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ABSTRACT: Measuring the Higgs trilinear self-coupling Appp is experimentally demanding
but fundamental for understanding the shape of the Higgs potential. We present a compre-
hensive analysis strategy for the HL-LHC using di-Higgs events in the four b-quark channel
(hh — 4b), extending current methods in several directions. We perform deep learning to
suppress the formidable multijet background with dedicated optimisation for BSM Appp
scenarios. We compare the Appp constraining power of events using different multiplicities
of large radius jets with a two-prong structure that reconstruct boosted h — bb decays.
We show that current uncertainties in the SM top Yukawa coupling y; can modify Appp
constraints by ~ 20%. For SM y;, we find prospects of —0.8 < Apnn/AN, < 6.6 at 68% CL
under simplified assumptions for 3000 fb~! of HL-LHC data. Our results provide a careful
assessment of di-Higgs identification and machine learning techniques for all-hadronic mea-
surements of the Higgs self-coupling and sharpens the requirements for future improvement.
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Introduction

Discovering Higgs boson pair production pp — hh opens the only direct laboratory probe

of the Higgs trilinear self-coupling Appp, which is a principal goal of the LHC and its up-

grades [1-7]. Measuring Appp, is critical for characterising the dynamics of electroweak sym-
metry breaking that could be modified by beyond the Standard Model (BSM) physics [8-38].
Recent experimental [39-45] and phenomenological [46-48] advances in the four bottom

quark channel hh — 4b suggest that this final state is competitive for discovery [49-53].
Current 95% CL limits from ATLAS [54] (CMS [55]) on the dominant gluon fusion cross-
section reach 6.9 (22.2) times the SM, with the 4b channel being second most constraining
in ATLAS.



For direct self-coupling App, constraints, the present best combined 95% CL limit
with respect to the SM value )\E% is =5.0 < /\hhh/)\}sl% < 12.0, where 4b is among the
most competitive channels for values near )\E% [54]. ATLAS also reports tighter limits of
—2.3 < A\pnn/ )\}Sf}\fh < 10.3 when combining with indirect constraints from single Higgs chan-
nels [56]. In the 4b channel, these constraints and High Luminosity LHC (HL-LHC) pro-
jections [57, 58] only optimise for the SM coupling and without using events with boosted
Higgs bosons. However, non-SM A, values can modify Higgs boson kinematics such that
these analyses are no longer optimal for constraining App,. Boosted Higgs decays [59-62]
are targeted in resonant di-Higgs searches [44, 49], but not for self-coupling constraints.
Interestingly, ref. [46] suggests that these boosted reconstruction techniques can improve
the discovery significance of hh — 4b. Recent progress in h — bb analyses [63-70] and
the large signal statistics from the high branching ratio B(h — bb) ~ 58% motivate use of
advanced techniques for signal characterisation.

This paper synthesises these separate advances to present a comprehensive assessment
of HL-LHC analysis strategies across all kinematic regimes of the hh — 4b channel to
evaluate and improve Appp constraints. We now discuss the specific novelties of this paper.

We show that analyses optimised for discovery sensitivity of hh with SM couplings are
suboptimal for constraining Appn at the boundaries of projected limits. This is because
SM hh production has more boosted Higgs bosons than scenarios where )\hhh/)\;?% ~
5 due to the relative contributions of the interfering production amplitudes (figure 1).
Reconstructing Higgs bosons with lower boosts is more limited by trigger thresholds, but
we nonetheless demonstrate that optimising for signals with non-SM App;, rather than SM
values can improve Appp constraints. Furthermore, due to the small signal-to-background
ratios, our sensitivity is limited by systematics, whose size we vary to quantify its impact on
Annp constraints. Reducing the formidable multijet background can mitigate the impact
of systematics, whose suppression relies on modern b-tagging algorithms [71-73]. Our
study adopts expected improvements of the impact parameter resolution from inner tracker
upgrades crucial for b-tagging.

To further enhance sensitivity, we use neural networks [74-76] for deep learning, which
are witnessing widespread applications in particle physics [77-87]. We apply these state-
of-the-art techniques to reject backgrounds and improve constraining power of Appn. We
utilise a recently developed framework called SHapley Additive exPlanations (SHAP) [88]
to show what physics information the neural network learns.

Additionally, we investigate the impact of experimental effects such as the finite resolu-
tion of jet reconstruction and trigger limitations. This presents a more complete picture of
the limitations on the sensitivity of the hh — 4b channel beyond previous studies. We also
study the composition of the background in detail, including small backgrounds (such as
single Higgs production) and the impact of a neural network selection on this composition
and shape of background distributions. This is important as uncertainties in background
composition affect the experimental systematics of current analyses.

Finally, figure 1 shows that only the triangle diagram contains Appj, while the box
diagram contains two factors of the top Yukawa y;. Current y; uncertainties are ~ 20%
from pp — tth measurements [67, 69], which we account for in our results due to it being
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Figure 1. Leading order Feynman diagrams of Higgs boson pair production in gluon fusion. The
(a) ‘triangle’ amplitude features the trilinear self-coupling Az, and one power of the top Yukawa
yt, and (b) ‘box’ amplitude does not feature App;, and has two powers of y;. These two diagrams
interfere destructively in the SM.

sufficiently large to impact App; constraints as demonstrated in ref. [56]. Our y,-dependent
HL-LHC projections of Appp constraints allowing equal-footing comparison of sensitivity
for different boosted Higgs topologies in the 4b channel are new.

While we focus on 4b final states, techniques from these studies are readily applied
to other channels, such as bbr7T and bbyy that involve h — bb decays. Complementary
production and decay modes for hh production are explored in refs. [89-107].

This paper is structured as follows. Section 2 outlines the Monte Carlo simulation
of the signal and background processes together with discussion of detector emulation.
Section 3 describes the baseline and neural network analysis strategies. Section 4 presents
the results and statistical analysis before section 5 summarises our conclusions.

2 Signal and background modelling

In the SM after electroweak symmetry breaking, the Higgs self-coupling is determined by
the Higgs potential

V(h) = mph® + Aunnoh® + Annanh. (2.1)

This paper focuses on measuring the trilinear coupling Appp. This will directly test the
SM prediction m,21 = M\ppv?, and any deviation from this value is indicative of BSM
physics. The Higgs boson mass mj = 125 GeV and electroweak vacuum expectation value
v = 246 GeV are fixed to their independently measured values. Directly probing the quartic
self-coupling Apppp requires triple Higgs boson production [108-111], which is beyond the
scope of this work due to its highly suppressed cross-section. This section details the
Monte Carlo simulation of the signal and background used for our analyses. We outline
the phenomenology of Higgs pair production along with its simulation (subsection 2.1),
background processes (subsection 2.2), and detector emulation (subsection 2.3).



2.1 Higgs pair production

At leading order, the Higgs pair production cross-section has contributions from amplitudes
we refer to as ‘triangle’ and ‘box’, shown in figure 1, and their interference. These three
contributions scale with the top Yukawa and trilinear self-coupling as

2 2 4 3
Otriangle ™~ )‘hhhyt s Obox ™ Y, Olinterference ™ _)\hhhyt . (22)
g

Sensitivity to Appn therefore depends on probing the triangle and interference amplitudes.
The comparatively stronger dependence of the total cross-section on y; highlights the im-
portance of top Yukawa constraints for Apj, determination. The interference term probes
the sign of Appn, as it has a relative negative sign due to an additional fermion propaga-
tor in the box loop with respect to the triangle. This implies destructive interference for
Ann > 0. In the |Appn|/ye — oo limit, the total cross-section asymptotes to the same value
for either sign of Appp as the triangle contribution dominates over the interference.

To modify couplings (Appn, y¢) away from SM values ()\%%, ytSM), keeping all other SM
parameters fixed, we use the HEAVYHIGGSTHDM model [114]. This adopts the ‘improved
effective field theory’ prescription, which uses gluon-Higgs vertices in the large quark mass
limit and is improved by accounting for finite top mass effects as discussed in ref. [115].
Such corrections are important given loop momenta are comparable to the top mass pole.
We set couplings to all BSM particles to zero. We vary the top Yukawa gy, while fixing the
top mass to m; = 172GeV. We define k) = Ahhh/)\;sll;;/[h and r; = y;/yP™M to parameterise
variations from the SM couplings, as is conventional in the so-called ‘kappa framework’ [2].
This is a standard prescription, but to consistently study global constraints with other
measurements, a full effective field theory treatment is recommended [116-118]; this is
deferred to future work.

To sample points in the two-dimensional signal parameter space (Apnh,yt), we employ
MADGRAPH 2.6.2 [112, 113]. We consider only the dominant production mode via gluon
fusion gg — hh, inclusive of all Higgs boson decays. The NNPDF3.0 parton distribution
functions [119] at next-to-leading order (NLO) are used from the LHAPDF package [120].
We generate 100k Monte Carlo (MC) events per point and calculate cross-sections at leading
order (LO) in the strong coupling constant «;. Figure 2 illustrates the sampled points and
LO cross-sections calculated by MADGRAPH, where the SM value is around O'ISJIE)/I = 16fb
at /s = 14TeV, and table 1 shows LO cross-sections for example points. For k; = 1,
the LO cross-section falls to a minimum of 6.2fb at around k) = 2.5 due to destructive
interference. The cross-section gradient is also shallow around this minimum, rising by only
~ 15% to 7.0fb and 7.3 fb for k) = 2 and k) = 3 respectively. This makes Ay} constraints
around such values challenging using inclusive cross-section measurements alone. For the
training of the neural network (subsection 3.2), we use an identical generator configuration
to produce a dedicated set of high statistics samples with 250k events per k) variation for
fixed ky = 1 and use MADGRAPH to decay both Higgs bosons via h — bb.

We normalise the signal rate to NNLO.! We start from the LO MADGRAPH cross-
sections and improve their accuracy by applying Appp-dependent LO-to-NLO k-factors

!The cross-section for kx = 1 has recently been calculated to N>LO accuracy [121, 122].
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Figure 2. Leading order cross-sections opo from MADGRAPH [112, 113] as a function of the
variation of Higgs trilinear self-coupling x) and top Yukawa coupling x; from their SM values
)\,SLI,\L/[h,ny using the HEAVYHIGGSTHDM model [114]. The orange markers indicate the points
sampled from this parameter space.

K| = onvo/oro and a Appp-independent NLO-to-NNLO k-factor K” = onnLo/ONLO
such that onnpo = K{K"oMS'. For K}, we use the NLO cross-sections for non-SM vari-
ations of Appp from POWHEG-BOX-v2 [123]. The Appp-dependent LO-to-NLO k-factor
K\ = onro/oLo is 1.66 for k) = 1 and varies by 35% between —1 < k) < 5, ranging
from K\ = 1.56 at k) = 2 to 2.14 for k) = 5 [123]. For k) < —1 and > 5, we smoothly
extrapolate the k-factors in ref. [123] to asymptote at 1.95 and 2.1 respectively. In prin-
ciple, there is a y;-dependence on these NLO k-factors, but for simplicity we take these
to be r-independent. For the NLO-to-NNLO k-factor K”, the cross-section for k) = 1
at NNLO and next-to-next-to-leading logarithm (NNLL) accuracy [124, 125], with finite
top mass corrections to NLO accuracy [126-130], gives onnro = 39.6 fb [2]. Based on this,
oM§' = 16fb and K} = 1.66, we derive K" = (oxnLo/0MS')/ K} = 1.45. Table 1 shows the
LO cross-sections and overall k-factors K} K" applied for some example signals.

Turning to the differential distributions, variations in (Appp, y¢) away from SM values
induce striking features illustrated in figure 3. These are shown at parton level (‘parton
level’ refers to the b-quarks produced by the Higgs decays, before hadronisation or show-
ering), with other variables found in appendix A. Ideally, analyses should have a high
signal-to-background ratio S/B across different kinematic regimes of the Higgs boson as
their boosts can vary rapidly with variations in coupling.

Figure 3a shows k) values between 1 and 4 inclusive, where destructive interference
is near maximal and small k) variations cause dramatic changes to the mp; and pr(h)
distributions. For SM couplings, events are suppressed at low values 250 < my;, < 300 GeV
and peaks at mp, ~ 400 GeV, resulting in higher pr Higgs bosons. For k) = 2, destructive
interference causes the myy shape to vanish at mpy ~ 320 GeV. The signal instead occupies
localised regions on either side of this minimum: near the kinematic threshold and at higher
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Figure 3. Unit normalised distributions of the (upper) di-Higgs invariant mass my,;, and (lower)
Higgs transverse momentum pr(h) at parton level. The k) values highlight differential effects (a)
around the point of maximal destructive interference k) ~ 2.5 and (b) of constructive vs destructive
interference arising from the sign of k.

values where the Higgs bosons are more boosted. As k) increases to k) = 3 and 4, many
events shift to low my, < 350 GeV, where the Higgs bosons have comparatively lower pr.

Figure 3b shows how the sign of k) impacts the my, and pp(h) distributions. For
scenarios with destructive interference k) > 0, the signals x) > 5 all occupy low myy
values peaking near 250 GeV. Interestingly, as k) increases from 5 to 10, the my; and
pr(h) spectra become slightly harder. Meanwhile, scenarios with constructive interference
k) < 0 have a greater proportion of signal events occupying comparatively higher mp; and
pr(h) values. These qualitatively different kinematic features can help lift degeneracies in
the sign and value of Appp that give the same total cross-sections.

Physically, these features arises due to kinematic thresholds of the interfering ampli-
tudes. The triangle amplitude tends to dominate at lower myy, while the box diagram
has a kinematic threshold at approximately twice the top mass 2my., and impacts larger
mpy, values. Reconstructing these differential features, especially where the cross-section
gradient is small, can improve Appy, sensitivity.



Process pr(j§") [GeV] oS [pb]  N&m (x10%)  Leg [fb~1] k-factor
2023 20, 200] 2.3 x 100 2 0.087

262 200, 500] 1.5x 103 2 1.3 L3
262 [500, 1000] 35.3 2 56.7

202 > 1000 0.706 1.1 1560

4b 20, 200] 63.2 2 31.7

4b 200, 500] 2.82 2 710 L6
4b (500, 1000] 0.041 2 4.9 x 10t
4b > 1000 55 x 1074 2 3.6 x 106

tt — 532 2.1 3.95 1.4
tt+0bb 2.7 1.0 370 —
tth — 0.44 1.0 2300 —
bbh — 0.076 1.0 1.3x10*  —
Z7 — 11.5 1.0 87 —
Zh — 0.72 1.0 1400 —
Wh — 1.4 1.0 710 —
hh signal (ky, ki)

(1, Dsm — 0.016 0.1 6200 2.4
(2,1) — 0.0076 0.1 13000 2.3
(3,1) — 0.0082 0.1 12000 2.7
(5,1) — 0.037 0.1 2700 3.1
(10,1)  — 0.26 0.1 380 3.1

Table 1. Summary of Monte Carlo samples. The columns indicate any explicit parton level
generator preselection on the leading parton pr(j§), the leading order MADGRAPH cross-
section oMS*, the number of events generated N&. . and an estimate of the effective luminosity

Lot = N/ oS The k-factor is a scaling factor applied to account for NLO corrections for the

dominant backgrounds, and overall higher order corrections for the signal described in the main
text. Information for a representative set of signals are displayed in the bottom five rows. For the
signals, higher statistics samples of 250k events per point are generated for neural network training
as discussed in the main text.

2.2 Background processes

We calculate cross-sections and produce MC events at LO for background processes using
the same generator configuration as the signals, which are summarised in table 1. We refer
to processes with four real b-quarks at parton level as ‘irreducible’ backgrounds. Processes
with fewer than four real b-quarks can enter the analysis selection if a jet is misidentified
as a b-jet, which we refer to as ‘reducible’ backgrounds. We apply k-factors from ref. [46]
to account for NLO corrections for the dominant backgrounds shown in table 1.

We generate two sets of multijet processes: irreducible bbbb (4b) and reducible bbjj
(2027). We define light-flavour partons j as all quarks and gluons except bottom and top



j € {u,d,s,c,g}. The 2b2j cross-section is two orders of magnitude larger than 4b, so is
substantial even with powerful light jet rejection from b-tagging algorithms. We do not
simulate 4j to preserve computational resources and ref. [46] showed that this process is
subdominant compared to 4b and 2b2j. To improve statistics in high pr tails, we generate
events for ranges of leading parton pr(j§”) in MADGRAPH, sliced with lower bin edges at
20, 200, 500, 1000 GeV, where leading parton refers to b-quarks or light partons j.

We generate top quark pairs ¢t and the irreducible t¢+bb process at the matrix element
level, which together are expected to comprise around 10% of the background rates. For
single Higgs processes in associated production, we consider Wh, Zh, tth, bbh. These pro-
cesses typically have cross-sections that are an order of magnitude greater than di-Higgs,
and the presence of a Higgs boson increases the probability of events passing analysis selec-
tions than other electroweak processes. Finally, we consider the diboson ZZ process, which
has a modest cross-section and its 4b final state constitutes an irreducible background. We
generate at least one million events for each of these processes.

2.3 Detector emulation

For all signal and background samples, the decay, parton shower, hadronisation, and under-
lying event are modelled by PyTHIA 8.230 [131]. To save computational resources for our
simplified study, we do not emulate pileup. We expect that detector upgrades [132-134] and
improvements in pileup mitigation techniques [135-139] will reduce the impact of pileup.
To emulate reconstruction effects, we use DELPHES 3.4.1 [140] and assume the default AT-
LAS configuration card unless stated otherwise. We define three sets of reconstructed jets
using the anti-k; clustering algorithm [141, 142] with radius parameter R:

e Small jets (jsg) are defined with R = 0.4 and cluster only calorimeter towers. We
impose pt > 40 GeV on all these jets to emulate the detector trigger requirement.
We require these to be within a tracking acceptance of |n| < 2.5 to allow b-tagging,
where 7 is the pseudorapidity.

e Large jets (jr) are defined with R = 1.0, also clustering only calorimeter towers.
= 2my,, we require

~

Based on the expected kinematics of boosted Higgs bosons pr
these to satisfy pp > 250 GeV and be central || < 2.0.

o Track jets (jr) are defined by clustering only tracking information using R = 0.2.
We impose kinematic requirements of pp > 20GeV and |n| < 2.5. We associate
these track jets to large jets if their distance satisfies AR(jr,jr) < 1.0, where AR =

BO7 T (AP

For simplicity, we tag the flavour of both small jets and track jets using the same default
implementation in DELPHES, which parameterises tagging efficiencies based on the truth
quark flavour of the jet. The pp-dependent efficiencies of bottom, charm, and light jet
(u,d, s,g) mistag rates are based on the ‘70% working point’ of the ATLAS multivariate
MV2c20 algorithm [71]. The b-tagging efficiency peaks at 74% for pr ~ 150 GeV, falling
to 50% at pr ~ 500GeV. The charm mistag rate is around 10%, peaking at 14% for



pr =~ 100 GeV before falling to 7% at pr ~ 500 GeV. The light mistag rate remains on the
order of 1% throughout the pr regimes of interest. We do not increase the b-tagging range to
In| < 4.0 expected from the detector upgrades [143] because we expect the region |n| > 2.5
to be dominated by the gluon splitting background g — bb whereas b-quarks from Higgs
are more central. However, we follow ref. [57] to emulate expected b-tagging improvements
of 8% per jet in |n| < 2.5 by scaling the 4b background and hh signals by a factor of 1.36,
and the 2025 and tt backgrounds by 1.17. To improve MC statistics after b-tagging, we
multiply events by these efficiencies as a weight rather than discarding non-b-tagged events.
For processes with a low number of real b-quarks such as 2627, this can improve the number
of raw MC events by up to three orders of magnitude when requiring four b-tagged jets.

Electrons and muons must be within the tracking acceptance |n| < 2.5, satisfy pp >
10 GeV, together with default DELPHES efficiencies, smearing and isolation. We modify the
default calculation of missing transverse momentum (p%***) to ensure muons are included.

It is relevant to study how experimental effects such as jet clustering, missing energy
due to neutrinos and finite detector resolution impact the discriminating variable myp;. As
myy, 1S sensitive to k), this can motivate improvements to its reconstruction for future
work. Figure 4 shows the impact of these effects for the k) = 2.5 signal with near-maximal
destructive interference to accentuate the shape differences. First, four small jets (with
the pp and 7 requirements defined above applied) are identified by association to the b-
quarks from the Higgs bosons found in the truth record. For these jets, we then compare
their parton level mpy, distribution (shaded grey) to three classes of jets at different levels of
reconstruction: 1) truth-level jets clustered from all final state truth particles (yellow line),
2) truth-level jets clustered from all final state truth particles ezcept neutrinos (blue line),
and 3) reconstructed-level jets (red line). The shape of my,, for all three jet definitions is
mildly distorted to lower values than the parton level, with the reconstructed jets being
generally lower than their truth counterparts. While this shows the degradation of my,
resolution, the qualitative features of the non-trivial my; shape are preserved.

Figure 4a considers a pp > 20 GeV threshold on the reconstructed jets, while figure 4b
raises this threshold to the nominal pt > 40 GeV considered in this work. This illustrates
that the signal rate at low myy, is substantially driven by trigger thresholds. Future work
may also consider jets with variable radius, which may improve signal-to-background ra-
tios [144]. This comparison highlights the following important experimental considerations:

e Maintaining sufficiently low trigger thresholds for the HL-LHC upgrades [132] is of key
importance for both discovery of the di-Higgs process as well as constraining Appp. In
particular, figure 3a shows the 1 < k) < 4 scenarios exhibit large qualitative changes
in shape at low mp;, < 400 GeV. A rise in trigger thresholds can reduce sensitivity to
this region. Figure 3b shows the majority of k) > 5 signals reside at mp;, < 350 GeV,
but this is also compensated by the faster changes in total cross-section.

e Corrections should be applied to compensate for energy loss in b-jets, which is not ac-
counted for by standard jet calibration. These techniques have been recently deployed
by the LHC collaborations [145] but are beyond the scope of this work. Applying
these corrections at the trigger level remains an open problem.
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Figure 4. Distributions of the di-Higgs invariant mass my, for k) = 2.5 where destructive in-
terference is near-maximal. These are shown at different levels of reconstruction: the parton level
predictions (grey shaded), truth jets including neutrinos (yellow line), truth jets without including
neutrinos (blue line), and reconstructed jets after the detector emulation described in subsection 2.3
(red line). Small R = 0.4 radius jets are used that satisfy |n| < 2.5. The pr thresholds in the sub-
figure caption are applied to the reconstructed jets.

3 Analysis strategies

This section presents our analysis strategies to constrain the trilinear self-coupling Apnp
in the hh — 4b channel. We first outline the figures of merit that motivate our analysis
design. The goal of measurement is to maximise discrimination between different (Appnn, yt)
values, which requires solving two conceptually distinct classification problems:

e signal characterisation i.e. the measurement power to discriminate )‘Zhh VS )\ﬁ; This
is most simply quantified by the difference (squared) of the signal rates (S; — Sj.;)>.

e background suppression i.e. signal S vs background B discrimination. Intuitively, if
the changes (S; — Sj;,,gi)2 between two couplings are comparable or smaller than the
background uncertainties, this reduces the ability to discriminate i, , vs )\ﬁz

We quantify how well our analyses simultaneously achieves these goals in a statistically
meaningful way using the chi-square

s (Si— Sj)z'

- 3.1
i & +<p (3.1)

Here, S denotes the signal yields after analysis selections for the nominal ()‘thyg) and
alternative ()\ihh, yg ) coupling hypotheses. The ¢g (¢g) are the combined absolute uncer-
tainties on the signal (background), where ¢p >> ¢g, is typical in the 4b channel.

To benchmark SM measurement precision, we can fix S; = Sgy, which assumes the
observed data will correspond to that of the SM. Nonetheless, it is important to consider
dedicated optimisation assuming S; = Sgsm should nature prefer BSM couplings. Higher
x? values indicate better discrimination power between two coupling hypotheses, which is
achieved by maximising the numerator (S; — S;)? while minimising the uncertainties ¢g p.
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Figure 5. Unit normalised distributions of pp — hh signals with different x (solid lines) compared
with the SM (grey dashed) at reconstructed level. The preselection with four b-tagged jets is applied.
Displayed are (left) the number of reconstructed large jets and (right) the my,, variable. Negative
(positive) values of k) are coloured by shades of blue (orange). Large jets have a radius parameter
of R =1.0 and pt > 250 GeV.

As background rates are large, the systematic component of the uncertainty dominates the
denominator. One way to reduce the impact of background systematics is to suppress B.
We design two classes of analysis strategies to fulfil these objectives:

e The baseline analysis (subsection 3.1) uses conventional rectangular cuts on variables
reconstructing Higgs bosons, inspired by recent ATLAS and CMS strategies. This
serves as a baseline to benchmark the performance of neural network optimisation.

e The neural network analysis (subsection 3.2) demonstrates the use of a multivariate
strategy to optimise sensitivity beyond the baseline analysis. This consists of an
additional selection requirement based on the output of an artificial neural network.

3.1 Baseline analysis

The baseline analysis is loosely inspired by a recent ATLAS analysis [41]. Our event
selection is summarised in table 2. In all categories, we require at least four b-tagged
small or track jets to suppress multijet backgrounds. We also require the pseudorapidity
difference of the two reconstructed Higgs candidates to be small |An(hy, ha)| < 1.5 because
high mass objects occupy more central regions than multijet backgrounds dominated by
gluon-gluon scattering. To suppress W — v decays from top quarks, we veto electrons or
muons and require EX < 150 GeV in all categories.

To probe different regimes of Higgs boson kinematics, we define three categories based
on the exclusive number of large jets in each event, which we refer to as resolved, interme-
diate, and boosted. Figure 5 displays the multiplicity of resolved, intermediate and boosted
events for different k), as well as reconstructed myy, distributions inclusive of number of
large jets. The multiplicity distribution shows that this categorisation has Appp discrimi-
nation. Interestingly, k) = 2 and x) = 3 have more events falling in the intermediate and
boosted categories N(jr) > 1 than the SM k) = 1, consistent with the higher my; and
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pr(h) tails (figure 3a). This orthogonal categorisation in N(jz) enables straightforward
statistical combination to enhance sensitivity. For the three categories, the final signal
region (SR) is defined by mass window requirements on the reconstructed h — bb systems
of m(hy2) € [90,140] GeV, based on the mass resolution and background rejection.

Resolved. The resolved category requires exactly zero reconstructed large jets. This
targets Higgs bosons with low transverse momenta, pr < 2my, which we reconstruct as
four distinct small jets. To identify pairs of jets consistent with a h — bb decay, we consider
the leading four small jets and construct Higgs boson candidates from small jet pairs that
minimise the mass difference between the candidates Am(hy, hs). The (sub)leading Higgs
candidate is defined as the system of a pair of small jets with the (lower) higher pp. As
the triangle amplitude dominates at low myy and therefore low Higgs pr, this category is
particularly important for App, sensitivity. We implement a selection defined in ref. [41],

where the angular distance AR?; 2 between the jet pair of the Higgs candidates satisfy

—0.5 + 360GV~ AR 653GeV | (j 475

maj < 1250 GeV : {235 e ey Y (3.2)
Wf <AR;? < Tj +0.35,

maj > 1250 GeV : AR/ < 1. (3.3)

This adjusts the angular distance between the jets of each Higgs candidate according to
the boost of the system characterised by the invariant mass of the 4-jet system my;.

Intermediate. The intermediate category requires exactly one large jet in the event.
This targets regimes where exactly one Higgs boson is sufficiently boosted (pr 2 2my)
that the b-jets in the h — bb system become merged so are more efficiently reconstructed
as one large jet. The two b-quarks are reconstructed as two track jets jp, which we require to
be associated to this large jet by AR(jr,jr) < 1.0. The remaining small jets jg, separated
from the large jet by AR(js,jr) > 1.2, are paired to form the subleading Higgs candidate,
where the jg pair is chosen to minimise the mass difference of the two Higgs candidates.

Boosted. The boosted category requires exactly two large jets targeting hh — 4b events
where both Higgs bosons have high Lorentz boosts. These events typically reside in the
tails of the my, distribution (mp;, 2 500 GeV), which can be important for probing BSM
Annhn couplings that enhance myy, and pr(h) at high values. Importantly, the high expected
signal rate due to the large branching ratio B(h — bb) ~ 58% implies greater statistical
power in these tails compared with lower rate channels such as bbr7 or bbyy. We require
each large jet to have two b-tagged track jets associated to this large jet.

Figure 6 shows the signal acceptance times efficiency A x € for the baseline analysis
signal region in the three categories. Due to the different Higgs boson kinematics when
varying ky, the A xe strongly depends on k). We find the highest Axe = 0.55% at k), = 1.5
in the resolved category while the largest A x ¢ = 0.19% (0.21%) for the intermediate
(boosted) category peaks at k) = 2, where destructive interference is near maximal and
the Higgs bosons have the greatest boost (figure 3a). The A x € values in the intermediate
and boosted categories decrease precipitously outside 1 < k) < 3 and become an order
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Figure 6. Signal acceptance times efficiency A x ¢ in percent for the baseline analysis for variations
in (a) k) and (b) k. This is shown for the resolved (pink), intermediate (lilac) and boosted (purple)
categories. The A X ¢ is equivalent to the number of signal events S divided by initial number of
events o x L.

of magnitude lower than those of the resolved category. In particular, we find the lowest
A x e =0.26%,0.019%,0.007% at ) = 4,6,9 for the resolved, intermediate, and boosted
categories respectively. This suppression is dominantly due to the lower h — bb boosts
causing events to pass the jet (trigger) pr requirements with lower efficiency. Figure 6b
shows that the acceptance decreases slowly for increasing x; due to the myy distribution
being shifted toward lower values, as displayed in appendix A.

Figure 7 shows the my, and leading Higgs pr distributions for signal and background
in the signal region of the three categories. Notably, the resolved category has the greatest
shape discrimination between x) hypotheses, where k) = 5 has a visibly higher proportion
of events at lower mpj, values than xy = 1. To exploit this, our final selection divides events
into non-overlapping mp;, bins whose lower edges are defined in table 2. The resolved
category uses six bins chosen for simplicity, while fewer bins are used for the intermediate
and boosted categories due to lower expected event rates. When performing the statistical
analysis in section 4, these orthogonal myy, bins are combined to enhance sensitivity. Future
work could consider dedicated optimisation of this binning scheme. Appendix A shows
further distributions involving the subleading Higgs pr and di-Higgs system pr(hh).

3.2 Neural network analysis

Signal characterisation (A}, vs /\{ﬂ) and background suppression (S vs B) are demand-
ing classification problems seeing promising adoption of deep neural network (DNN) solu-
tions in particle physics [77-87]. We implement our neural network analysis using a single
network architecture with the KERAS library [146]. This comprises a feed-forward net-
work [74-76] with a depth of two internal (‘hidden’) layers each with 200 nodes, similar to
ref. [147], densely connected to each other and to the input and output nodes. The internal
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Observable Preselection
Large jet j;; R =1.0,pr > 250 GeV, |n| < 2.0
Small jet js R =0.4,pr >40GeV, |n| < 2.5
Track jet j7 R =0.2,pr > 20GeV, |n| < 2.5
JT € JL AR(jr,jr) < 1.0
Resolved Intermediate Boosted
N(jz) =0 =1 =
N(js) >4 > 2 >0
hgand j pair it i’
g 7 pair 7§ pair, ARGY 1) > 12 5
ARj; See egs. (3.2), (3.3) — —
Signal region
JT € hfl:and - > 2 >2
jr € hgand o o > 9
b-tagging Two b-tags for each hfand
An(h, ko) < 15
s < 150 GeV
Py 0] > 10GeV, < 2.5
Ny =0
p?igrgl > 0.75 (neural network analysis only)
Resolved Intermediate Boosted
m(hy) [GeV]  [90, 140] 90, 140] 90, 140
m(hy) [GeV]  [90, 140] (90, 140] (90, 140]
Lower bin edges for mp;, binning [GeV]
Resolved 200, 250, 300, 350, 400, 500]
Intermediate  [200, 500, 600]
Boosted [500, 800]

Table 2. Overview of event selection for the baseline analysis in the resolved, intermediate and
boosted categories. The requirements above the ‘Signal region’ heading are the same as the pres-
election used for the neural network analysis training. The requirements below the ‘Signal region’
heading are the signal region requirements. The lower bin edges for the mp; binning scheme is
shown in the bottom three rows. See the main text for details.
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Figure 7. The baseline analysis leading Higgs candidate transverse momentum pr(hy) (left) and
invariant mass of the pair of Higgs boson candidates my;, (right), for benchmark signals (lines) and
background (filled). These are displayed for resolved (upper), intermediate (middle) and boosted
(lower) categories after all kinematic selections, including m(h;) mass window cuts, are applied.

~ 15 —



Reconstructed objects Variables used for training
Higgs candidates h‘i‘:ﬂg‘d (prsm, ¢, m)

Subjets € h§%3 AR(j1, j2)

Missing transverse momentum | ERSS| ¢(piiss)

Leptons Ne, Ny

b-tagging Boolean for j; € h‘f‘é’d
Di-Higgs system pl%h, Mhh

Table 3. Input variables used to train the neural network.

nodes use the rectified linear unit (ReLU) defined as max(0, z) for the activation function,
whose advantages over the traditionally used sigmoid function are discussed in ref. [148].

As input, the network uses a comprehensive set of 20 variables summarised in table 3.
This comprises the four-momenta of the two Higgs candidates, the AR distance between
the two subjets associated to each Higgs candidate, the b-tagging state of these subjets, the
missing transverse momentum with magnitude ER and azimuthal angle ¢, the number of
reconstructed electrons and muons, and the mass and transverse momentum of the di-Higgs
system. These variables are chosen for their signal vs background discrimination power.
A separate neural network is trained for each of the resolved, intermediate and boosted
categories using the preselection defined in table 2. For the training, the input samples are
normalised such that equal weight is given to signal, multijet (2025 and 4b) background,
and tt background.

For outputs, we construct three nodes corresponding to signal, multijet (2625 and 4b)
background, and ¢t background. This is referred to as a ‘multi-class classification network’.
The model assigns a score p; corresponding to how likely an event corresponds to one of the
three processes. The output nodes use a normalised exponential activation function known
as ‘softmax’, which is a standard choice for multi-class configurations. This constrains
each output score? to p; € [0,1] and their sum to unity >; p; = 1. We constructed a three-
output classifier to explore its utility in classifying background processes for designing
control regions, but section 4 will only use the binary signal classifier for simplicity. In
typical experimental implementations, multijet processes are estimated using data-driven
methods while t¢ employs MC, which have different systematics.

Half of the MC events for the multijet and ¢t background samples, and all of the high
statistics hh — 4b signal samples are set aside for training (20% of the training events
are used for training validation and are not used for actual training). The categorical
cross-entropy is used as the loss function, which quantifies the accuracy of the model
predictions at each training step, and is minimised using the ADAMAX algorithm [149].
The step size used in this minimisation is controlled by a learning rate hyperparameter.
The cross-entropy H between the network prediction and the true classes in IV events from

the training set is defined by H(p'abel, pmodel) — —% Zf\il pibellog podel . Here, plabel is

2Despite the notation and its properties, p; is not a true posterior probability.
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the vector containing the class of each event (1 for the true class and 0 for the other two)
model

and p is a vector containing the score assigned to each class for each event. The initial
learning rate in the ADAMAX optimiser is set to 5 x 1072 for the resolved and intermediate
neural networks, and 5 x 1075 for the boosted ones. The training set is divided into batches
during training. Once all batches are finished processing, one training epoch is complete
and the next one starts by processing the first batch again. The number of events in each
batch is a tunable hyperparameter, which we set to 100 in this study. To mitigate overfitting
unphysical features such as statistical fluctuations, we apply dropout [150] at a rate of 30%
to both internal layers. This means 30% of internal nodes are randomly masked during
each training iteration. We find 20 training epochs gives close to optimal performance. The
learning rate, batch size and dropout rate are optimised using a random search method.

Figure 8 shows the signal score plsjiggl distributions for the DNN trained on k) = 1

and k), = 5 for background and benchmark signals in the three categories. The signal
vs background discrimination is improved across the categories, suggesting that our neural
networks capture kinematic information beyond the cuts of the baseline analysis. However,
this depends on the value of k). For example, the upper-left plot shows that the DNN
trained on k) = 1 adds substantial discrimination power for a k) = 1 signal, but not for

a k) = b signal. This will be further discussed in section 4. Our neural network analysis
DNN
signal
that are different for each category. Additionally, one

DNN
signal

imposes a universal requirement of p > (.75 for simplicity. Future work could consider

DNN
signal

could extend the analysis by fitting the p

optimising requirements on p
variable instead of using only one bin.

Figure 9 shows the my distributions after the pgggl > 0.75 requirement is imposed
for the DNN trained on k) = 1 and k) = 5. We note that the shape of the k), = 5 signal (as
well as that of the background) in the resolved category is particularly different between the
two trainings. Since the low-mypj, regime offers the most discrimination between different
values, we use k) = 5 as the nominal signal training sample to ensure the DNN gives more
weight to these events with respect to a SM optimisation. As we will see in section 4, this
indeed performs better than training on k) = 1 when setting ) coupling limits. Note that

the same is not necessarily true when setting cross-section limits assuming SM kinematics.

3.2.1 What is the DNN learning?

As machine learning techniques become increasingly widespread, it is important to under-
stand how our neural network exploits the given physics information [82]. Specifically, we
evaluate the ranked feature importance to quantify how much each input variable (model
feature) changes the signal score in both signal and background events. Interpretability
of deep neural networks has seen rapid development in the computational sciences. We
adopt a recently developed framework for interpreting predictions called SHapley Addi-
tive exPlanations (SHAP) [88]. This framework combines several feature importance tests
available for machine learning models in the literature into a single value as detailed in
ref. [88]. These values are consistent for all types of inputs to the neural network, and can
be compared with one another. A heuristic description of SHAP values can be found in
appendix B.1 that provides intuition for this approach.
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Figure 8. Neural network score distributions pQNY, of benchmark signals (solid lines) and back-
ground processes (filled stacked) displayed in the legend. All event selection criteria of the neural

network analysis except the pggnlil > 0.75 requirement are imposed. The DNN is trained on (a)

kx =1 and (b) k) = 5 signals. These are displayed for (upper) resolved, (middle) intermediate and
(lower) boosted categories. The plots are normalised to £ = 3000 fb~*.
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Figure 9. The my;, distributions of benchmark signals (solid lines) and background processes
(filled stacked) displayed in the legend. All event selection criteria of the neural network analysis
are imposed. The DNN is trained on (a) k) = 1 and (b) x) = 5 signals. These are displayed for
(upper) resolved, (middle) intermediate and (lower) boosted categories. The plots are normalised

to £ = 3000fb~1.
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The SHAP framework requires that the trained model is applied to a specific set of
events and only evaluates the feature importance for these events. We construct a new sub-
set of events with half signal and half background to reflect the importance of distinguishing
them from each other rather than discrimination between the background components had
the S/B mirrored the preselection rates. For this evaluation, we construct the background
sample to be composed of 80% 2625, 15% 4b and 5% tt events to approximate the back-
ground composition of the three categories.

Figure 10 shows the 20 input variables of the neural networks, ranked by their impact
on the final signal score for the k) = 5 training. This impact is measured by the magnitude
of their SHAP values averaged over the whole dataset given to the framework, which is
plotted on the z-axis. Each point plotted per row corresponds to one event fed to the
framework, and its location along the x-axis represents what impact that variable has on
the signal score of the event. The relative magnitude represents how much the value of
that variable changes the signal score compared to all other variables in all events. Points
with a larger positive SHAP value increase the signal score more while the inverse is true
for negative SHAP values. The absolute scale of the SHAP value is arbitrary in these plots.
The colour scale indicates the value of the feature on the specific event e.g. a blue dot on
the b-tag(h$*d, j1) indicates the leading subjet associated to the leading Higgs candidate is
not b-tagged. Meanwhile, a pink dot in the mp; row indicates that event has high di-Higgs
invariant mass for the plotted SHAP value.

The b-tagging state of (sub-)jets are among the most important features in the resolved
and intermediate categories. This is less important in the boosted category possibly due
to lower b-tagging efficiencies at high prp, which could be improved by future work in
novel b-tagging techniques [151]. Angular and mass variables are stronger discriminants
against multijet processes in this regime. The opening angles between these (sub-)jets and
the invariant mass of the di-Higgs system carry a large amount of information in all three
categories. Variables sensitive to semi-leptonic top decays, such as the number of leptons or
missing transverse momentum, are effective at rejecting background (large negative SHAP
value for high feature value) but less so at identifying signal (small positive SHAP values
for any feature value).

Appendix B presents supplementary material characterising the performance of our
neural networks. This includes receiver operator characteristic (ROC) curves, signal ac-
ceptance times efficiency, ranked feature importance for the DNN trained on ) = 1,
together with correlations between the neural network scores and reconstructed (di-)Higgs
mass variables m(hy) and mpy,.

4 Higgs self-coupling constraints

This section presents the results and discussion for the baseline and neural network anal-
yses. We compare the performance of the resolved, intermediate, boosted categories,
and their combined constraints. We set the luminosity to the target HL-LHC dataset
of £ =3000fb~!. Subsection 4.1 presents the signal and background rates in the signal re-
gions of our analyses. Subsection 4.2 then performs the y? statistical analysis to determine
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Figure 10. SHAP value plots representing ranked variable (feature) importance for the DNN
trained on k) = 5 signals in the (a) resolved, (b) intermediate and (c) boosted categories. The
input variables are ranked in descending order by their average absolute SHAP value plotted on
the z-axis. The colour scale indicates the value of the variable on the specific event for which the
SHAP value is plotted. Analogous plots for the DNN trained on k) = 1 are found in appendix B.
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Category Resolved Intermediate Boosted

Analysis Baseline DNN DNN | Baseline DNN  DNN | Baseline = DNN  DNN
Trained on — Kyx=bH Ky=1 — Kx=5H Ky=1 — Kyx=bH Ky=1
2b2j 889000 134000 116000 | 112000 10400 24600 95300 24100 38400
4b 810000 183000 137000 28500 6170 13300 19700 6000 10900
tt 60400 5430 6100 3650 339 639 915 76.8 385
tt + bb 2420 398 474 554 65.1 181 160 37.9 77
tth 818 151 189 125 24.4 59 37 8.42 16
Zh 329 84.6 87 37 3.68 22 73 16.8 32
Total bkg B 1.8 x 10% 323064 259000 | 144000 17041 38800 | 116000 30237 49800
Sstat = VB 1330 568 509 380 131 197 341 174 223
Ssyst = 0.3% - B 5290 969 778 433 51 116 349 91 149
Ssyst = 1% - B 17600 3230 2590 1440 170 388 1160 302 498
Ssyst = 5% - B 88000 16200 13000 7200 852 1940 5800 1510 2490
hh signal (ky, K¢)

(1, Dsm 408 124 249 111 34.4 72 104 35.4 64
(2,1) 194 58.9 127 67 25.7 47 7 24.5 44
(5,1) 669 263 175 51 19.6 34 49 10.6 26
(10,1) 5230 2000 1890 411 134 275 138 71.9 97
(=5,1) 6210 2210 3050 847 361 595 381 102 181
(1,1.2) 1010 316 626 270 83.6 179 216 89.1 139
(1,0.8) 149 48.2 97 37 13.7 26 35 12.0 21

Table 4. Summary of signal region yields for the backgrounds and benchmark signals for the
baseline analysis and neural network analyses (DNN) trained on k) = 1 and k) = 5. The yields
shown are prior to binning in my,;, and normalised to integrated luminosity of £ = 3000fb~!. Dom-
inant contributions to backgrounds are displayed together with the absolute size of the statistical
Gstat and benchmark systematic ¢ys¢ uncertainties. Signals with benchmark couplings (ky, k) are
shown, where (1, 1) is the SM value.

Anpp constraints assuming k; = 1 and discusses the impact of systematic uncertainties. In
subsection 4.3, we evaluate )\Zhh VS /\f,f;l discrimination power and discuss strategies for
improvement. Finally, subsection 4.4 lifts the assumption of x; = 1 to examine the impact
of top Yukawa g; uncertainties on k) constraints.

4.1 Signal and background rates

Table 4 shows the signal and background yields in the final signal region for the baseline
(‘Baseline’ columns) and neural network (‘DNN’ columns) analyses prior to binning in
mpp. For the baseline analysis in the resolved category, we find the reducible 2625 pro-
cess comprises 49% of the background due to its formidable cross-section and only modest
suppression from b-tagging. The irreducible 4b rate is comparable, comprising 45% of the
background. These multijet processes constitute 94% of the backgrounds, similar to recent
experimental analyses [41]. They also dominate in the intermediate and boosted categories
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but interestingly, the 4b/2b2j ratio reduces to 0.25 and 0.21 respectively, suggesting light
flavour jet systems have higher boost than those from b-jets. The top quark contribu-
tion, dominated by tt, is around 3% for the resolved and intermediate categories. The
single Higgs backgrounds contribute less than 1% of the total, with the most dominant
contributions arising from the irreducible associated production tth and the electroweak
Zh processes.

For the baseline analysis assuming the SM k) = 1 signal rate presented in table 4,
we find a signal-to-background of S/B = 2.3 x 10~* and significance of S/v/B = 0.30 in
the resolved category. For the intermediate category, the signal-to-background is higher at
S/B = 7.7 x 10~* but the significance S/v/B = 0.29 is similar. For the boosted category,
we find even higher signal-to-background S/B = 9.0 x 10~* but again similar significance
S/ VB = 0.31. This pattern is consistent with the intermediate and boosted categories
having higher signal purity due to better background rejection than the resolved but lower
absolute yields. With S/B ~ 1073 to 10~* and B > 10* before binning in myy, we expect
background statistical uncertainties ¢gat = V/B to be below the percent level and our
analyses will be limited by systematic uncertainties.

For the neural network analyses, the DNN signal score pgignal is required to satisfy
Dsignal > 0.75. Two DNNs are considered: one trained on the SM k) = 1 signal and the
other on k) = 5 where we expect the boundary of sensitivity to be for k) limits. In table 4
for the resolved category, we find the pggna > 0.75 requirement of the DNN trained on
kx = 1 gives a 61% SM k) = 1 signal efficiency for 86% background rejection compared
to the baseline analysis, providing a signal-to-background of S.,—1/B = 9.6 x 10~* and
significance of Sy, —1/ VB = 0.49. When a different signal hypothesis k) = 5 is considered
to that used in DNN training, we find the significance is lower Sm:5/\/§ = 0.34, as
one would expect. The background rejection is dominated by the reduction in the 2523
process such that the irreducible 4b component of the background now becomes dominant
for the resolved category. For the DNN trained on k) = 5, we find the pggna > 0.75
requirement results in an 82% background rejection for 39% k) = 5 signal efficiency, giving
Spy=5/B = 8.1 x 10~* and SM:5/\/§ = 0.46. As one would expect, this is higher for
the k) = 5 signal than using the DNN trained on k) = 1, but this is only the case for
the resolved category. Interestingly for the intermediate and boosted categories, the DNN
trained on k) = 1 results in higher signal yields for all signal hypotheses listed in table 4.
Such categories have a greater signal acceptance times efficiency for k) = 1 than for k) =5
scenarios (figure 6) as the former k) case has a harder Higgs pr spectrum (figure 3).

Turning to the yields binned in my,),, table 5 compares these across the three analyses
and three categories for the k) = 1,2, 5 signals. For the DNN trained on x) = 1, the yields
are suppressed in the low mypy, bins such that there is no signal in my;, € [200, 250] GeV.
This is expected given the background rate is high but the signal rate is low in these bins.
Therefore, only training the DNN on k) = 1 signals is suboptimal for signals that occupy
lower myp,;, values such as k) = 5. We see that the k) = 5 training retains the k) = 5 s