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1 Introduction

Following the discovery of the Higgs boson (H) [1-6] by the ATLAS [7] and CMS [8] experiments,
its properties have been probed using proton—proton (pp) collision data produced by the Large Hadron
Collider (LHC) at CERN. The coupling properties of the Higgs boson to other Standard Model (SM)
particles, such as its production cross sections in pp collisions and decay branching fractions, can be
precisely computed within the SM, given the value of the Higgs boson mass. Measurements of these
properties can therefore provide stringent tests of the validity of the SM.

Higgs boson production and decay rates were measured using the Run 1 dataset collected in the years
2011 and 2012, through the combination of ATLAS and CMS measurements [9]. These measurements
have been extended using the Run 2 dataset recorded by the ATLAS detector from 2015 to 2018, using up
to 139 fb~! of pp collision data produced by the LHC. The analyses target several production and decay
modes, including: multiple production modes for the H— yy [10], H— ZZ*— 4¢ 'I11], H - WW* [12]
and H — 771 [13] decay channels; the H — bb decay channel produced in three ways: in association
with a weak vector boson V = W or Z (VH) [14], in the weak vector-boson fusion (VBF) production
process [15], and in association with a top—antitop pair (t7H) [16—18]; tzH in multilepton final states
(WW*, ZZ* and 77) [16, 18]; the H — pu decay channel [19]; and Higgs boson decays into invisible final
states (H — inv) produced via the VBF process [20]. This note presents an update of the measurements
of Higgs boson properties at 4/s = 13 TeV based on the previous combination using up to 80 fb~! [21].
The following analyses are updated to the full Run 2 dataset: H— yy, H— ZZ*—4(, H — bb in VH
production, H — pu, and the search for H — inv in VBF production, replacing the H — inv searches
based on 36 fb~! [22-25]. A Higgs boson mass value of my = 125.09 GeV, corresponding to the central
value of the combination of ATLAS and CMS measurements in Run 1 [26], is used for SM predictions. The
uncertainty in the measured Higgs boson mass is considered in the H— yy, H— ZZ*— 4f,and H — uu
analyses where the Higgs boson candidates are reconstructed with high mass resolution, while for the other
decay channels it has a negligible impact on the measured signal yields and is therefore neglected. Similar
measurements [27-37], as well as their combination [38], have been reported by the CMS Collaboration.

Three of the input analyses, namely H— yy, H— ZZ*— 4(, and VH, H — bb, measure the Higgs boson
signal yields in phase-space regions based on the Stage 1.2 simplified template cross-section (STXS)
framework [39-42]. These cross sections are defined in the fiducial region |yg| < 2.5, where yg is the
Higgs boson rapidity, and partitioned within each Higgs boson production process into multiple kinematic
regions based on the transverse momentum of the Higgs boson, the number of associated jets and their
kinematics, and the transverse momentum of associated W or Z bosons. The other analyses use coarser
parameterizations as described in Ref. [21].

The note is structured as follows: Section 2 describes the data and simulation samples and Section 3
presents the analyses in individual decay channels which are used as inputs to the combination. Section 4
provides a short description of the statistical procedures. The measurement of the signal strength p,
defined as the ratio of the total Higgs boson signal yield to its SM prediction, is presented in Section 5.1.
Measurements of the cross sections of the main production processes within |yy| < 2.5, assuming SM
predictions for the branching fractions, are then shown in Section 5.2. The production modes considered
are gluon—gluon fusion (ggF), VBF, WH, ZH, ttH, and associated production with a single top quark (¢H).
Measurements of cross sections times branching fractions for Higgs boson production and decay processes
are shown in Section 5.3. Section 5.4 presents a parameterization where the measured quantities are the

1 Throughout the note £ denotes the light leptons e and u.



ratios of production cross sections and ratios of branching fractions using the ggF cross section and the
H — ZZ* branching fraction as denominator, respectively, together with cross section times branching
fraction of the process gg — H — ZZ*. Common systematic uncertainties and modeling assumptions
partially cancel out in these ratios, reducing the model dependence of the result. Section 6 presents results
in the STXS framework. Potential deviations from SM predictions are then probed in Section 7 with a
framework of multiplicative modifiers « applied to the SM values of Higgs boson couplings [43]. Section 8
presents an interpretation of the data within one benchmark model of beyond-the-SM (BSM) phenomena.
Indirect limits on model parameters are set following a methodology similar to that of Ref. [44]. Section 9
summarizes the results.

2 Data and simulated event samples

The results of this note are based on pp collision data collected by the ATLAS experiment?® [45-47] in
the years from 2015 to 2018, with the LHC operating at a center-of-mass energy of 13 TeV. The decay
channels, targeted production modes and integrated luminosities of the datasets used in each analysis are
shown in Table 1. The uncertainty in the combined 2015-2016 integrated luminosity is 2.1%, and 1.7% in
the combined 2015-2018 integrated luminosity [48], obtained using the LUCID-2 detector [49] for the
primary luminosity measurements.

Table 1: The decay channels, targeted production modes and integrated luminosity (£) used for each input analysis of
the combination. The references for the input analyses and information about which measurements they enter are
also provided.

Analysis decay channel Target Prod. Modes L [fb1] Ref. Used in meas.
H— vy ggF, VBF, WH, ZH,ttH,tH 139 [10] Everywhere
¢gF, VBF, WH, ZH, ttH (4() 139 [11] Everywhere
H— ZZ* _
ttH excl. H— ZZ*— 4¢ 36.1 [16, 18] Sec.5& 7
ggF, VBF [12]
H— Ww* _ 36.1 Sec.5 &7
ttH [16, 18]
F, VBF 13
H— 1t e 36.1 Bl e 57
ttH [16, 18]
VBF 24.5-30.6 [15] Sec.5& 7
H — bb WH,ZH 139 [14] Everywhere
itH 36.1 [17, 18] Sec.5&7
H — up ggF, VBF, VH, ttH 139 [19] Sec. 7.4
H — inv VBF 139 [20] Sec.7.3& 7.5

2 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector
and the z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC ring, and the y-axis points
upwards. Cylindrical coordinates (r, ¢) are used in the transverse plane, ¢ being the azimuthal angle around the z-axis.
The pseudorapidity is defined in terms of the polar angle 6 as 5 = —Intan(6/2). Angular distance is measured in units of

AR = (An)? + (Ag)2.



Most analyses use a consistent set of simulation programs for the Higgs boson Monte Carlo (MC) samples,
as detailed in the following paragraphs. The only exception is the VBF, H — bb analysis, which uses
different samples as described separately at the end of this section. For each Higgs boson decay mode,
the branching fraction used corresponds to higher-order state-of-the-art theoretical calculations [39]. The
simulated background samples vary channel by channel and are described in the individual references for
the input analyses.

Higgs boson production via ggF was simulated using the PowHEG Box [50-53] NNLOPS implementa-
tion [54, 55]. The event generator uses the HNNLO formalism [56] to reweight the inclusive Higgs boson
rapidity distribution produced by the next-to-leading order (NLO) generation of pp — H + parton, with
the scale of each parton emission determined using the MINLO procedure [57-59]. The PDFALHC15 [60]
parton distribution functions (PDFs) were used for the central prediction and uncertainty. The sample is
normalized such that it reproduces the total cross section predicted by a next-to-next-to-next-to-leading-order
(N3LO) QCD calculation with NLO electroweak corrections applied [39, 61-70]. The NNLOPS generator
reproduces the Higgs boson pr distribution predicted by the next-to-next-to-leading-order (NNLO) plus
next-to-next-to-leading-logarithm (NNLL) calculation of Hres2.3 [71-73], which includes the effects of
top- and bottom-quark masses and uses dynamical normalisation and factorization scales.

The VBF production process was simulated at NLO accuracy in QCD using the POWHEG Box [74] generator
with the PDFALHCI15 set of PDFs. The sample is normalized to an approximate-NNLO QCD cross section
with NLO electroweak corrections applied [39, 75-77].

The gq — V H production processes were simulated at NLO accuracy in QCD using the POWHEG Box,
GoSawm [78] and MINLO [57, 79] generators with the PDFALHC15 set of PDFs. The samples are
normalized to cross sections calculated at NNLO in QCD with NLO electroweak corrections [80-89]. The
g8 — ZH process was generated only at leading order (LO), using PowHEG Box and NLO PDFs and
normalized to an NLO computation with next-to-leading-logarithm (NLL) corrections [39, 90].

The tzH production process was simulated at NLO accuracy in QCD using the POWHEG Box [91] generator
with the PDF4LHC15 set of PDFs for the H— yy and H— ZZ*— 4{ decay processes. For other Higgs
boson decays, the MADGRAPHS_AMC@NLO [92, 93] generator was used with the NNPDF3.0 [94] set
of PDFs. In both cases the sample is normalized to a calculation with NLO QCD and electroweak
corrections [39, 95-98].

In addition to the primary Higgs boson processes, separate samples are used to model lower-rate
processes. Higgs boson production in association with a bb pair (bbH) was simulated using MAD-
GRAPH5_AMC@NLO [99] with NNPDF2.3LO PDFs [100] and is normalized to a cross section calculated
to NNLO in QCD [39, 101-103]. The sample includes the effect of interference with the ggF production
mechanism. Higgs boson productions in association with a single top quark both in #-channel (+Hg) and
with an additional W boson (tHW) were produced at NLO accuracy using MADGRAPHS_AMC@NLO with
the NNPDF3.0 PDF set [104] in the H— yy and H— ZZ*— 4( decay processes. For ttH, H — bb and
multilepton analyses, tHq and tHW samples were also generated with MADGRAPHS_AMC@NLO, but the
accuracy of the tHg sample was LO in QCD. There were also other differences as detailed in Ref. [16, 17].
The tH samples are normalized to NLO QCD calculations [39, 105, 106] in all cases.

The parton-level events were input to PYTHIAS [107] or HERWIG++ [108] to model the Higgs boson decay,
parton showering, hadronization, and multiple parton interaction (MPI) effects. The generators were
interfaced to PYTHIAS for all samples except for tHW in ttH, H — bb and multilepton analyses, which
used HERWIG++ instead. For PYTHIAS the AZNLO [109] and A14 [110] parameter sets were used, and for
HerwiG++ its UEEES parameter set was used.



Higgs boson decay branching fractions were computed using HDECAY [111-113] and PROPHECY4F [114-
116].

In the all-hadronic channel of the VBF, H — bb analysis, the POWHEG Box generator with the CT10 [117]
set of PDFs was used to simulate the ggF [118] and VBF production processes, and interfaced with
PyTHIAS for parton shower. In the photon channel of the VBF, H — bb analysis, VBF and ggF production
in association with a photon was simulated using the MADGRAPHS_AMC@NLO generator with the
PDF4LHC15 set of PDFs, and also using PYTHIAS for parton shower. For both channels, contributions
from VH and t7H production were generated using the PYTHIA8 generator with the NNPDF3.0 set of PDFs,
and using the MADGRAPH5_AMC@NLO generator interfaced with HERWIG++ and the NLO CT10 set of
PDFs, respectively.

The particle-level Higgs boson events were passed through a GEANT 4 [119] simulation of the ATLAS
detector [120] and reconstructed using the same analysis software as used for the data. Event pileup is
included in the simulation by overlaying inelastic p p collisions, such that the average number of interactions
per bunch crossing reproduces that observed in the data. The inelastic pp collisions were simulated with
PyTHIAS8 using the MSTW2008L0 [121] set of PDFs with the A2 [122] set of tuned parameters or using
the NNPDF2.3L.O set of PDFs with the A3 [123] set of tuned parameters.

3 Individual channel measurements

Brief descriptions of the updated analyses for the present combination are given below. More details can
be found in the individual analysis references listed in each section. Descriptions for the other analyses can
be found in the previous combination [21] and their corresponding references given in Section 1 and also
Table 1. The overlap between the event selections of the analyses included in the combination is found to
be negligible.

Among all the input analyses, H — uu and VBF, H — inv are only considered in a subset of the results
that are presented in Section 7. The remaining ones are included in every set of results except for the STXS
measurements (Section 6), which only include H— yy, H—ZZ*— 4f,and VH, H — bb channels.

31 H-yy

The H— 7y analysis [10] requires the presence of two isolated photons within the pseudorapidity range
|n| < 2.37, excluding the region 1.37 < |n| < 1.52 corresponding to the transition between the barrel and
endcap sections of the electromagnetic calorimeter. The transverse momenta of the leading and subleading
photons are required to be greater than 0.35m,,,, and 0.25m.,,, respectively, where m,,,, is the invariant
mass of the diphoton system. The event reconstruction and selection procedures are detailed in Ref. [10].

The reconstructed event categorisation is significantly updated as compared to the previous iteration [21].
In the previous analysis, the categorisation proceeded sequentially for each production mode, in order of
increasing cross-section. The present categorisation follows a two-step approach with an initial global
categorisation of events into 44 categories, chosen to closely match those of the Stage 1.2 STXS regions
described in Section 6.1. This is followed by a subdivision of each category into up to three additional
categories based on the separation of the signal from the continuum background.



For the first step, the global categorisation uses a multiclass BDT, which is trained on an inclusive Higgs
boson signal sample with the signal yield in each STXS bin reweighted to the same value for improved
performance. For each reconstructed event, the multiclass BDT produces a score for each STXS bin.
These scores are multiplied with an additional set of weights derived from an iterative procedure aiming to
minimize the measurement uncertainty. The event is eventually assigned to the category which corresponds
to the STXS bin with the highest final score. This procedure leads to a reduction of both the measurement
uncertainties and the linear correlations between the measurements in the different regions.

The second step in the categorisation uses binary BDTs to improve the separation of the signal from the
continuum background. A separate BDT is trained for each production process in the STXS framework.
Each category from the first step is split into two or three sub-categories based on the binary BDT
distribution if the improvement is more than 5% in the expected significance. This second step results in
88 reconstructed event categories in total. Finally, the distribution of m.,,, is used to separate the Higgs
boson signal from continuum background processes in each category.

32 HZ7ZZ*"-> 4

The H— ZZ*— 4¢ analysis [11] requires the presence of at least two same-flavor and opposite-charge
light-lepton pairs, with a four-lepton invariant mass m4, in the range 115 GeV < m4, < 130GeV. The
analysis follows the strategy described in the previous combination publication [21], but employs improved
lepton isolation to mitigate the impact of pileup and the jet reconstruction now follows a particle flow
approach. Both the number of STXS bins and event categories have slightly increased, improving the
sensitivity of the measurement. The m4, side-bands 105 — 115 GeV and 130 — 160 GeV are introduced
as categories to constrain the dominant non-resonant ZZ* background for most reconstruction signal
categories, while the 105 — 115 GeV and 130 — 350 GeV side-bands are used to constrain the 17H
background.

To distinguish the t7H, VH, VBF, and ggF production modes and to enhance the purity of each kinematic
selection, 12 mutually exclusive reconstructed event categories based on the presence of jets and additional
leptons in the final state are defined. Two t7H categories are defined for leptonic and fully hadronic decays
requiring an additional lepton and multiple jets, some with a b-tag, for the former, and four or five jets
and one or more b-tags for the latter. Events with two jets are separated into a BSM-like category, with
leading jet invariant mass m; larger than 120 GeV and four lepton transverse momentum p‘%‘) larger
than 200 GeV, and the remainder are in a category for the bulk of the VBF and V(— ¢g)H events. The
0- and 1-jet events are expected to be mostly from the ggF process and classified into five categories
mostly following the STXS classification described in Section 6.1, according to the four lepton transverse
momentum p%‘}. There is a 0-jet category with p‘%‘) above 100 GeV which improves the discrimination
between VH (V— {v, vv) and ggF, and a 1-jet category with pAT'f above 200 GeV which is considered a
BSM-like category. To further increase the sensitivity of the cross-section measurements in the STXS bins,
multivariate discriminants using neural networks (NNs) are introduced in most of the reconstructed signal
event categories as observables used in the statistical fit.

33 VH,H — bb

The measurement of H — bb in the VH production mode [14] considers final states containing at least
two jets, of which exactly two must be tagged as containing b-hadrons. Either zero (with large ET"*),



one or two charged leptons are also required, exploring the associated production of a Higgs boson with
a W or Z boson decaying leptonically as Z— vv, W— {v, or Z— {{. Contributions from W— 7v and
Z— 11 decays in which the 7-leptons subsequently decay into electrons or muons are also included.
Since the previous publications [124, 125] a number of improvements are included: enhanced object
calibrations, more coherent categorisation between the event selection and the STXS binning, re-optimised
multivariate discriminants including the addition of more information, redefined signal and control regions,
a significant increase in the effective number of simulated events and re-derived background modelling
uncertainties, including using a multivariate approach to estimate the modelling uncertainty in the dominant
backgrounds.

To enhance the signal sensitivity, the selected candidate events are classified according to the charged-lepton
multiplicity, the vector-boson transverse momentum p¥ , and the jet multiplicity. For final states with zero
or one lepton, two p¥ regions are defined: 150 — 250 GeV and > 250 GeV. In two-lepton final states, in
addition to these two regions, 75 GeV < p¥ < 150 GeV is defined. The p¥ thresholds are chosen to select
regions with strong experimental sensitivity, and match the STXS definitions described in Section 6.1.
The zero and one lepton regions are finally separated into categories with either exactly two or three
reconstructed jets, and the two lepton regions are separated into categories with either two or at least
three jets. Topological and kinematic selection criteria are applied within each of the resulting categories.
BDTs incorporating the event kinematics and topology, and b-tagging information, in addition to the dijet
invariant mass, are employed in each lepton channel and analysis region to separate the signal process from
the sum of the expected background processes.

34 H—- uu

The H — pu search [19] employs a similar technique to the H— y7y analysis [10]: a resonance at 125 GeV
is searched for in the invariant mass spectrum m,,, for pairs of opposite-charge muons on top of a continuum
background, dominated by the Drell-Yan contribution for the inclusive spectrum.

Events are classified into twenty mutually exclusive categories defined to exploit the topological and
kinematic differences between the background processes and the different Higgs boson production modes,
ggF, VBF, VH and ttH. A ttH region is defined by requiring events with an extra lepton and a b-tagged jet,
and two V H regions are defined by requiring events with either one or two extra leptons, and no b-tagged
jet. BDTs are trained in each of these regions and used to apply selections to define one t7H category, two
V H one-lepton categories, and one VH di-lepton category. The remaining events are classified according
to the number of jets: zero, one and two or more. Four categories are defined for VBF using a BDT
applied to the 2-jet events, and three additional BDTs, one per jet multiplicity, are used to define a further
12 categories for the 0-, 1- and remaining 2-jet events. The updated analysis has improved sensitivity
compared with the one used in the previous combination [21]. This analysis is only included in the results
presented in Section 7.4.

3.5 VBF,H — inv

The search for decays of the Higgs boson into invisible final states in the VBF topology [20] is carried
out by selecting events with missing transverse momentum E‘TniSS larger than 200 GeV, and a soft track
term of E7"™* less than 20 GeV. In addition, at least two jets are required with the leading two in opposite
longitudinal hemispheres having a pseudorapidity difference |Azn;;| > 3.8, an azimuthal angle difference



A¢;; < 2.0, and an invariant mass m;; > 0.8 TeV. The vector sum of the transverse momenta of all the
selected jets is required to be larger than 180 GeV. Events with isolated lepton or photon candidates, as
well as those containing more than one jet tagged as originating from a b-hadron, are rejected.

Eleven signal categories are defined. Ten categories are defined inm ;; and A¢ ;; bins with events containing
exactly two jets, and an additional category contains events with three or four jets. Control regions are
introduced to constrain the main background process V+ jets and the small contribution from multi-jet
processes. Other background processes are estimated using MC simulations.

In this note, this analysis is included only in the coupling tests presented in Sections 7.3 and 7.5.

4 Statistical model

The statistical methods used in this paper follow those of Ref. [9]. The results of the combination are
obtained from a likelihood function defined as the product of the likelihoods of each input analysis. These
are themselves products of likelihoods computed in mutually exclusive regions selected in the analysis,
referred to as analysis categories.

The number of signal events in each analysis category k is expressed as

nzig“al =Lk Z Z(O' X B)ir (AX€)if k o
i f

where the sum runs over production modes i (i = ggF, VBF, WH, ZH, ttH, . ..) or the partitioned STXS
bins as described in Section 6.1, and decay final states f (f = yy, ZZ*, WW*, 1, bB,y,u, ...), Ly is the
integrated luminosity of the dataset used in category k, and (A X €); 7 x is the acceptance times efficiency
factor in category k for production mode i and final state f. The cross section times branching fraction
(o X B);y for each relevant pair (i, f) are the parameters of interest of the model. The measurements
presented in this paper are obtained from fits in which these products are free parameters (Section 5.3),
or in which they are re-expressed in terms of smaller sets of parameters: of a single signal-strength
parameter u (Section 5.1), of the cross sections o; in each of the main production modes (Section 5.2),
of ratios of cross sections and branching fractions (Sections 5.4 and Section 6.2), of coupling modifiers
(Section 7), or of parameters of the BSM model (Section 8). Additional parameters, referred to as nuisance
parameters, are used to describe systematic uncertainties and background quantities that are constrained by
sidebands or control regions in data. The estimates of those nuisance parameters related to systematic
uncertainties are modeled with distributions that correspond to auxiliary measurements (e.g. Gaussian),
and relevant terms are included in the likelihood function.

Systematic uncertainties that affect multiple analyses are modeled with common nuisance parameters
to propagate the effects of these uncertainties coherently to all measurements. The assessment of the
associated uncertainties varies between data samples, reconstruction algorithms and software releases,
leading to differences particularly between analyses performed using the full Run 2 dataset and those using
2015 and 2016 data only. Between these two sets of analyses, components of systematic uncertainties
in the luminosity, the electron/photon resolution and energy scale, and in the electron reconstruction
and identification efficiencies are also treated as correlated. Uncertainties due to the limited number of
simulated events used to estimate expected signal and background yields are included using the simplified
version of the Beeston—Barlow technique [126] implemented in the HISTFACTORY tool [127]. They are
counted among the systematic uncertainties.



Theory uncertainties in the signal, such as missing higher-order QCD corrections and PDF-induced
uncertainties, affect the expected signal yields of each production and decay process, as well as the signal
acceptance in each category. These uncertainties are modeled by a common set of nuisance parameters
in most channels. For the signal-strength (Section 5.1) and coupling modifier (Section 7) results and
constraints on new phenomena (Section 8), which rely on the comparison of measured and SM-expected
yields, both the acceptance and signal yield uncertainties are included. For the cross-section and branching
fraction results from Sections 5.2 through 6, only acceptance uncertainties are considered. The effects of
correlations between Higgs boson branching fractions are modeled using the correlation model specified in
Ref. [39]. Uncertainties due to dependencies on SM parameter values and missing higher-order effects are
applied to the partial decay widths and propagated to the branching fractions. The uncertainties due to
modeling of background processes are typically treated as uncorrelated between analyses.

The measurement of the parameters of interest is carried out using a statistical test based on the profile

likelihood ratio [128], A

_ L(e,8(a))
L(.6)

where « and 6 are respectively the parameters of interest and the nuisance parameters. In the numerator,

Ala)

’

the nuisance parameters are set to their profiled values (), which maximize the likelihood function for
fixed values of the parameters of interest @. In the denominator, both the parameters of interest and the
nuisance parameters are set to the values & and 6 respectively which jointly maximize the likelihood.

In the asymptotic regime, in which the likelihood is approximately Gaussian, the value of —21n A(«)
follows a y? distribution with a number of degrees of freedom n equal to the dimensionality of the vector
a [128]. This property is assumed to hold for all the results presented in the following sections. Confidence
intervals for a confidence level (CL) 1 — p are then defined as the regions with values of —2 In A(a) below a
threshold F~) (1 — p), where F);zl is the quantile function of the y? distribution with n degrees of freedom.

The CL; prescription [129] is applied when setting an upper limits on a single parameter directly related
to measured event rates, for instance a production cross section. When setting limits in more than one
dimension, the CLg procedure is not applied.

For relevant parameters of interest, a physical bound on the parameter values is included in the statistical
interpretation. For example, branching fraction parameters cannot conceptually be smaller than zero. The
95% confidence interval quoted for such parameters is then based on the profile likelihood ratio restricted
to the allowed region of parameter space, using the 7, test statistic of Ref. [128]. The confidence interval is
defined by the standard y? cutoff, which leads to some over-coverage near the boundaries.

Total uncertainties in the measurement parameters are in some cases broken down into separate components
for theory uncertainties affecting the background processes, theory uncertainties affecting the Higgs
boson signal production, experimental uncertainties including MC statistical uncertainties, and statistical
uncertainties. Each uncertainty component is derived by fixing the associated nuisance parameters to their
best-fit values & in both the numerator and denominator of A, and computing again the uncertainty in the
measurement parameters. This is done for each component in turn, following the order in which they are
listed above. The uncertainty obtained at each step is then subtracted in quadrature from the uncertainty
obtained in the previous step (in the first step, from the total uncertainty) to obtain the corresponding
uncertainty component. The statistical uncertainty component is obtained in the last step, with all nuisance
parameters fixed except for the ones that are solely constrained by data, such as parameters used to describe
data-driven background estimates.



The level of compatibility with the Standard Model is quantified using the test statistic
Asm = —2In A(a = asm),

where @y are the Standard Model values of the parameters of interest. A p-value® pgy is computed in
the asymptotic approximation as psm = 1 - F, 2 (Asm), with n equal to the number of free parameters of
interest. For the cross-section and branching fraction measurements reported in this paper, this definition
does not account for the uncertainties in the SM values used as reference and may therefore lead to an
underestimate of the p-value.

Results for expected significances and limits are obtained using the Asimov dataset technique [128].

The correlation coeflicients presented in this paper are constructed to be symmetric around the observed
best-fit values of the parameters of interest using the second derivatives of the negative log-likelihood ratio.
Hence, the correlation matrices shown are not fully representative of the observed asymmetric uncertainties
in the measurements. While the reported information is sufficient to reinterpret the measurements in
terms of other parameterizations of the parameters of interest, this provides only an approximation to the
information contained in the full likelihood function. For this reason, results for a number of commonly
used parameterizations are also provided in Sections 5 to 7.

5 Combined measurements of signal strength, production cross sections
and branching ratios

5.1 Global signal strength

The global signal strength y is determined following the procedures used for the measurements performed
at v/s = 7 and 8 TeV [9]. For a specific production mode i and decay final state f, the signal yield is
expressed in terms of a single modifier y; ¢, as the production cross section o; and the branching fraction
B cannot be separately measured without further assumptions. The modifiers are defined as the ratios of
the measured Higgs boson yields and their SM expectations, denoted by the superscript “SM”,

(oF Bf
Hif = —s X Zom- @)
o; Bf

The SM expectation by definition corresponds to u;r = 1. The uncertainties in the SM predictions
are included as nuisance parameters in the measurement of the signal strength modifiers, following the
methodology introduced in Section 4, where the procedures to decompose the uncertainties are also
described.

In the model used in this section, all the y; ¢ are set to a global signal strength y, describing a common
scaling of the expected Higgs boson yield in all categories. Its measured value is

1 =1.06 +0.07 = 1.06 + 0.04 (stat.) = 0.03 (exp.) *0:0 (sig. th.) +0.02 (bkg. th.)

where the total uncertainty is decomposed into components for statistical uncertainties, experimental
systematic uncertainties, and theory uncertainties in signal and background modeling. The signal theory

3 The p-value is defined as the probability to obtain a value of the test statistic that is at least as high as the observed value under
the hypothesis that is being tested.
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component includes uncertainties due to missing higher-order perturbative QCD and electroweak corrections
in the MC simulation, uncertainties in PDF and a; values, the treatment of the underlying event, the
matching between the hard-scattering process and the parton shower, choice of hadronization models, and
branching fraction uncertainties. The measurement is consistent with the SM prediction with a p-value of
psm = 40%, computed using the procedure defined in Section 4 with one degree of freedom. The value of
—21n A(u) as a function of u is shown in Figure 1, for the full likelihood and the reduced ones with sets of
nuisance parameters sequentially fixed to their best-fit values to obtain the components of the uncertainty,
as detailed in Section 4.

< 8_1 T T T 7T N T T T 7T N T T 1T N T T 17T N T T T 7T N T T T T N T L
= [ ATLAS Preliminary m— Total 1
o 7E (s=13Tev, 245-139 " —— Remove Bkg. th. ]
E = Remove Sig. th. 4
- my=125.09 GeV, |yH| <25 ... Stat. ]
6? p_ =40% ]
[ SM -
5k =
af- ——— —
3 =
2 =
=——— F
0: ! Ll N > | ! ! ! ]

09 09 1 105 11 115 1.2

Figure 1: Variations of —2In A(u) as a function of ¢ with all systematic uncertainties included (solid black line),
with parameters describing theory uncertainties in background processes fixed to their best-fit values (solid blue line),
with the same procedure also applied to theory uncertainties in the signal process (solid red line) and to all systematic
uncertainties, so that only statistical uncertainties remain (dotted black line). The dashed horizontal lines show the
levels —2In A(u) = 1 and =2 In A(u) = 4 which are used to define, respectively, the 10~ and 20~ confidence intervals
for u. The level of compatibility between the measured global signal strength and the SM prediction corresponds to a
p-value of psm = 40%, computed using the procedure outlined in the text with one degree of freedom.

5.2 Production cross sections

Higgs boson production is studied in each of its main production modes. The production mechanisms
considered are ggF, VBF, WH, ZH (including gg — ZH), and the combination of 77H and tH (1tH + tH).
The small contribution from bbH (of the order of 1%) is grouped with ggF. In cases where several
processes are combined, the combination assumes the relative fractions of each component to be as in the
SM within corresponding theory uncertainties. Cross sections are reported in the region |yg| < 2.5 of the
Higgs boson rapidity yg. Results are obtained in a simultaneous fit to the data, with the cross sections of
each production mechanism as parameters of interest. Higgs boson decay branching fractions are set to
their SM values, within the uncertainties specified in Ref. [39]. The results are shown in Figure 2 and
Table 2.
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Figure 2: Cross sections for ggF, VBF, WH, ZH and ttH + tH normalized to their SM predictions, measured
assuming SM values for the decay branching fractions. The black error bars, blue boxes and yellow boxes show
the total, systematic, and statistical uncertainties in the measurements, respectively. The gray bands indicate the
theory uncertainties in the SM cross-section predictions. The level of compatibility between the measurement and
the SM prediction corresponds to a p-value of psym = 86%), computed using the procedure outlined in the text with
five degrees of freedom.

Table 2: Best-fit values and uncertainties for the production cross sections of the Higgs boson, assuming SM values
for its decay branching fractions. The total uncertainties are decomposed into components for data statistics (Stat.)
and systematic uncertainties (Syst.), and the systematic uncertainties are further decomposed into experimental
(Exp.), signal theory (Sig. Th.) and background theory (Bkg. Th.) components. SM predictions are shown for
the cross section of each production process. They are obtained from the inclusive cross-sections and associated
uncertainties reported in Ref. [39], multiplied by an acceptance factor for the region |yg| < 2.5 computed using the
Higgs boson simulation samples described in Section 2.

Process | Value Uncertainty [pb] SM pred.
(Jymg] <2.5) | [pb] Total Stat. Syst. ! Exp. Sig. Th. Bkg. Th. [pb]
ggF | 447 £31 x22 22 ! 8 18 10 1447422
VBF| 40 £06 +05 04 | *%3 +£03 +01 |351*0%
0.28 0.20 0.18 | +0.13 0.08 0.10
WH | 145 T Ioe  Zon | oz looe  Zoge | 1:204£0.024
0.18 0.12 0.08 0.07 0.033
ZH | 078 *o5 013 T o0 i To0r T 0o0s £0.06 | 0.797 * 5
fH+tH | 064 +0.12 £0.09 =008 *3% 003 £0.05 | 059903
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Figure 3: Correlation matrix for the measurement of production cross sections of the Higgs boson, assuming SM
values for its decay branching fractions.

The correlations between the measured cross sections, shown in Figure 3, are further reduced relative
to previous analyses [21]. A modest correlation of —8% between the ggF and VBF processes remains,
however, because of contributions from ggF production in the VBF-enriched selections. The level of
compatibility between the measurement and the SM prediction corresponds to a p-value of psy = 86%,
computed using the procedure outlined in Section 4 with five degrees of freedom.

Figure 4 shows the observed likelihood contours in the plane of ogef versus oygr from individual channels
and the combined fit, together with the SM prediction. The cross sections for the other production modes
are profiled, i.e. their values are determined by data as free parameters in the maximum likelihood fit, and
the theory uncertainties on the predictions are assumed to be uncorrelated.

Significances relative to hypotheses in which individual production processes are absent are found to be
above 5 o for all major production processes: ggF, VBF, WH, ZH, and ttH+tH. For the WH and ZH
modes, the observed (expected) significances are respectively 6.3 o (5.2 ¢0°) and 5.0 o (5.4 o) based on the
asymptotic approximation, representing a first observation for the W H production mode.
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Figure 4: Observed likelihood contours in the plane of oypr versus o from individual channels and the combined
fit. Contours for 68% CL, defined in the asymptotic approximation by —2In A = 2.28, are shown as solid lines.
The 95% CL contour for the combined fit, corresponding to —2In A = 5.99, is also shown as a dashed line. The
crosses indicate the best-fit values. The SM prediction is shown as a solid ellipse, produced by transforming the
individual theory uncertainties on these processes into two-dimension by applying a scale factor of 1.51 obtained

from the chi-squared quantile function, /F);zl (68%) = V2.28. Higgs boson branching fractions are fixed to their
2
SM values within theory uncertainties. The level of compatibility between the combined measurement and the SM

prediction, estimated using the procedure outlined in the text with two degrees of freedom, corresponds to a p-value
of PsSM = 66%.

5.3 Products of production cross sections and branching fractions

A description of both the production and decay mechanisms of the Higgs boson is obtained by considering
the products (o X B); ¢ of the cross section in production process i and branching fraction to final state
f. The production processes are defined as in Section 5.2 except for the fact that the WH and ZH
processes, which cannot be independently determined with the current H— ZZ*— £*¢~¢*¢~ analysis due
to limited data statistics, are considered together as a single V H process, with the ratio of WH to ZH cross
sections fixed to its SM value within uncertainties. The decay modes considered are H— yy, H — ZZ",
H — WW*, H — 77 and H — bb. There are in total 20 such independent products, but the analyses
included in the combination provide little sensitivity to ggF production in the H — bb decay mode, and to
VH production in the H - WW* and H — 77 decay modes. The corresponding products are therefore
fixed to their SM values within systematic uncertainties. The impact from fixing these processes to the SM
is found to be negligible by comparing with an alternative parameterization where they are determined
in the fit by assuming SM predicted relative fraction between H — WW* and H — ZZ*, and between
H — 17 and H — bb. Also due to limited sensitivity, in fH production the H — ZZ* decay mode
is considered together with H — WW™* as a single H — VV™* process, with the ratio of H — ZZ* to
H — WW* fixed to its SM value. The results are obtained from a simultaneous fit of all input analyses,
with the 16 independent (o~ X B) products defined above as parameters of interest. They are shown in
Figure 5 and Table 3. The correlation matrix of the measurements is shown in Figure 6. The largest
correlations in absolute value are between the ttH, H — VV* and ttH, H — 771 processes, and between
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the ggF, H — 77 and VBF, H — 77 processes. In both cases, this is due to cross-contamination between
these processes in the analyses providing the most sensitive measurements. The level of compatibility
between the measurement and the SM prediction corresponds to a p-value of psy = 87%, computed using
the procedure outlined in Section 4 with 16 degrees of freedom.

Table 3: Best-fit values and uncertainties for the production cross sections times branching fractions of the Higgs
boson, for the combinations in which sufficient sensitivity is provided by the input analyses. Combinations not shown
in the table are fixed to their SM values within uncertainties. For t7H + tH production, H — VV* refers to the
combination of H - WW* and H — ZZ*, with a relative weight fixed by their respective SM branching fractions.
The total uncertainties are decomposed into components for data statistics (Stat.) and systematic uncertainties (Syst.).
SM predictions [39] are shown for each process.

Process Value Uncertainty [fb] SM pred.
(Iyml < 2.5) [fb]  Total Stat. Syst. [fb]
ggF, H—yy 105  +11 =8 8 101 +5
geF. H > ZZ* 1o 3% £120  +£50 | 1180+ 60
ggF, H > WW* 10400+ 1890 1+ 1100 £ 1400 | 9600 + 500
ggF. H — 17 2900 10 £1100  * 1300 | 2800 + 140
VBF, H— yy 105 3% T T 17.98+0.21
VBF,H — ZZ* 120+ £40 +10 | 92.8+23
* 270 220
VBF, H —» WW 450 20+ 20 2160 | 756 £ 19
VBF,H — 17 250  * 30 +90  *R 1 220%6
VBF, H — bb 6200 *330  £3300 *80 | 2040 £ 50
VH,H—yy 60 tii i3 MGR [ 454T0n
VH,H — ZZ* o *¥ 9 +10 | 52.8+1.4
5 210 160 31
VH,H — bb 1190 20 +130 160 | 1162 73}
7 0.36 0.33 0.12 0.08
ttH+tH, H—yy 1200 Tom Tom loes | 183100
MMH+tH,H—VV*| 240 £80 +60  +50 |1427%9,
tH+tH,H — 17 40+ £30 P 1367733
ttH +tH, H — bb 270 +£200 +100  * 180|340+ 320
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Figure 5: Cross sections times branching fraction for ggF, VBF, VH and tzH + tH production in each relevant decay
mode, normalized to their SM predictions. The values are obtained from a simultaneous fit to all channels. The
cross sections of the ggF, H — bb,VH,H - WW*and VH, H — 11 processes are fixed to their SM predictions.
Combined results for each production mode are also shown, assuming SM values for the branching fractions into
each decay mode. The black error bars, blue boxes and yellow boxes show the total, systematic, and statistical
uncertainties in the measurements, respectively. The gray bands show the theory uncertainties in the predictions.
The level of compatibility between the measurement and the SM prediction corresponds to a p-value of psy = 87%,
computed using the procedure outlined in the text with 16 degrees of freedom.
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Figure 6: Correlation matrix for the measured values of the production cross sections times branching fractions of the
Higgs boson, for the combinations in which sufficient sensitivity is provided by the input analyses.

5.4 Ratios of cross sections and branching fractions

The products (o~ X B); s described in Section 5.3 can be expressed as

OggF Bzz)’
in terms of the cross section times branching fraction (rgzg% for the reference process gg — H — ZZ*,

which is precisely measured and exhibits small systematic uncertainties, ratios of production cross sections
to that of ggF, 0 /0ger, and ratios of branching fractions to that of H — ZZ*, By /Bz7.

77

(O'XB),'f = 2oF

Results are shown in Figure 7 and Table 4. The level of compatibility between the measurements and
the SM predictions corresponds to a p-value of psy = 97%, computed using the procedure outlined in
Section 4 with nine degrees of freedom.
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Figure 7: Results of a simultaneous fit for O'gzg% , OVBF/OgsFs OWH | OgeFs OZH [ TegF> Osiprisri | OeeFs Byy/Bzz,
Bww /Bzz, Brr/Bzz, and By, /Bzz. The fit results are normalized to the SM predictions. The black error bars,
blue boxes and yellow boxes show the total, systematic, and statistical uncertainties in the measurements, respectively.
The gray bands show the theory uncertainties in the predictions. The level of compatibility between the measurement
and the SM prediction corresponds to a p-value of psm = 97%, computed using the procedure outlined in the text

with nine degrees of freedom.
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Table 4: Best-fit values and uncertainties for a'gzgg , together with ratios of production cross sections divided by oggF,
and ratios of branching fractions divided by Bzz. The total uncertainties are decomposed into components for
data statistics (Stat.) and systematic uncertainties (Syst.). The SM predictions [39] are also shown with their total
uncertainties.

Quantity Value Uncertainty SM prediction
Total Stat. Syst.
olf [pb] | 115 011 +0.09 *90 | 1.18+0.06
OVBE/Oggp 0.089 *OOIL  FOO  FO0m | 0.079 £0.004
oW H | Tggr 0.036  *O0  *O00e  £0.005 | 0.0269 * 0001
Con s 0.020 *O%7 rO%e  +ome | 0.0178 + G0l
Crrttsan | Tasr 0.0143 T4+ 0+ 0mIE | 0.0131 * S0
By, /Bzz 0.091 *oM2 #0000+ 0006 10.0860 +0.0010
Bww /Bzz 83 *1 1 1 8.15+ <0.01
B::/Bzz 26 *O01 +0.5  *93 ]2.369+0.017
Byy/Bzz 19 *¢ 3 4 22.0+0.5
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6 Combined measurements of simplified template cross sections

6.1 Simplified template cross-section framework

Simplified template cross sections [39—42] are defined through a partition of the phase space of the SM
Higgs production processes into a set of non-overlapping regions. These regions are defined in terms of
the kinematics of the Higgs boson and, when they are present, of associated jets and W and Z bosons,
independently of the Higgs boson decay process. They are chosen according to three criteria: sensitivity
to deviations from the SM expectation, avoidance of large theory uncertainties in the corresponding SM
predictions, and to approximately match experimental selections so as to minimize model-dependent
extrapolations. Analysis selections do not, however, necessarily correspond exactly to the STXS regions.

All regions are defined for a Higgs boson rapidity yg satisfying |yg| < 2.5, corresponding approximately
to the region of experimental sensitivity. Jets are reconstructed from all stable particles with a lifetime
greater than 10 ps, excluding the decay products of the Higgs boson and leptons from W and Z boson decays,
using the anti-k, algorithm with a jet radius parameter R = 0.4, and must have a transverse momentum
PT,jet > 30 GeV.

The measurements presented in this paper use the regions of phase space specified by the Stage 1.2 splitting
of the STXS framework. Higgs boson production is first classified according to the nature of the initial
state and the associated particles, the latter including the decay products of the W and Z bosons if they
are present. These classes are: t7H and tH processes; gqg — Hgqq processes, with contributions from
both VBF production and quark-initiated V H production with a hadronic decay of the gauge boson; VH
production with a leptonic decay of the vector boson (V(lep)H), including gg — ZH production; and
finally the ggF process. The last is considered together with gg — ZH, Z — g4 production, as a single
gg — H process. The bbH production mode is modeled as a 1% [39] increase of the gg — H yield in
each STXS bin, since the acceptances for both processes are similar for all input analyses [39].

The input analyses included in this paper provide only limited sensitivity to the cross section in some bins
of the Stage 1.2 scheme, mainly because of the small number of events in some regions. In other cases,
they only provide sensitivity to a combination of bins, leading to strongly correlated measurements. To
mitigate these effects, some of the bins as defined in Stage 1.2 have been merged for this combined analysis.
These measurement bins are defined as follows for each process, and summarized in Figure 8:

* gg — H is separated into regions defined by the jet multiplicity, the Higgs boson transverse
momentum p¥ , and in case there are at least two jets the invariant mass of the two leading jets m ;.
A region is defined for events with p%’ > 200 GeV, providing sensitivity to deviations from the SM
at high momentum transfer. This region is further partitioned into three p? bins: 200 — 300 GeV,
300 — 450 GeV and > 450GeV. The remaining events are separated into regions with 0, 1 and
> 2 jets in the final state. The O-jet and 1-jet regions are further split into bins of p¥ , probing
perturbative QCD predictions and providing sensitivity to deviations from the SM. Two bins are
defined with p? below and above 10 GeV in the O-jet region, and three pf bins are defined for
< 60GeV, 60 — 120 GeV and 120 — 200 GeV in the 1-jet region. As for the 2-jet region, it is first
divided into two regions with m ;; below and above 350 GeV. The former is then further divided
into two p¥ bins: < 120 GeV and 120 — 200 GeV.

* qq — Hgqgq is separated into < 1-jet and > 2-jet regions. The > 2-jet region is then divided into two
regions, namely m ;; below and above 350 GeV. The m;; < 350 GeV region is further split into two
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bins, one with m;; in 60 — 120 GeV, which include a large fraction of VH events with hadronically
decaying vector bosons (VH topo). The other bin contains the remaining events with m;; in the
range of either < 60 GeV or 120 — 350 GeV (VH veto). The mj; > 350 GeV region is separated into
two p? regions below and above 200 GeV. The latter is further divided into two bins with m; in
350 — 700 GeV and above 700 GeV.

* V(lep)H is split into the two processes gqg — WH and pp — ZH, the latter including both
quark-initiated and gluon-initiated productions. These regions are further split according to p¥ , the
transverse momentum of the W or Z boson. For the gg — WH process four bins are defined for
p¥: < 75GeV, 75 - 150 GeV, 150 — 250 GeV and > 250 GeV, while for pp — ZH three bins are

defined for p¥: < 150 GeV, 150 — 250 GeV and > 250 GeV.

e ttH is split into four p? bins defined as < 60 GeV, 60 — 120 GeV, 120 — 200 GeV and > 200 GeV.
tH is a single bin in the measurement.

The measured event yields are described by Eq. (1), with parameters of interest of the form (o X B); ¢
denoting the cross section times branching fraction in STXS region i and decay channel f. The acceptance
factors (e X A) f‘f for each analysis region k are determined from SM Higgs boson production processes,
modeled using the samples described in Section 2, and act as templates in the fits of the STXS cross sections
to the data. The dependence on the theory assumptions is less than in the measurement of the total cross
sections in each production mode, since the (€ X A) ff are computed over smaller regions. Assumptions
about the kinematics within a given STXS region lead to some model-dependence, which can be reduced
further by using a finer splitting of the phase space, as allowed by experimental precision in the future. As
for the other results reported in this note, the STXS measurements assume the SM predictions for Higgs
boson decays. BSM scenarios such as those described in Ref. [11] can significantly modify the acceptance
of the signal, in particular for the WW* or ZZ* decay channels, which should be considered when using
these measurements for the relevant interpretations.

Theory uncertainties for the gg — H, gq — Hqgq, and ttH processes are defined as in Ref. [10, 11], while
those of the V(lep)H process follow the scheme described in Ref. [130]. For the measurement bins defined
by merging several bins of the STXS Stage-1.2 framework, the (e X A) factors are determined assuming
that the relative fractions of each Stage-1.2 bin are as in the SM, and SM uncertainties in these fractions
are taken into account.
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Figure 8: Definition of the STXS measurement regions used in this note.



6.2 Results

The fit parameters chosen for the combined STXS measurements are the cross sections for Higgs boson
production in STXS region i times the branching fraction for the H — ZZ* decay, (0 X B); zz, and the
ratios of branching fractions B / Bz for the other final states f. Similarly to the ratio model in Section 5.4,
the cross sections times branching fractions for final states other than ZZ are parameterized as

By
(0 XB)iy =(0XB)izz" (E) .

The results are shown in Figure 9 and Table 5. The observed (expected) upper limit at 95% CL on the tH
cross section is 8.4 (8.2) times the SM prediction.

The results are in agreement with the SM predictions within uncertainties in a wide range of kinematic
regions for the different Higgs boson production processes. The level of compatibility between the
measurement and the SM prediction corresponds to a p-value of psy = 95%, computed using the
procedure outlined in Section 4 with 31 degrees of freedom.
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Figure 9: Best-fit values and uncertainties for the cross sections in each measurement region and of the ratios of
branching fractions By /Bzz, normalized to the SM predictions for the various parameters. The parameters directly
extracted from the fit are the products (0; X Bzz) and the ratios By /Bzz. The black error bar shows the total
uncertainty in each measurement. The level of compatibility between the combined measurement and the SM
prediction, estimated using the procedure outlined in the text with 31 degrees of freedom, corresponds to a p-value

of PsSM = 95%.
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Figure 10: Correlation matrix for the measured values of the simplified template cross sections and ratios of branching
fractions. The fit parameters are the products (o; X Bzz) and the ratios By /Bzz.
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Table 5: Best-fit values and uncertainties for the cross sections in each measurement region, and of the ratios of
branching fractions By /Bzz. The total uncertainties are decomposed into components for data statistics (Stat.)
and systematic uncertainties (Syst.). The SM predictions [39] are also shown for each quantity with their total
uncertainties. The parameters directly extracted from the fit are the products (o; X Bzz) and the ratios By /Bzz; the

former are shown divided by the SM value of Bz .

Measurement region ((O'i y Bzz)/Bg\g ) Value Uncertainty [pb] SM prediction
[pb]  Total Stat. Syst. [pb]

gg — H,0—jet, p{.‘l < 10GeV 55 ¢ 112 + 113 + %‘% 6.7+0.9

8¢ — H,0—jet, 10 < pf <200GeV 233 *34 0 t3l ril 1208+1.6

gg — H,1—jet, pH < 60GevV 40 +20 18 +09 [6.6+09

gg — H,1—jet, 60 < pH < 120GeV 60 *14 13 +06 1454506

gg — H,1—jet, 120 < pH <200 GeV 054 *+03 032 401 10.75+£0.15

gg — H,>2—jet, mj; < 350GeV, pf < 120GeV 09 +13 +13 £05 [3.0+07

8¢ — H,>2—jet, mj; <350GeV, 120 < pH < 200GeV 06 +04 04 £02 |095+024

8¢ — H,>2—jet, mj; >350GeV, p <200GeV 14 +07 +06 +0.3 | 0.88+0.15

gg — H,200 < p¥ < 300GeV 055 *oI8  rOIT + 001 1 0.46+0.12

gg — H, 300 < pf <450 GeV 0.04 *+006  +006 £0.02] 0.11+0.04

gg — H, p¥ > 450Gev 0.031 +0026  +0.02  + 0001 0.018 +0.009

qq — Hqq, < 1 - jet 21 *rRL *28 506 | 2.10+0.06

qq — Hqq, > 2 —jet, m;; < 350GeV, VH veto 1.7 * 1]% +1.1 t%'g 0.728 + 0.022

qq — Hqq, > 2 —jet, m;; < 350GeV, VH topo 03 =+04 +0.4 +0.1 | 0527 * %%12%

qq — Hqq, > 2 —jet, 350 < m;; < 100GeV, pH <200GeV | 044 *+035  +032 + 014|545, 0016

qq — Hqq, > 2 —jet, m;; > 700GeV, p¥ < 200GeV 085 *02 o2l + 0 10.735+0.022

qq — Hqq, = 2 —jet, mj; > 350GeV, p¥ > 200 GeV 0.19 *+007  + 007+ 003 1 0.160 + 0.004

qq — Htv, pY <75GeV 0.51 *02 +02M  +00°10.206+0.008

qq — Htv,75 < p¥ < 150GeV 0.22 f%ﬁ f%ﬁ f%'.%% 0.131 *+ 8%%2

qq — Htv, 150 < py < 250 GeV 0.06 *00  +0.03 *99 10.0414+0.0018

qq — Hev, pY > 250 GeV 0.017  +001L  + 0000  + 00031 0.0134 £ 0.0006

88/qq — HEL, pY < 150 GeV 0.04 *013  +0.11 *%1910.197 +0.008

88/qq — HEL, 150 < pY < 250 GeV 0.042 *+0020 + 0022+ G001 0.032 +0.004

gg/qq — HLE, p¥ > 250 GeV 0.012 * 8‘_%%2 + %‘_8%? + %:g%‘é 0.0087 + 0.0009

1tH, pH < 60 GeV 0.09 *O00 08 002 10.118+0.016

1tH, 60 < pH < 120 GeV 0.12 *+000  +O00  £0.01] 0.178 +0.020

1tH, 120 < pf <200 GeV 0.13  *008  +00L  FO0r | 0.126+0.015

1tH, p¥! > 200 GeV 0.07 *0&  +004 + 000 10.077 £0.011

H 0.14 43 0T vome o085t g0

Branching fraction ratio

B,,/Bzz 0.092 * 00+ 000 00001 0.0860 +0.0010

B,;/Bzz 17 *+8 ! 1 22.0+0.5
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7 Interpretation of results in the x framework

When testing the Higgs boson coupling strengths, the production cross sections o; and decay branching
fractions By defined in Eq. (2) cannot be treated independently, as they often involve the same Higgs boson
coupling strengths. Scenarios with a consistent treatment of coupling strengths in Higgs boson production
and decay modes are presented in this section.

7.1 Framework for coupling-strength measurements

Coupling-strength modifiers « are introduced to study modifications of the Higgs boson couplings related
to BSM physics, within a framework [43] (k-framework) based on the leading-order contributions to each
production and decay process. Within the assumptions made in this framework, the Higgs boson production
and decay can be factorized, such that the cross section times branching fraction of an individual channel
o (i > H — f) contributing to a measured signal yield is parameterized as

oi(k) XI'r (k)

- 3

o; XB f=
where I'y is the total width of the Higgs boson and I' is the partial width for Higgs boson decay into
the final state f. For a given production process or decay mode j, the corresponding coupling-strength
modifier «; is defined by

The SM expectation, denoted by the label “SM”, by definition corresponds to x; = 1.

The total width of the Higgs boson is given by the sum of the partial widths for the decay modes included
in the present measurements, and contributions from the following two additional classes of Higgs boson
decays.

* Invisible decays: decays which are identified through an E?iss signature in the analyses described in
Section 3.5. In the SM, the branching fraction of invisible decays is predicted to be 0.1%, exclusively
from the H — ZZ* — 4v process. The BSM contribution to this branching fraction is denoted as
B;.

* Undetected decays: decays to which none of the analyses included in this combination are sensitive,
such as decays to light quarks which have not yet been resolved, or undetected BSM particles without
a sizable EITniSS in the final state. For the former, the SM contribution of these undetected decays
is already included in M, and amounts to 11%, mainly driven by the decays to gluon pairs. The
BSM contribution to the undetected branching fraction is denoted as B, . Note that deviations of
the partial width of the input measurements of this analysis are separately included by scaling their
partial width by «;.
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BSM contributions to the total Higgs boson decay width may manifest themselves as a value of «; differing
from one, or a value of Bj or B, differing from zero. The Higgs boson total width is then expressed as
Th (k, Bi, Bu) = k3, (k, Bi., B,) '} with

2 BSMy?
KIZLI(K, Bi,B,) = ﬁ 4
1. u.

By definition, By, is not directly constrained by any measurement, so that extracting values for both the
kappa parameters and B, simultaneously requires additional assumptions or constraints. In fact all the
measured cross sections included in this combination would be left unchanged for certain choices of
values for the k parameters and By, as the changes would divide out in the ratio, as can be seen Egs. (3)
and (4). The simplest assumption is that there are no undetected Higgs boson decays and the invisible
branching fraction is as predicted by the SM. An alternative, weaker assumption, is to require xyw < 1 and
kz < 1[43]. Another possible alternative, used in the previous combination [21] but not in the current
note, is based on the measured signal strength of off-shell Higgs boson production to constrain the total
Higgs width, assuming off-shell and on-shell coupling-strength scale factors are the same.

An alternative approach is to rely on measurements of ratios of coupling-strength scale factors, which can
be measured without assumptions about the Higgs boson total width, since the dependence on 'y of each

coupling strength cancels in their ratios .

The current LHC data are nearly insensitive to the coupling-strength modifiers k. and «s. Thus, in the
following it is assumed that k. varies as k; and «; varies as k. Other coupling modifiers (k,,, x4, and k)
are irrelevant for the combination provided they are of order unity. The gg — H, H — gg, g¢ — ZH,
H — yy,and H — Zvy processes are loop-induced in the SM. The ggH vertex and the H — 7y process
are treated either using effective scale factors «, and «,,, respectively, or expressed in terms of the more
fundamental coupling-strength scale factors corresponding to the particles that contribute to the loop in the
SM, including all interference effects. The gg — ZH process is never described using an effective scale
factor and always resolved in terms of modifications of the SM Higgs boson couplings to the top quark and
the Z boson. Similarly, the H — Zvy decay is always expressed in terms of the Higgs boson couplings
to the W boson and the #-quark as no analysis targeting this decay mode is included in the combination.
These relations are summarized in Table 6. All uncertainties in the best-fit values shown in the following
take into account both the experimental and theoretical systematic uncertainties, following the procedures
outlined in Section 4.

4 For the validity of k-framework the narrow-width assumption should still hold.
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Table 6: Parametrizations of Higgs boson production cross sections o, partial decay widths I'/, and the total width
'y, normalized to their SM values, as functions of the coupling-strength modifiers k. The effect of invisible and
undetected decays is not considered in the expression for I'y;. For effective k parameters associated with loop
processes, the resolved scaling in terms of the modifications of the Higgs boson couplings to the fundamental SM
particles is given. The coefficients are derived following the methodology in Ref. [39, 43].

] Main Effective )
Production Loops Resolved modifier
interference  modifier
o (ggF) v t—b K3 1.040 k7 +0.002 k2 — 0.038 k;kpp — 0.005 K7k
o (VBF) - - - 0.733 k%, +0.267 k%
o(qq/qg —» ZH) - - - &,
2.456 k% +0.456 k> — 1.903
o(gg — ZH) v -Z K(ggZH) 2 “ w
—0.011 kzkp +0.003 k43
2
o(WH) - - - Ky
o(ttH) - - - K2
o (tHW) - =W - 2.909 k7 +2.310 &3, — 4.220 k;kw
o(tHg) - =W - 2.633 k% +3.578 K%V —5.211 kekw
7 2
o(bbH) - - - K2
Partial decay width
bb 2
I - - - K2
2
rww - - - K3,
rss v i-b K3 1111 &7 +0.012 k3 — 0.123 kx5
| _ _ _ K%.
2
r4z - - - K7
e - - - K (=kD)
1.589 k3, +0.072 k7 — 0.674 kw &,
vy v =W K3 +0.009 kyw K +0.008 kyy K5
—0.002 k;kp — 0.002 k, k¢
v Vv 1% K%Zy) 1.118 K%/V —0.125 kw «; + 0.004 /<t2 +0.003 kw kp
s _ _ _ K? (: KZZ))
| Rl - - - Klzl
Total width (B; = B, =0)
0.581 k7 +0.215 &3, +0.082 2
+0.063 k2 +0.026 «% +0.029 k2
Th v - Ky +0.0023 13, +0.0015 47,
+0.0004 «3 +0.00022 k7,
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7.2 Fermion and gauge boson couplings

The model studied in this section probes the universal coupling-strength scale factors ky = kyw = k7 for all
vector bosons and kr = k; = Kk, = kr = k,, for all fermions. The effective couplings corresponding to the
ggH and H — yy vertex loops are resolved in terms of the fundamental SM couplings. It is assumed that
there are no invisible or undetected Higgs boson decays, i.e. B; = By, = 0. Only the relative sign between
ky and kF is physical. As a negative relative sign has been excluded with high confidence level [9], ky > 0
and kr > 0 are assumed. The best-fit values and uncertainties from a combined fit are

ky =1.03£0.03
kr =0.97 £0.07.

Figure 11 shows the results of the combined fit in the («y, xF) plane. Both «y and kr are measured to
be compatible with the SM expectation. The level of compatibility between the SM hypothesis with the
best-fit point corresponds to a p-value of psm = 45%, computed using the procedure outlined in Section 4
with two degrees of freedom. In the combined measurement a linear correlation of 50% between «y and
Kk 1s observed.
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Figure 11: Negative log-likelihood contours at 68% and 95% CL in the (ky, ) plane obtained from a combined fit,
assuming no contributions from invisible or undetected Higgs boson decays. The best-fit value is indicated by a cross
while the SM hypothesis is indicated by a star. A linear correlation of 50% between «v, kr is observed. The level of
compatibility between the combined measurement and the SM prediction, estimated using the procedure outlined in
the text with two degrees of freedom, corresponds to a p-value of psy = 45%.

7.3 Probing BSM contributions in loops and decays

To probe contributions of new particles though loops, the effective coupling strengths to photons and
gluons «, and «, are measured. These parameters are defined to be positive as there is by construction
no sensitivity to the sign of these coupling strengths. The modifiers corresponding to other loop-induced
processes are resolved. Any potential BSM contribution to k,, and g, corresponding to a deviation from
one, may also contribute to the total width of the Higgs boson. To check this, the branching fractions B;.
and B, , defined in Section 7.1, can be fixed to zero or allowed free in the fit. Furthermore, the benchmark
models studied in this section assume that all coupling-strength modifiers of known SM particles are unity,
i.e. they follow the SM predictions, and that the kinematics of the Higgs boson decay products are not
altered significantly.

Assuming B = By, = 0, the best-fit values and uncertainties from a combined fit are
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ky = 1.06 + 0.05
kg = 0.98 % 0.05.

Figure 12 shows negative log-likelihood contours obtained from the combined fit in the («,, kg) plane.
Both «,, and «, are measured to be compatible with the SM expectation. The level of compatibility between
the SM hypothesis with the best-fit point corresponds to a p-value of psy = 51%, computed using the
procedure outlined in Section 4 with two degrees of freedom. A linear correlation of —34% between «,,
and k, is observed, in part due to the constraint on their product from the rate of H — 7y decays in the
ggF channel.

To also consider additional contributions to the total width of the Higgs boson, the assumption of no
invisible or undetected decays is dropped and B;. and B,_are included as independent parameters in the
model. The measurement sensitive to Higgs boson decays into invisible final states described in Section 3.5
is included in the combination and used to constrain B;. The By parameter is constrained by decay modes
that do not involve a loop process. The results from this model are

0.06
Ky = 1.O4t0‘05
0.07
Kg = 0.94J:0'06
B; =0.00=+0.07
0.12
B, = —O.O9t0_13.

Limits on B; and B, are set using the 7,, prescription presented in Section 4. The observed (expected) upper
limits at 95% CL on B;. and B, are 0.13 (0.13) and 0.16 (0.23), respectively. The level of compatibility
between the SM hypothesis with the best-fit point corresponds to a p-value of psy = 70%, computed using
the procedure outlined in Section 4 with four degrees of freedom.

The results for both models are summarized in Figure 13.
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Figure 12: Negative log-likelihood contours at 68% and 95% CL in the (k,,, x¢) plane obtained from a combined fit,
constraining all other coupling-strength modifiers to their SM values and assuming no contributions from invisible
or undetected Higgs boson decays. The best-fit value for each measurement is indicated by a cross while the
SM hypothesis is indicated by a star. A linear correlation of —34% between «, and «, is observed. The level of
compatibility between the combined measurement and the SM prediction, estimated using the procedure outlined in
the text with two degrees of freedom, corresponds to a p-value of psy = 51%.
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Figure 13: Best-fit values and uncertainties for effective modifiers to the photon and gluon couplings of the Higgs
boson, with either B; = B, = 0 (left), or B;. and B, included as free parameters (right). In the latter case, the
measurement of the Higgs boson decay rate into invisible final states is included in the combination. The SM
corresponds to k,, = kg = 1 and B; = B, = 0. All coupling-strength modifiers of known SM particles are assumed
to be unity, i.e. they follow the SM predictions. The level of compatibility between the combined measurement and
the SM prediction, estimated using the procedure outlined in the text with two (four) degrees of freedom for left
(right), corresponds to a p-value of psy = 51% (70%).
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7.4 Generic parameterization assuming no new particles in loops and decays

In this model the scale factors for the coupling strengths to W, Z, ¢, b, T and u are treated independently.
The Higgs boson couplings to second-generation quarks are assumed to scale as the couplings to the
third-generation quarks. SM values are assumed for the couplings to first-generation fermions. Furthermore,
it is assumed that only SM particles contribute to Higgs boson vertices involving loops, and modifications
of the coupling-strength scale factors for fermions and vector bosons are propagated through the loop
calculations. Invisible or undetected Higgs boson decays are assumed not to exist. All coupling-strength
scale factors are assumed to be positive. The results of the H — pu analysis are included for this specific
benchmark model. The results are shown in Table 7. The observed (expected) significance on «,, relative
to the absence of this coupling is 2.1 o (1.7 o). The observed significance is slightly higher compared
with the one reported in Ref. [19] both due to other coupling strengths being profiled to the combined
dataset instead of fixed to SM, and to the pulling of nuisance parameters correlated with other channels. All
measured coupling-strength scale factors in this generic model are found to be compatible with their SM
expectation. The level of compatibility between the SM hypothesis with the best-fit point corresponds to a
p-value of psy = 84%, computed using the procedure outlined in Section 4 with six degrees of freedom.
Figure 14 shows the results of this benchmark model in terms of reduced coupling-strength scale factors,

defined as
_ | 8v _ my
Yv = 4[Kv _2v VKv _v

for weak bosons with a mass my , where gy is the absolute Higgs boson coupling strength and v = 246 GeV
is the vacuum expectation value of the Higgs field, and

for fermions with a mass m . For the b quark and the top quark, the M S running mass evaluated at a scale
of 125.09 GeV is used.

Table 7: Fit results for k7, kw, kp, ks, kK and k,,, all assumed to be positive. In this benchmark model BSM
contributions to Higgs boson decays are assumed not to exist and Higgs boson vertices involving loops are resolved
in terms of their SM content.

Parameter Result

Kz 1.02 + 0.06
Kw 1.05 + 0.06
0.14
K 0.98 * 0.4
K¢ 0.96 +0.08
0.15
Kt 1.06 * 13
0.26
Ke 1.12 + 026
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Figure 14: Reduced coupling-strength modifiers k= for fermions (F =1, b, 7, ) and /ky =¥ for weak gauge
bosons (V = W, Z) as a function of their masses mg and my , respectively, and the vacuum expectation value of
the Higgs field v = 246 GeV. The SM prediction for both cases is also shown (dotted line). The black error bars
represent 68% CL intervals for the measured parameters. The coupling modifiers are measured assuming no BSM
contributions to the Higgs boson decays, and the SM structure of loop processes such as ggF and H — yy. The
lower inset shows the ratios of the values to their SM predictions. The level of compatibility between the combined
measurement and the SM prediction, estimated using the procedure outlined in the text with six degrees of freedom,
corresponds to a p-value of pgv = 84%.

7.5 Generic parameterization including effective photon and gluon couplings with and
without BSM contributions in decays

The models considered in this section are based on the same parameterization as the one in Section 7.4 but
the ggF, H — gg, and H — yy loop processes are parameterized using the effective coupling-strength
modifiers «, and «,, similar to the benchmark model probed in Section 7.3.

The measured parameters include kz, kw , kp, K¢, K¢, Ky and k. The sign of «; can be either positive or
negative, while kz is assumed to be positive without loss of generality. All other model parameters are
also assumed to be positive. Furthermore it is assumed that any potential BSM effect does not affect the
kinematics of the Higgs boson decay products significantly. Two alternative scenarios are considered for
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the total width of the Higgs boson:
(a) No BSM contributions to the total width (B; = B, = 0).

(b) Both B; and B, are added as free parameters to the model. The measurement of Higgs boson decays
into invisible final states, VBF, H — inv, described in Section 3.5 is included in the combination,
for these results only, and used to provide a constraint on B;.. The conditions ky < 1and xz < 1
are used to provide a constraint on By as discussed in Section 7.1.

The numerical results for the two scenarios are summarized in Table 8 and illustrated in Figure 15.
Limits on B; and B, are set using the 7, prescription presented in Section 4. All probed fundamental
coupling-strength scale factors, as well as the probed loop-induced coupling scale factors are measured to
be compatible with their SM expectation for both explored assumptions. Upper limits are set on the fraction
of Higgs boson decays into invisible or undetected decays. In scenario (a) with no BSM contribution to the
total width, a possible negative value for «;, is excluded at 2.90 (2.70 expected) with sensitivity coming
from the tH and gg — ZH processes. In scenario (b) the observed (expected) 95% CL upper limits on the
branching fractions are Bj, < 0.09 (0.11) and By, < 0.19 (0.25), and the lower limits on the couplings to
vector bosons are kz > 0.88 (0.86) and «w > 0.89 (0.84). The level of compatibility between the SM
hypothesis with the best-fit point in scenario (a) corresponds to a p-value of psy = 92%, computed using
the procedure outlined in Section 4 with seven degrees of freedom.

Table 8: Fit results for Higgs boson coupling modifiers per particle type with effective photon and gluon couplings
and either (a) B; = B, =0, or (b) B;, and B, included as free parameters, with the conditions xw_z < 1 applied
and the measurement of the Higgs boson decay rate into invisible final states included in the combination. The SM
corresponds to B; = B, = 0 and all x parameters set to unity. All « parameters except for «, are assumed to be
positive.

Parameter (a) B, =By, =0 (b) B; free, By 20, kw,z <1

Kz 1.02 +0.06 > 0.88 at 95% CL
Kw 1.06 +0.07 > 0.89 at 95% CL
Kb 0.98 * 014 0.92 +0.10

Ki 1.00 +0.12 0.97 +0.12

Kr 1.05* -1 1.02+013

Ky 1.06 * 098 1.04 + 006

e 0.9675%  0.93° 4%

B;, - < 0.09 at 95% CL
B, - < 0.19 at 95% CL
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Figure 15: Best-fit values and uncertainties for Higgs boson coupling modifiers per particle type with effective photon
and gluon couplings and either B; = B, = 0 (left), or B;. and B, included as free parameters with the conditions
kw.z < 1 applied and the measurement of the Higgs boson decay rate into invisible final states included in the
combination (right). The SM corresponds to B; = B, = 0 and all « parameters set to unity. All parameters except k;
are assumed to be positive. In the former case, the level of compatibility between the combined measurement and the
SM prediction, estimated using the procedure outlined in the text with seven degrees of freedom, corresponds to a

p-value of psm = 92%.
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7.6 Generic parameterization using ratios of coupling modifiers

The five absolute coupling-strength scale factors and two effective loop-coupling scale factors measured in
the previous benchmark model are expressed as ratios of scale factors that can be measured independent
of any assumptions about the Higgs boson total width, together with a global scale factor determined
by the gg — H — ZZ* process. The model parameters are defined in Table 9. All parameters are
assumed to be positive. This parameterization represents the most model-independent determination of
coupling-strength scale factors that is currently possible in the k-framework. The numerical results from the
fit to this benchmark model are summarized in Table 9 and visualized in Figure 16. All model parameters
are measured to be compatible with their SM expectation. The level of compatibility between the SM
hypothesis with the best-fit point corresponds to a p-value of psy = 92%, computed using the procedure
outlined in Section 4 with seven degrees of freedom.

The parameter Ay z in this model is of particular interest: identical coupling-strength scale factors for the
W and Z bosons are required within tight bounds by the SU(2) custodial symmetry and the p parameter
measurements at LEP and at the Tevatron [131]. The ratio 4,7 is sensitive to new charged particles
contributing to the H— y7y loop unlike in H — ZZ* decays. Similarly, the ratio A, is sensitive to new
colored particles contributing through the ggF loop unlike in tzH or tH events. The observed values are in
agreement with the SM expectation.

Table 9: Best-fit values and uncertainties for ratios of coupling modifiers. The second column provides the expression
of the measured parameters in terms of the coupling modifiers defined in previous sections. All parameters are
defined to be unity in the SM.

Definition in terms
Parameter ) Result
of k modifiers

Kgz KeKz [KH 0.98 +0.05
/lzg Kt/Kg 1.04 £0.12
Azg Kz [Kg 1.06 * %:1]%
/lWZ Kw/KZ 1.04 J: %%g
Ayz KylKz 1.04 * (())'.(())76
Arz Kt [Kz 1.04 +£0.13
Apz Kb /Kz 0.96 + ?):1121
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Figure 16: Measured ratios of coupling modifiers. The dashed line indicates the SM value of unity for each parameter.
The level of compatibility between the combined measurement and the SM prediction, estimated using the procedure
outlined in the text with seven degrees of freedom, corresponds to a p-value of psy = 92%.

8 Constraints on new phenomena

Two-Higgs-doublet models (2HDMs) [43, 132—134] are a promising extension of the SM. The measurements
are interpreted in terms of this benchmark model, providing indirect limits on its parameters. The
interpretations presented in this section follow the procedure discussed in Ref. [44].

In 2HDMs, the SM Higgs sector is extended by introducing an additional complex isodoublet scalar field
with weak hypercharge one. Four types of 2HDM s satisfy the Paschos—Glashow—Weinberg condition [135,
136], which prevents the appearance of tree-level flavor-changing neutral currents:

* Type I: One Higgs doublet couples to vector bosons, while the other one couples to fermions. The
first doublet is fermiophobic in the limit where the two Higgs doublets do not mix.

» Type II: One Higgs doublet couples to up-type quarks and the other one to down-type quarks and
charged leptons.

» Lepton-specific: The Higgs bosons have the same couplings to quarks as in the Type I model and to
charged leptons as in Type II.

* Flipped: The Higgs bosons have the same couplings to quarks as in the Type Il model and to charged
leptons as in Type L.

The observed Higgs boson is identified with the light CP-even neutral scalar 4 predicted by 2HDMs,
and its accessible production and decay modes are assumed to be the same as those of the SM Higgs
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boson. Furthermore, it is assumed that only the 2HDMs are responsible for the potential BSM effects
in the Higgs boson couplings to vector bosons, up-type quarks, down-type quarks and leptons. The
changes with respect to the corresponding SM predictions are expressed as functions of the mixing angle &
between /1 and the heavy CP-even neutral scalar, and the ratio of the vacuum expectation values of the
Higgs doublets, tan 5 [44].

Figure 17 shows the regions of the (cos(8 — @), tan 8) plane that are excluded at a confidence level of
95 % or higher, for each of the four types of 2HDMs. The expected exclusion limits in the SM hypothesis
are also overlaid. The data are consistent with the alignment limit [134] at cos(8 — @) = 0, in which the
couplings of # match those of the SM Higgs boson, within one standard deviation or better in each of
the tested models. The allowed regions also include narrow, curved petal regions at positive cos(8 — a)
and moderate tan 8 in the Type II, Lepton-specific, and Flipped models. These correspond to regions
with cos(B + @) = 0, for which some fermion couplings have the same magnitude as in the SM, but the
opposite sign.
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Figure 17: Regions of the (cos(8 — «), tan B) plane of four types of 2HDMs excluded by fits to the measured rates of
Higgs boson production and decays. Contours at 95% CL, defined in the asymptotic approximation by —21n A = 5.99,
are drawn for both the data and the expectation for the SM Higgs sector. In all cases, the observed best-fit points
are out of the range, and are thus provided as numerical values instead. The angles o and S are taken to satisfy
0< B <m/2and 0 < B — a < «m without loss of generality. The alignment limit at cos(8 — @) = 0, in which all

Higgs boson couplings take their SM values, is indicated by the dashed red line.
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9 Conclusions

Measurements of Higgs boson production cross sections and branching fractions have been performed
using up to 139 fb~! of pp collision data produced by the LHC at /s = 13 TeV and recorded by the ATLAS
detector. The results presented in this note are based on the combination of analyses of the H — yvy,
H— 7ZZ*,H - WW*, H — 17, H — bb, and H — uu decay modes and a search for decays into
invisible final states in the VBF production mode.

The global signal strength is determined to be y = 1.06 + 0.07.

The Higgs boson production cross sections within the region |yg| < 2.5 are measured in a combined fit
for the gluon—gluon fusion process, vector-boson fusion, the associated production with a W or Z boson
and the associated production with top quarks, assuming the SM Higgs boson branching fractions. The
combined measurement leads to an observed significance above 50 for the ggF, VBF, WH, ZH and
ttH + tH production processes. The observed (expected) significance for the WH and ZH modes are
respectively 6.3 0 (5.2 0) and 5.0 0 (5.4 o), corresponding to a first observation for WH. Several other
measurements have been performed, including production cross section times branching fraction for each
pair of production and decay processes, and ratios of production cross sections relative to ggF and ratios
of branching fractions relative to H — ZZ*, together with the cross section of gg — H — ZZ" process.
Measurements are also provided in the Simplified Template Cross-section framework. In addition, the
measurements are interpreted in terms of the coupling strength modifiers (k-framework), and as constraints
on Two-Higgs-Doublet Models. In all cases, no significant deviations from SM predictions are observed.
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Figure 26: Observed (solid line) and expected (dotted line) negative log-likelihood scans as a function of (a) «;, (b)
Kz, (¢) kw, (d) kp, (€) Kk, () kg, and (g) k,, from a combined fit of these seven parameters. When scanning one
parameter, other parameters of interest from the model are also varied in the minimization procedure. The dashed
horizontal lines show the levels —2In A =1, -2In A = 4, and -2 In A = 9 which are used to define, respectively, the
10,20, and 3 o confidence intervals for the parameter of interest.
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Figure 27: Observed (solid line) and expected (dotted line) negative log-likelihood scans as a function of (a) B, and
(b) By, from a combined fit including the search for Higgs boson decays into invisible final states with a generic
parameterization involving coupling strengths to SM particles as well as loop-induced ggH and H — yy vertices.
All the other parameters of interest from the model are also varied in the minimization procedure. The dashed
horizontal line shows the level used to obtain the 95% CL limit.
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Figure 28: Correlation matrix for the measured values of kg7, 74, Atg, Awz, Ayz, A7z, and Apz.
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