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Table 2  - Uperin 3.5 antibacterial activity against Micrococcus luteus  

Uperin 3.5 MIC (µM)
MIC (µM) 

after 60°C treatment

Freshly dissolved 2 2

5-days incubated 4 16

Freshly dissolved FITC-labeled 8 -







(c) ssCD 

spectra of an uperin 3.5 thin-film, indicating the formation of 

 (solid curve).



)

 The dotted grey lines 

indicate wavenumbers of 1616, 1634 and 1652 cm-1. In all experiments (a-d), the signal of buffer 

only or DOPE:DOPG SUVs solution was negligible and subtracted from each measured sample.

Figure 3. Thermal stability and the effect of heat on the secondary structure of uperin 3.5 

fibrils 



 The dotted grey lines 

indicate wavelengths of 208 nm, 218 nm, and 222 nm.





Figure 4. Electron micrographs of uperin 3.5 fibrils formed on bacterial cells and of uperin 

3.5-induced membrane damage  
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