ, y, ~s) , ~η(θ, y) =

∫

R3

d~s ~s P(θ, y, ~s) , (32)

which are the beam-frame analogs of (24) and (25). The local polarization vector ~Ploc from Section 2 above
is related to f and ~η by

~η(θ, y) = f(θ, y)~Ploc(θ, y) . (33)

The RBE (27) follows from (31) by differentiating (32) w.r.t. θ and by using the Fokker-Planck equation for
P . This proves that (28) and (29) is the system of SDEs which underlie the RBE (27). For (27), see also
Ref. 20.

5 The Effective Reduced Bloch equation in the beam frame

The effective RBE is, by definition, an approximation of the RBE (27) obtained by approximating the system
of SDEs (28) and (29) using the method of averaging, see Refs. 7-12. We call the system of SDEs underlying

5We denote the random dependent variables like Y in (28) by capital letters to distinguish them from independent variables
like y in (27).
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the effective RBE the effective system of SDEs. We now discuss first-order averaging in the case where
ǫ := ǫS = ǫR is small.

To apply the method of averaging to (28) and (29) we must transform them to a standard form for

averaging, i.e., we must transform the variables Y, ~S to slowly varying variables. We do this by using a
fundamental solution matrix X of the unperturbed ǫ = 0 part of (28), i.e.,

X ′ = A(θ)X , (34)

and a fundamental solution matrix Φ of the unperturbed ǫ = 0 part of (29), i.e.,

Φ′ = Ω0(θ)Φ . (35)

We thus transform Y and ~S into the slowly varying U and ~T via

Y (θ) = X(θ)U(θ) , ~S(θ) = Φ(θ)~T (θ) . (36)

Hence (28) and (29) are transformed to

U ′ = ǫD(θ)U +
√
ǫ
√

ω(θ)X−1(θ)e6ξ(θ) , (37)

~T ′ = ǫD(θ, U)~T , (38)

where D and D are defined by

D(θ) := X−1(θ)δA(θ)X(θ) , (39)

D(θ, U) := Φ−1(θ)C(θ,X(θ)U)Φ(θ) . (40)

Of course, (37) and (38) carry the same information as (28) and (29). Now, applying the method of averaging
to (37) and (38), we obtain the following effective system of SDEs

V ′ = ǫD̄V +
√
ǫB(ξ1, ..., ξk)T , (41)

~T ′
a = ǫD̄(V )~Ta , (42)

where the bar denotes θ-averaging, i.e., the operation limT→∞(1/T )
∫ T

0 dθ · · · . Moreover ξ1, ..., ξk are statis-
tically independent versions of the white noise process and B is a 6× k matrix which satisfies BBT = Ē with
k = rank(Ē) and where Ē is the θ-average of

E(θ) = ω(θ)X−1(θ)e6e
T
6 X

−T (θ) . (43)

For physically reasonable A and Ω the fundamental matrices X and Φ are quasiperiodic functions whence
D,D(·, U) and E are quasiperiodic functions so that their θ averages D̄, D̄(V ) and Ē exist.

Our derivation of (41) from (37) is discussed in some detail in Ref. 6. We are close to showing that
U = V + O(ǫ) on θ-intervals of length O(1/ǫ) and it seems likely that this error is valid for 0 ≤ θ < ∞,
because of the radiation damping. This is a refinement of Ref. 32 and assumes a non-resonance condition.
Since the sample paths of U are continuous and U is slowly varying it seems likely that ~Ta is a good
approximation to ~T and we are working on the error analysis. Spin-orbit resonances will be an important
focus in the construction of D̄(V ) from (40) which contains both the orbital frequencies in X and the spin
precession frequency in Φ.

Since, by definition, the effective system of SDEs underly the effective RBE, the latter can be obtained
from the former in the same way as we obtained (27) from (28) and (29) (recall the discussion after (32)).
Thus the evolution equation for the spin-orbit probability density PV = PV (θ, v,~t) is the following Fokker-
Planck equation:

∂θPV = LV
FP(v)PV − ǫ∂~t ·

(

(

D̄(v)~t

)

PV

)

, (44)
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where

LV
FP(v) = −ǫ

6
∑

j=1

∂vj
(D̄v)j +

ǫ

2

6
∑

i,j=1

Ēij∂vi
∂vj

. (45)

The polarization density ~ηV corresponding to PV is defined by

~ηV (θ, v) =

∫

R3

d~t ~t PV (θ, v,~t) , (46)

so that, by (44), the effective RBE is

∂θ~ηV = LV
FP(v)~ηV + ǫD̄(v)~ηV . (47)

This then is the focus of our approach in Method 1. For more details on this section, see Refs. 6, 17 and 18.

6 Next steps

• Further development of Bloch-equation approach (numerical and theoretical), i.e., of Method 1 and
with a realistic lattice.

• Development of validation methods, i.e., Methods 2-4. Note that Method 2 is an extension of the
standard Monte-Carlo spin tracking algorithms and for that matter we will study Refs. 13, 14 and 15.

• Investigating the connection between the Bloch-equation approach and the standard approach based
on the Derbenev-Kondratenko formulas, and studying the potential for correction terms4 to τ−1

DK by
using the RBE.
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