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Abstract

In this work, events in which a single top quark is produced in association with a Z-boson
are investigated. Particular focus is on final states in which two leptons originate from
the Z boson and the top quark decays hadronically. The analysis uses data collected with
the Compact Muon Solenoid (CMS) detector between 2016 and 2018, corresponding to
an integrated luminosity of 137 fb~!; data are produced from proton-proton collisions
at the Large Hadron Collider (LHC), with a center of mass energy equal to 13 TeV.
The discrimination between signal and backgrounds is optimized by testing different
methods for the event reconstruction and with the implementation of a Deep Neural
Network (DNN). In the last part of the analysis, a statistical fit is performed to the DNN
output for the signal extraction, reaching an expected significance of the tZq signal over
background of 2.40.
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Introduction

This work investigates the Z-boson associated single top quark production, tZq events,
with exactly two leptons in the final state. The analysis uses data collected with the Com-
pact Muon Solenoid (CMS) detector from 2016 to 2018, corresponding to an integrated
luminosity of 137 fb~!; data are produced from proton-proton collisions at the Large
Hadron Collider (LHC), with a center of mass energy equal to 13 TeV. The two leptons
are assumed to originate from the Z boson, and the top quark decays hadronically. So
far, the process has not been observed in this final state, since the identification of signal
events is challenging due to the overwhelming ¢t and Drell-Yan (DY) backgrounds. The
Z-boson associated top quark productions, pair (ttZ) or single (tZq), provide a unique
opportunity to directly measure the top-Z couplings. Existing cross section measure-
ments of ttZ and tZq consider events with at least three isolated leptons, in which two
of them originate from the Z boson decay and one lepton appears in the decay of a top
quark. The study the dilepton channel is supposed to bring complementary information,
exploring a different phase space of the data. This channel has more statistics compared
with the one having three leptons in the final state, meaning that it can bring additional
sensitivity to future combinations of all measured channels, which would help to improve
the understanding of top-Z coupling and production process. In the current tZq cross
section measurement, t¢Z dilepton contributes as an irreducible background with a com-
parable cross section to that of signal.

The tZq event configuration is exploited to achieve a good separation between signal
and the irreducible backgrounds. Different methods have been tested for the event re-
construction, focusing on the top quark and the recoil jet, in order to achieve the highest
reconstrucition efficiency. The outcome of the event reconstruction is used, in addition
to other kinematic variables, in a Deep Neural Network (DNN) to further discriminate
signal from backgrounds: the use of jet kinematics that are associated with the top quark
and the recoil jet improves the performance upon cases where the event reconstruction
information is not used.

The last part of the analysis aims to perform a statistical fit to the DNN output for
the signal extraction. The fit is performed simultaneously on three DNN output distri-
butions. In order to have orthogonal categories, only events for which the node value is
maximum among all nodes have been included in each distribution. Contributions from



DY and tt are treated as freely floating rate parameters, in order to be determined from
data without any prior constraint.

A description of the CERN (European Organization for Nuclear Research) accelerator
complex and the CMS detector is illustrated in Chapter 1. Theoretical notions on top
quark physics and Machine Learning (ML) algorithms are reported in Chapter 2 and 3
respectively. The different steps of the analysis are all illustrated in Chapter 4, while
Chapter 5 contains a summary of the conclusions that have been achieved in this work.



Chapter 1

CMS detector at the LHC

Particle accelerators make use of electromagnetic fields to accelerate charged particles
to velocities close to the speed of light. In a circular collider, particles circulate in op-
posite directions and are forced to head-on collisions, in which a high amount of energy
is released. As a result, new particles are produced and their properties will be mea-
sured by surrounding detectors. The largest accelerator currently operating is the Large
Hadron Collider (LHC) [1, 2|, located at the European Organization for Nuclear Research
(CERN) on the border between Switzerland and France.

1.1 The accelerator complex at CERN

The CERN accelerator complex consists of a chain of particle accelerators that increase
the energy of particle beams before bringing them into the LHC for collisions. Hydrogen
atoms coming from a bottle of compressed gas are subjected to an electric field, in order
to remove the electrons from the atoms and produce protons, which are injected into
the first accelerator of the chain, Linear accelerator 2 (Linac 2): here protons reach the
energy of 50 MeV. The beams are then delivered to a succession of three synchrotons,
where the protons are accelerated to 450 GeV (details are reported in Table1.1).

Table 1.1:  Synchrotron names and energies achieved; the synchrotrons are listed in the
same order they occur in the accelerator complex.

Synchrotron name Energy achieved
Proton Synchrotron Booster (PSB) 1.4 GeV
Proton Synchrotron (PS) 25 GeV
Super Proton Synchrotron (SPS) 450 GeV
Large Hadron Collider (LHC) 6.5 TeV

The protons are finally injected into (LHC): two particle beams travel in separate
beam pipes, circulating in opposite directions, and are held in cyclic orbits by a magnetic



field. The instantaneous luminosity is defined as the coefficient of proportionality between

the number of events occurred in a certain time ( %) and the cross section o:

AN
Y L 1.1
i~k (1.1)

As a result, the total number of event is proportional to the time-integrated luminosity:

N=oL (1.2)

where L = [ Ldt is the integrated luminosity, corresponding to the total amount of col-
lisions produced.

Detectors are located at four collision points around the LHC ring: ALICE (A Large
Ion Collider Experiment), LHCb (Large Hadron Collider beauty), CMS (Compact Muon
Solenoid) and ATLAS (A Toroidal LHC ApparatuS). At these points, collisions generate
a large amount of energy, enough to produce new and heavy particles. Collisions occur
once every 25 nanoseconds, with a total centre-of-mass energy of 13 TeV (in the years
2015-2018), and up to 40 simultaneous interactions take place at each crossing. The
CERN accelerator complex is illustrated in Figure1.1.
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Figure 1.1: CERN accelerator complez.



1.2 Compact Muon Solenoid, CMS

The stable decay products of the particles produced at the interaction vertex are detected
by means of experimental apparatuses built around the interaction points. In this way,
the particle momenta and energies are measured and the collision can be reconstructed.
The Compact Muon Solenoid (CMS) [3], schematically shown in Figure 1.2, is one of the
detectors installed along the LHC ring.

CMS DETECTOR STEEL RETURN YOKE

Total weight : 14,000 tonnes 12,500 tonnes SILICON TRACKERS

Overall diameter :15.0 m Pixel (100x150 pm) ~16m* ~66M channels
Overall length ~ :28.7m Microstrips (80x180 um) ~200m? ~9.6M channels
Magnetic field  :38T

SUPERCONDUCTING SOLENOID
Niobium titanium coil carrying ~18,000A

MUON CHAMBERS
Barrel: 250 Drift Tube, 480 Resistive Plate Chambers.
Endcaps: 468 Cathode Strip, 432 Resistive Plate Chambers

PRESHOWER
Silicon strips ~16m* ~137,000 channels

FORWARD CALORIMETER
Steel + Quartz fibres ~2,000 Channels

CRYSTAL
ELECTROMAGNETIC
CALORIMETER (ECAL)
~76,000 scintillating PWO, crystals

HADRON CALORIMETER (HCAL)
Brass + Plastic scintillator ~7,000 channels

Figure 1.2: CMS detector and its components, arranged as several concentric cylinders.

The main feature of CMS is a solenoid magnet, made of superconducting wires that
are able to produce a 3.8 Tesla magnetic field which bends charged particles trajectories.
The core of the detector consists of a silicon tracker. The two CMS calorimeters, ECAL
(Electromagnetic Calorimeter) and HCAL (Hadron Calorimeter), are located inside the
magnet as well, surrounding the tracker. In the end, muons are detected in the outer
layer of the experiment with muon chambers.

1.2.1 Silicon tracker

The tracker [4] is able to reconstruct the path of the particles by saving their positions
at a limited number of points; it covers a region of |n| < 2.5 where the pseudorapidity,
7, is given by

0
n= —lntani (1.3)



and 6 is the angle between the particle three-momentum and the direction of the beam.
A precise measurement of trajectories of charged particles is essential to identify primary
and secondary vertices of the collisions. Once the path has been recorded, its curvature
gives a measure of the momentum, while the bending direction identifies the charge of
the particles.

A large amount of paritcles is produced at each bunch crossing, about 1000 on aver-
age: a high granularity is needed to distinguish them from each other and to reconstruct
the corresponding trajectories. Furthermore, the response time must be really short, due
to the high frequence in which collisions occur and the detecotr components should be
able to resist the high amount of radiation in the core of the detector. These require-
ments lead to a design entirely based on silicon detector technology: three barrel layers
of pixel detectors surround the beam axis in the innermost part of the tracker, from a
radius of 4.4 cm to 10.2 cm, and ten layers of silicon micro-strip detectors are placed
outward up to a radius of 1.1 m; finally, at the endcaps, some disks of strip detectors
are installed. As charged particles travel through these modules, electron-hole pairs are
produced, which in turn generate an electric current which il be amplified and detected
in the read-out electronics.

1.2.2 ECAL and HCAL

The Electromagnetic Calorimeter (ECAL) [5] measures the energy of electrons, positrons
and photons; the other particles that interact electromagnetically may leave tracks, but
they are not fully absorbed. The ECAL surrounds the silicon tracker and covers the re-
gion |n| < 3. It is made of crystals of lead tungstate PbWOy, which is both absorber and
scintillator material, and produces light in proportion to the primary electron or pho-
ton energies. When electromagnetically interacting particles start to interact with the
calorimeter, they emit photons through bremsstrahlung, which in turn create electron-
positron pairs (pair production) resulting in an electromagnetic shower. Atoms in the
calorimeter are then excited and subsequently emit photons; this signal is amplified with
photomultipliers in order to measure the energy that has been deposited in the calorime-
ter.

Hadrons are stopped in the Hadron Calorimeter (HCAL) [6], where their energies are es-
timated from scintillation light as well. Here absorbing and scintillating layers alternate,
allowing to measure forward jets up to |n| ~ 5.2. When hadronic particles pass through
the absorber materials, interactions occur and many secondary particles are produced;
these can in turn interact in the following absorber layers resulting in a shower of par-
ticles. As the shower develops, particle pass through the scintillating layers and their
energy is measured.



1.2.3 Muon chambers

Since muons can penetrate several metres of absorber materials (like iron or barrel)
without interacting, they are not stopped by any of CMS’s calorimeters and are detected
in the outermost part of the experiment, the muon chambers [7]. These detectors cover
a pseudorapidity region of |n| < 2.4 without any gaps; only neutrinos, which cannot be
directly detected by CMS, and muons reach this part of the detector. Muon identification
and position determination is done with gaseous detectors: as they pass through the gas,
atoms are ionized and resulting electrons and ions produce an electric current; combining
these measurements with the ones from the tracker allows to reconstruct the path of the
particle. This gives a measurement of particle’s momentum, since it can be determined
by measuring the curvature of the track due to the magnetic field.

1.2.4 Triggering and data acquisition

Proton-proton collisions generate approximately 70 terabytes of data every second and
the current existing technology does not allow to store such a high amount of information
for offline analysis: it exceeds the data-taking bandwidth limits. As a consequence, the
acquisition rate must be reduced. For this purpose, CMS developed a two-level trigger
system [8] that applies selection criteria in order to identify those events which are of
possible physic interest.

The Level-1 (L1) trigger processes information from calorimeters and muon chambers
within 3.8 us after a collision, reducing the event rate down to 100 kHz. A low spatial
and energetic granularity is used in this first part of the selection, since decisions must
be taken in a short time. The selected events are then passed to the high-level-trigger
(HLT), which restricts the output rate between 1 and 2 kHz. HLT algorithms have access
to data from the whole CMS detector, with full granularity and resolution: this online
object reconstrucition that is quite similar to the one used in the offline analysis.

The output rate of the L1 trigger and the HLT can be regulated with the application
of a factor f called "prescale", that reduces the trigger rate by accepting just one event
every f selected candidates.

At the beginning of a fill of LHC the instantaneous luminosity £ is equal to 2 x 1034
ecm~2s7! and it decreases with time (as shown in the first plot of Figure 1.3) because of
the effects of the repeated crossings of bunches, where protons are lost in the collisions
and the beam-to-beam interactions spread the particles distributions. The two beams
deteriorate and prescale and threshold values may be changed in order to select more
interesting events while keeping a constant output rate (see Eq.1.2). The second plot
on Fig. 1.3 shows the HLT output rate as a function of time: it does not decrease as
quickly as the luminosity function, since prescales and cuts are changed at the red lines,
increasing the number of accepted events. Only unprescaled trigger paths must be used
for physics analyses, otherwise an appreciable fraction of interesting events would be lost.
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The role of the CMS trigger system is to identify the interesting collision events before
starting the offline analysis, which means a search strategy must be defined and trigger
paths must be chosen accordingly.
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Figure 1.3: On the left: instantaneous luminosity vs time. On the right: the black line is
the output rate, the vertical bars denote prescale or cut changes.

1.2.5 Object and event reconstruction

After the reconstruction of particle tracks and interaction vertices, the identification and
reconstruction of particles that are produced in the event is done. This process might
not be perfectly described in simulations: this could lead to data-MC discrepancies after
the reconstruction. Several steps can be done to improve the agreement, like fixing the
discrepancies with reweighting processes or systematic uncertainties.

The measured jet energy usually does not correspond to the real parton energy, from
which the jet originates. This might be due to different reasons, including pileup and
underlying events. Charged particles from pileup can be removed reasonably well with
the reconstruction of partucle tracks, but this cannot be done with neutral particles.
Moreover, inaccuracies in the simulation aggravate the discrepancies. With jet energy
corrections (JECs) [9], these differences are fixed with some variation for data and sim-
ulation.

The pileup distribution is simulated before the data taking period. In order to cor-
rect most disagreements caused by the different pileup interactions, simulated events are
multiplied by a weight that ensures a better agreement between data and simulations:

wPU — ndata (14)
nMcC

where ngata and nyc are the number of data and simulated events.
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Also the trigger efficiency is different between data and simulation. In order to re-
duce this discrepancy, simulations are corrected with a multiplication factor called scale
factor, which is given by:

6daﬂ;au(pTv 7, )

. _ ML T ) 1.5
8 furigger emc(pT, 1, ) (1.5)

where €qata and eye refer to data and MC efficiencies. In a similar way, also lepton and
b-tag scale factors are needed whenever a selection on these objects is made, since the
efficiencies are different in data and simulations.

12






Chapter 2

Preliminary notions on top quark
physics

2.1 The Standard Model

The electroweak unification theory [10] is based on the local gauge invriance of the La-
grangian under SU(2) ® U(1) and includes the electromagnetic and weak interactions.
Electroweak theory and QCD (Quantum Chromodynamics) together form the Standard
Model of fundamental interactions (SM), a quantum field theory that predicts the exis-
tence of gluons, photons and three more vector bosons, two charged, W, W, and one
neutral, Z%; the mass of the former is approximately equal to 80 GeV and the mass of
the latter is about 90 GeV.

The theory is able to estimate branching ratios of vector bosons in all the decay chan-
nels, although it does not predict their masses. So far, these predictions have all been
verified experimentally. The SM was proven to be renormalisable in 1972, which means
the infinities that appear in the calculations of physical objects, cross-sections and decay
rates can be eliminated by a mathematically correct procedure. This is done by writing
the Lagrangian of all the interactions without mass terms, as if their mediators had zero
mass; but while photon and gluons are massless, W and Z are not. Masses are gener-
ated by the spontaneous breaking of the local gauge symmetry, with a process called the
Brout-Englert-Higgs mechanism (BEH). This mechanism does not destroy the renormal-
isability of the model and predicts the existence of a scalar boson known as Higgs boson
(H) with a mass of approximately 125 GeV.

A summary of the elementary particles predicted by the SM is shown in Figure2.1.
However, inspite of its huge success in describing all particle physics observations so far,
the SM seems to be incomplete: for example, it does not provide explanations for grav-
itation or dark matter and it implies that neutrinos have no mass, which contradicts
experimental data. This means that more theoretical developments are needed.

14
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Figure 2.1: Elementary particles of the SM.

2.2 Top quark in the SM

The top quark is the most massive elementary particle in the SM. Even before its dis-
covery, which happened in 1995 at the Tevatron collider at Fermilab [11, 12], there were
already indirect measurements of its mass, since it appears in radiative corrections of
electroweak processes, which led to the result

Miop =~ 173 GeV, (2.1)

much bigger than the mass of the other quarks. The top quark mainly decays in a W
boson and a b quark, with an amplitude that is approximately equal to 1.5 GeV and a
lifetime of 5 x 10725 s; its decay happens before the hadronization process: this means
no hadron has the top as valence quark, since it cannot form bound states. The high
value of its mass implies a large coupling to the Higgs boson, which is proportional to
Miop, as well as an important role in electroweak corrections: measuring the mass of the
top quark allows to verify the theory of the SM, as well as looking for deviations from it.

There are two different categories of processes that can lead to the production of top
quarks: top quark pair production and single top quark production. The first one has
higher cross sections and it includes both gluon (Figures2.2a and 2.3b) and quark (Fig-
ure 2.2c) initial states. The single top quark production is shown in Figures2.3a and
2.3b: it can be produced either by an intermediate W boson that decays into a top and
an antibottom quark (s-channel) or by a bottom quark exchanging a W boson with an up
or down quark (t-channel). Production of single top quarks, though more rare than pair
production, offers the opportunity to study the top quark produced via the electroweak
interaction.

15
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Figure 2.2: Diagrams showing the production of top quark pairs tt in different channels.
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Figure 2.3: Production of single top quark in (a) s-channel and (b) t-channel.
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2.3 tZq production and search

The dominant top quark production channels of pair production (o ~ 830 pb) and t-
channel single production (o ~ 220 pb) have been measured with high precision, while
many rare top quark production modes still needs to be studied further. These processes
include, for example, the associated production of top quarks with heavy electroweak
vector bosons, which allows a direct measurements of the electroweak couplings. A good
summary of recent results about measurements of rare top quark production modes from
the ATLAS and CMS Collaborations can be found in reference [13].

This analysis investigates the top quark-Z boson coupling. With data collected at the
LHC from 2016 to 2018, direct measurements of single top quarks produced together
with a Z boson became possible. This signature is commonly referred to as tZq, since
the top quark and Z boson are produced together with a light quark. Top-Z couplings
can also be studied considering top pair production, with ttZ events. The tZq process
is particularly interesting for electroweak studies, since it allows direct measurements of
the top-Z couplings (Figure2.4a) as well as the WW Z triboson coupling (Figure 2.4b).
Furthermore, there are measurements and searches of rare processes that have large back-
grounds from tZq, like the boson production in association with a single top and a light
quark (tHgq); this provides an additional motivation for the study of the tZq process.

!
q > > q q > — q’
W
%% zZ
W
b > > t b > > t

b
() (b)

Figure 2.4: Examples of diagrams for tZq production.

The CMS and ATLAS Collaborations have carried out searches for tZq events with
three leptons in the final state, two originating from the Z boson and the other one
coming from the decay of the top quark. The extremely small production rate of tZq
events and the large backgrounds made the observation of tZq really challenging. Ma-
chine Learning algorithms (see Section 3.1) were used to identify the leptons from the
top quark and Z boson decays. Observation of the process above 5o significance finally
became possible in 2018 [14] (CMS) and 2019 [15] (ATLAS). .

Furthermore, tZq production is particularly sensitive to effects from Physics-Beyond-
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the-SM (BSM): in the SM, interactions between quarks and Z bosons are not supposed
to alter the flavor of the quarks involved; on the contrary, this is supposed to happen in
some models concerning physics BSM.
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Chapter 3

Multivariate Analysis, M VA

3.1 Introduction

A Multivariate Analysis (MVA) is a set of statistical techniques used to analyze data
with multiple and possibly correlated variables; most Machine Learning (ML) methods
[16] lie within this group. With the increasing amount and complexity of events in high
energy physics, MVA is becoming increasingly important for analyzing data collected at
LHC. The algorithms are usually categorized as supervised or unsupervised, depending
on the type of learning used for the training process.

e supervised learning: the training procedure is done with a dataset of some
observations having their corresponding labels/classes; the algorithm learns from
the labeled dataset and produces a function to finally make predictions about some
new unseen observations that can be given to the model.

e Unsupervised learning: the learning process is directly done with a dataset
without the need of having the corresponding labels/classes; this type of learning
aims to find a function to describe a hidden structure from unlabeled data.

¢ Reinforcement learning: algorithms that use the estimated errors as rewards
or penalties: if the error is big, then the penalty is high and the reward low, and
viceversa.

Supervised models can be further grouped into regression and classification cases:

e classification consists in identifying a decision boundary between objects of dis-
tinct classes;

e regression aims at estimating relationships among (usually continuous) variables.

Early ML applications in particle physics often used decision trees: a tree like-model
that takes a set of features which will be used to split input data recursively. It can be
used for both classification and regression problems; in the case of classification, each leaf

20



represents a decision assigning a data item to a class. In high energy physics, the most
widely used are Boosted Decision Trees (BDT), where many trees are combined together
in order to obtain a stronger classifier. More specifically, the learning process starts with
unweighted events and a single decision tree; if a training event is misclassified, then the
weight of that event is increased (boosted). A second tree is built using the new weights
and again misclassified events have their weights boosted. The procedure is repeated
again for more trees (typically 1000 or 2000).

Artificial Neural Networks (ANN or just NN) usually allow to create a more accurate
and powerful classifier compared to BDTs, even though the structure is more complex
and the training generally requires more computing resources.

3.2 Neural Networks

Neural Networks can be compared to biological brains in a simplified way: neurons and
synapses correspond to connected layers of nodes, as shown in Figure 3.1. A node receives
a set of input signals (z1, z9, ..., z,) from the previous layer and a weight w;(i = 1,..,n)
is associated to each input signal. The net signal can be calculated as

net = Zwimi (3.1)
i=1

and the output signal is calculated using an activation function which depends on the net
signal and a threshold value b called bias. The bias can be considered as an additional
input unit with the value z; + 1 = —1 and the weight w; + 1 = b; in this case the net
signal is calculated as:

n+1

net = Z wiT; (3.2)
i=1

and the activation function becomes dependent only on this net signal.
A Neural Network is composed by three types of layers (see Figure 3.2):

e input layer, composed by nodes containing initial data;
e hidden layers, where all the computation is done;

e output layer, which produces results for the given inputs.

An ANN with multiple hidden layers is called Deep Neural Network (DNN).

3.3 Learning process

The learning process is the technique through which the weights of the network are
determined. This is done by adjusting the weights until certain criteria are satisfied. For
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Figure 3.1: Scheme illustrating how a Neural Network works: a node receives a set of input
signals (x1, T2, ..., Ty) from the previous layer and a weight w;(i = 1,..,n) is associated to
each input signal with a weighted sum. The output signal is calculated using an activation
function which depends on the net signal and a threshold value b called bias.
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Figure 3.2: Scheme with the three types of layers that compose the ANN: input, hidden
and output layers.
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supervised learning, this is usually done with the Gradient Descendent (GD) rule, which
aims to find the absolute minimum of a loss function F(x): this method is based on
the observation that if F'(x) is differentiable in a neighborhood of a point a, then this
function decreases fastest if one goes from a in the direction of —V F(a):

ant+1 = an — NV E(ay) (3.3)

where 7 is the learning rate, a parameter which controls the size of each step toward the
minimum of F'(z).

The search of the minimum in GD algorithms can be accelerated by using the Mo-
mentum, a method that adds a fraction v of a,, to the value a,41:

ant+1 = an + yAa, — NV F(ay). (3.4)

One of the disadvantages of these optimizers is that the learning rate is constant for
each cycle. Some optimization algorithms, like the one that will be used for this analysis
(Adam [17]), change the learning rate for each parameter and at every time step ¢,
updating its value depending on the mean and the variance of the gradients; this property
allows to identify the minimum with higher precision (Figure 3.3).

Big learning rate Small learning rate

Figure 3.3: If the learning rate (red arrows) is too high, it might be impossible to identify
the minimum of the function F(z) (black line), while a small learning rate allows to
identify it with higher precision.

Training the NN with gradient-based learning methods might cause the wvanishing
gradient problem, which occurs when the gradient becomes really small, preventing the
weight from changing its value. In the worst case, this may also interrupt the process of
training. This problem can actually be solved with the activation funtion, which should
be chosen depending on the type of problem that needs to be solved. This analysis
will use a NN for a multi-class classification problem (there will be four different output
nodes) with mutually exclusive output classes; in this case, the most common activation
functions are:

e the softmax function o(z), which requires the outputs of each unit to be between 0
and 1 and also divides each output such that the total sum of the outputs is equal
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to 1, giving the probability of the input value being in a specific class j; it is defined

via the relation:
e”i

N > ohoy €
where the index k=1, .., K refers to the output classes. This activation function
should be used just for the output layers: the purpose of this function is to give

the probabilities of a given class to occur, and this would not be of much use in
the hidden layers.

o(z); (3.5)

e The ReLU function
f(@) = max(0,2), (3.6)

where the gradient is either 0 or 1, which means the gradient cannot vanish.

Therefore, in this work, ReLU will be the activation function in the hidden layers, while
the softmax function will be used for the output layer.

There are also various different loss functions; for multi-class classification problems
the most common is the multi-class cross-entropy loss, defined as

L(X;,Yi) = =Y yij x log(pi;) (3.7)
=

where Y; is a vector (yi1, .., Yic), with y;; equal to one if the i-th element is in class j
and zero otherwise, and p;; = f(X;) is the probability that the i-th element is in the
class j; pi; is calculated with softmax (which is then required as activation function in
the output layer).

In general, too little training will mean that the model will underfit the training and
test sets, causing a poor discrimination between signal and backgrounds. On the other
hand, too much training might cause the learner to adjust to very specific random fea-
tures of the training data that have no causal relation to the target function; this process
is called overfitting: the model will stop generalizing and start learning the statistical
noise in the training dataset, meaning that predictions on new data will be less reliable.
In order to avoid this problem, a process called dropout can be used: a percentage of
inputs to each layer will be randomly removed, in order to keep the training as general
as possible.

3.4 Hyperparameter optimization

The parameters used to control the learning process and define the architecture of the
model are called hyperparameters; by contrast, the values of other parameters (like node
weights) are learnt. The hyperparameter optimization (or tuning) is defined as the prob-
lem of choosing a set of optimal hyperparameters for the algorithm. This can be done
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following many different approaches; the ones used to train the DNN for the analysis
presented in Chapter 4 are the random and the Bayesian optimization.

In random optimization, each hyperparameter is randomly sampled from a statistical
distribution that must be given as input. Trainings with different hyperparameters can
be done at the same time, since they are independent from each other, and the pro-
cess goes on until a model with a good performance is found; this can be determined,
for example, from the value of the loss or from the area under the ROC curve, which
is created by plotting the true positive rate against the false positive rate and evalu-
ates the discrimination between the different output classes. This algorithm allows a fast
optimization procedure, but it must be taken into account that the finally selected hyper-
parameter set might not be the true best out of the ranges that has been set in the search.

The Bayesian optimization [18, 19] can be used when the analytical expression of the
objective function f(z) (which might be either the loss or the area under the ROC curve
as function of one or more hyperparameters) is totally unknown and also expensive to
evaluate, meaning that sampling at many points via random search would take too much
time. This algorithm attempts to find the global optimum in a minimum number of
steps by incorporating prior beliefs about f and updates it with samples drawn from the
function itself, in order to get a better approximation. The model used for the approx-
imation of the objective function is called surrogate model. Bayesian optimization also
uses an acquisition function that directs sampling to areas where an improvement over
the current best observation is likely.

A popular surrogate model for Bayesian optimization are Gaussian processes (GPs); they
are defined as stochastic processes such that every finite linear combination of them is
normally distributed and are usually cheap to evaluate. The acquisition function is then
used to propose sampling points where the surrogate model predicts an optimal value
for f, or where the prediction uncertainty is high. Both correspond to high values for the
acquisition function, which will be maximized in order to determine the next sampling
point. A common acquisition function is the Expected Improvement EI, defined as

EI(z) = Emax(f(z) — f(z™1),0) (3.8)

where f(x™) is the value of the best sample so far and 2" is the location of that sample.
The training is repeated unitl the optimal value (which might be either a maximum or a
minimum) is reached.

3.5 Applications in high energy physics

Due to an increased amount and complexity of the data collected, MVA started to be used
in high energy physics since the late nineties [20, 21], even though with limited success:
good results started to be achieved only in the 2000s. In terms of types of applications,
MVA techniques, particularly ANNs, have been used for both online triggers (details
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are reported in reference [22]) and offine data analysis, for which applications include a
variety of tasks such as:

e track and vertex reconstruction,
e particle identification and discrimination,

e calorimeter energy estimation and jet tagging.

Many important physics results were extracted using an ANN; in these applications
ANNs gave better results than the standard methods, mainly due to the highly non-
linear character of the algorithm. It should also be considered that the training requires a
datatset for which the target output is known: this is usually obtained by MC simulations,
meaning that the result is very much dependent on the quality of the MC simulation.
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Chapter 4

Analysis of tZqg in the dilepton final
state

Existing direct measurements of the coupling between the top quark and the Z boson
consider events with at least three isolated leptons, in which two of them originate from
the Z boson decay and one lepton appears in the decay of a top quark. Other final states
in which the top quark or the Z boson decay hadronically are currently being studied in
order to bring complementary information, exploring a different phase space of the data;
in this analysis tZq events with exactly two leptons are investigated. The two leptons
are assumed to originate from the Z boson, and the top quark decays hadronically. So
far, the process has not been observed in this final state, since the identification of signal
events is challenging due to the overwhelming ¢t and DY backgrounds. This channel has
more statistics compared with the one having three leptons in the final state, meaning it
can bring additional sensitivity to future combinations of all measured channels, which
would help to improve the understanding of top-Z coupling and production process.

4.1 MC samples and pre-selection

The production of tZq with a dilepton final state is shown in Figure4.1. In this chan-
nel dominant backgrounds originate from Drell-Yan production with additional jets
(Fig.4.2a) and tt in the dilepton final state (Fig.4.2b), due to their large cross sec-
tions. Also, the dilepton decay channel of t¢Z (Fig.4.3a) must be considered: its cross
section is comparable to that of tZq as it can be seen in Fig. 4.3b: cross sections of t + Z
and t + Z together are more or less equal to the one of ¢t + Z. The structure of tZq
and ttZ events is similar and this makes it hard to distinguish them from one another.
Minor backgrounds have been included as well: Table4.1 lists all the processes and MC
samples that have been used, separated into five different groups (¢Zq, Drell-Yan, tt,
ttZ and minor backgrounds); corresponding cross sections are also reported. The signal
sample is generated in the 4-flavour scheme at next-to-leading order (NLO) using MAD-
GRAPH5 aMC@NLO (v5.2) [23]. Different MC generators were used to generate the
background processes; DY samples have been generated with MADGRAPH at leading
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order (LO), while both t¢ and ¢tZ have been simulated at NLO with POWHEG [24] and
MADGRAPH respectively.

Table 4.1: List of all the processes and MC samples considered in the analysis, separated
into five different groups: tZq, Drell-Yan, tt, ttZ and minor backgrounds; the middle
colummn contains the naming convention of the samples as used within CMS, while the
last column reports the values of the corresponding cross sections.

Process Sample name Cross section [fb]
tZq

tZq (dileptonic) tZq 11 94.18
Drell-Yan*

Z+jets— 00 DYJetsToLL M 50 LO 6225420.0
Z+iets— 0 DYJetsToLL_M_50 HT _70to100 208977.0
Ztiets— 00 DYJetsToLL M 50 HT_100t0200 181302.0
Z+iets— 0 DYJetsToLL_M_50 HT_200t0400 50417.7
Ztiets— 00 DYJetsToLL M 50 HT_400t0600 6983.94
Z+iets— 0 DYJetsToLL_M_50 HT_600t0800 1681.41
Z+iets— 0 DYJetsToLL M 50 HT_800to1200 775.4
Z+jets— 00 DYJetsToLL. M 50 HT_1200t02500 186.222
Z+jets— DYJetsToLL M 50 HT 2500toInf 4.38495
tt

tt (dileptonic) TTTo2L2Nu 87310.0
tt (semileptonic) TTToSemiLeptonic 364360.0
ttZ

ttZ (dileptonic) TTZToLLNuNu M 10 281.36
Minor backgrounds

Singlet (t-channel) ST t channel antitop 80959.0
Singlet (t-channel) ST t channel top 136020.0
W + jets — fv WletsToLNu 61526700.0
W — vy WGToLNuG 585800.0
Zry — bty ZGToLLG 01] 124900.0
ttry TTGamma_ Dilept 1026.0
247 717 12.98
WzZz WZ7Z 55.65
WWZ WWZ 165.1

Table continues on the next page

*The inclusive DY sample is only included for HT <70 GeV, while the HT-binned samples are used
in all the other cases; in this way the full phase space in HT is covered without double counting.
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Process Sample name Cross section [fb]
WWWwW WWW 208.6
WW — 202v WWTo2L2Nu 12178.0
WW — 202v (DS) WWTo2L2Nu_DoubleScattering 1640.0
77 — 242 77 To21.2Q 3220.0
27 — 202v 27To2L2Nu 564.0
WZ — 202 WZTo2L2Q 5606.0
twW ST tW_top 35850.0
twW ST tW _antitop 35850.0
W H TTWH 1.582
ttZH TTZH 1.535
ttHH TTHH 0.7565
ttWww TTWW 11.5
W Z TTWZ 3.884
tHzZ7Z TTZZ 1.982
tttt TTTT 9.103
tHW + jets — lv TTWJetsToLNu 204.3

Figure 4.1: A diagram for a tZq event with two leptons, originating from the Z boson,
and hadronically decaying top quark.

For the analysis, data recorded with single and double lepton triggers were used, most
of them requiring a transverse momentum threshold between 20 and 30 GeV; similar re-
quirements are imposed on MC events as well. A set of selection requirements is applied
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Figure 4.2: Diagrams for (a) Drell-Yan plus jets
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Figure 4.3: Diagram for ttZ in the dilepton final state (a) and its cross-section as function
of the center of mass energy compared with tZq productions for top quark and anti-quark

(b).
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for lepton identification (ID), based on the lepton’s signature in the detector. The selec-
tions together, are known as "medium lepton ID". Current simulations and calibrations
lead to a data-to-MC scale factor of ~ 99.2% derived with a systematic uncertainty
< 0.4%. To identify jets originating from b-quarks, information about the energy of
particles, tracks and vertices inside a jet are fed into a deep neural network (DeepCSV).
The tight working point of the discriminator output is used, which corresponds to 0.1%
misidentification rate.

The signal region is defined with the following criteria which already reduce the back-
ground contribution to some extent:

e exactly 2 leptons, with same flavor and opposite charge, and

— pr > 25 GeV (first lepton) and pp > 15 GeV (second lepton),
- |mM — mz‘ < 15 Ge\/;

e at least 3 jets, with pp > 25 GeV and |n| < 5;

e at least one b-jet (included in the 3 previous jets).

Events fulfilling these requirements are used in the later stages of the analysis, including
the reconstruction of the hadronically decaying top quark and the recoil jet.

4.2 Event reconstruction

Different methods have been considered for both the top quark and the recoil jet re-
construction, in order to identify the combination that gives the highest reconstruction
efficiency, defined as the fraction of correctly reconstructed events. These methods will
be used to select the input variables for a DNN, which will be subsequently trained to
distinguish the signal from the three main background classes.

4.2.1 Hadronic top quark reconstruction

The hadronically decaying top quark is reconstructed from a b-jet and two additional jets
coming from the W boson. The reconstruction method used here is based on minimizing
a x? defined as

e N A "
Iy I'w '
where m§™ and m{y" are the theoretical predictions for the masses of the top quark and

the W boson, while m{*® and mi5’® are their reconstructed values; I'y and I'yy are the
decay amplitudes of the two particles.

Three different ways to treat identified b-jets are studied:
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e method I: all possible permutations of jets are considered (requiring b-tagging for
exactly one of them), and the one permutation that gives the best y? is taken for
the top quark reconstruction;

e method II: the jet with the highest pr is set as the b-jet coming from the top quark,
and it is required that it passes the b-tag selection;

e method III: the jet with the highest b-tag probability is set as the b-jet coming
from the top quark.

In the last two methods, the remaining two jets are also selected calculating the minimum
x2, and the method that gives the highest efficiency is selected for the event reconstruc-
tion. A reconstructed top quark is considered as "correct" if its distance to the generated
top quark in the ¢ (azimuthal angle)-n (pseudorapidity) plane is less than 0.2. The dis-

tance AR is defined as: AR = /(An)? 4+ (A¢)?2. The efficiency is then the ratio between
correctly and all reconstructed top quarks, i.e.

Nevents(AR < 0.2)

Nevents (au)

The results obtained in this first part of the analysis are listed in Table 4.2, where the
efficiency is reported for all the three years and collectively for Run 2. It can be seen
that the first method turned out to be the most efficient, even if the results obtained
from the different methods are quite similar to one another; this is due to events having
just one b-jet (the second one, coming from the initial state, might not be reconstructed
because of its low momenutm), for which the performances of the methods are identical.

(4.2)

Table 4.2: Hadronic top quark reconstruction efficiency with the three tested methods.
Results for the three years and for Run 2 are reported: it can be seen that the first
method performs better, even if only slightly, and thus it is selected for the top quark
reconstruction.

Year method I (x?) method II (pr) method III (b-tag)

2016 21.09 % 20.53 % 20.54 %
2017 24.75 % 23.97 % 24.16 %
2018 24.64 % 23.83 % 23.95 %
Run 2 23.89 % 23.14 % 23.26 %

4.2.2 Recoil jet reconstruction

Following a similar procedure, three methods are tested for the identification of the recoil
jet:

e method I: the jet with the highest |n| value is taken as recoil jet, requiring that it
is not b-tagged;
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e method II: the jet with the highest pr value is taken as recoil jet, requiring that it
is not b-tagged;

e method III: the jet with the highest likelihood ratio is taken as recoil jet.

The first and second methods are derived from the fact that the jet is recoiling against
the whole system, therefore it is often emitted in the forward region and it is supposed to
have a large pr. In the third one a likelihood-ratio test is performed: three-dimensional
histograms, one for the recoil jet and another one for all the other jets, filled with jet
multiplicity, pt and n of the jets from the signal MC samples are projected into the
(Inl, pT) plane in order to obtain the likelihood-ratio distribution shown in Figure4.4.
This is done by considering the ratio:

(In],pr) of the recoil jet

(Inl,pr) of other jets
for each bin in the histograms. For each event, the pr and pseudorapidity values are
then used to find the jet with the highest likelihood-ratio, which will be identified as the
recoil jet.

(4.3)
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Figure 4.4: Likelihood-ratio distribution obtained starting from three-dimensional his-
tograms, one for the recoil jet and another one for all the other jets, filled with jet mul-
tiplicity, pr and n of the jets from the signal MC samples. These are projected into the
(Inl, pr) plan and the bins of the recoil jet distribution are divded by the values referring
to the other jets.

Results are reported in Table 4.3, where the fraction of correctly identified jets has
been calculated taking into accout the AR between the generated and the reconstructed
recoil jets, similarly to what has been done for the hadronic top quark reconstruction.
The third method has been then selected to perform the identification of the recoil jet
in the events.
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Table 4.3: Comparison between the three methods for the recoil jet identification. Numbers
refer to the fractions of correctly reconstructed jets for the three years and for Run 2: it
can be seen that the third method gives the highest identification efficiency, therefore it
has been selected for the identification of the recoil jet.

Year I method (|n|) II method (pr) III method (Likelihood-ratio)

2016 50.66 % 50.86 % 62.33 %
2017 54.97 % 53.82 % 66.07 %
2018 54.87 % 54.97 % 66.54 %
Run 2 53.91 % 53.67 % 65.41 %

4.3 Signal-background discrimination with a DNIN

It is hardly possible to isolate the signal from irreducible backgrounds with a cut-based
approach using single variables. Therefore a DNN has been designed making use of Keras
[25] and Tensorflow [26], two deep learning library written in Python and C++-.

4.3.1 Input variables

The list of the input variables for the DNN is reported in Table4.4. In addition to kine-
matic properties of the physics objects, variables coming from the event reconstruction
are also employed for the training: vectors with variables from the four leading jets (pr,
[n], ...) might be given as inputs instead of the ones from the reconstructed top quark
and the identified recoil jet, but the discrimination was proven to be slightly higher if the
event reconstrucition is taken into account. In this last case the loss and the value of the
area under the ROC curve both reach a smaller value, as it can be seen in Figures4.5a,
4.5b and Table4.5.

Table 4.4: List of the input variables for the DNN.

Variable

Properties of the physics objects

Number of jets

Number of b-jets

Maximum DeepCSV and QGLikelihood* values from the jets
A¢ and AR between the two leptons

Sum of lepton pr

Sum of jet pr

Maximum invariant mass and pr of all any jet pair

Table continues on the next page

*Discriminator giving the probability that a jet was produced from a quark intead of a gluon. It can
be particularly useful to distinguish the signal from DY events.
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Variable

Maximum A¢ and AR between any jet pair
Missing transverse energy

Variables coming from the event reconstruction

Mass, pr and 7 of the reconstructed Z boson

pr and 7 of the £~ from Z oson

pr and 7 of the £+ from Z boson

Mass, pr, n of the reconstructed top quark

Mass, pr, n of the reconstructed W boson

pr, N, DeepCSV and QGLikelihood values of the reconstructed b-jet from top quark
pT, 1, DeepCSV and QGLikelihood values of the two reconstructed jets from top quark
pT, 1, DeepCSV and QGLikelihood and likelihood-ratio of the reconstructed recoil jet
AR between reconstructed recoil jet and top quark

AR between reconstructed recoil jet and b-jet

AR between reconstructed W boson and b-jet

AR between reconstructed top qark and Z boson

AR between the two jets from the reconstructed W boson

Invariant mass of the reconstructed recoil jet and top quark

Invariant mass of the reconstructed recoil jet and b-jet
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Figure 4.5: ROC curve obtained with (a) and without (b) event reconstruction. Plots
have the true positive rate on the x axis and the false positive rate on the y axis, meaning
that lower values imply higher discrimination. Four different types of ROC curves are
shown: three refer to the discrimination between signal and each of the other DNN output
nodes, while the black one considers all the main backgrounds as a single class.

The neural network has been trained with signal samples (tZq) and with samples of
the three main background classes (Drell-Yan, ¢¢ and ¢t¢Z, all in the dilepton channel);
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Table 4.5: Values of the loss and the area under the ROC curve if variables from event
reconstrucition are taken into account (second column) and if only kinematic properties
of the physics objects are used (third column).

With event reconstruction Without event reconstruction

loss 0.674 0.683
auc (tZq vs all) 0.1831 0.187

minor backgrounds have not been considered for this part of the analysis: in the end, the
DNN will have four output nodes. About 50% of the whole MC dataset has been used
for training, 30% for validation and 20% for testing.

4.3.2 Hyperparameter optimization

For practical reasons, only one or two hyperparameters are optimized at once, while
keeping the default or already optimized values for the others. The expected fraction of
tZq events is quite low (~0.3%), as well as the fraction of ttZ (~0.4%), while the ones
for DY and ¢t are 67.8% and 31.5% accordingly: the four classes are imbalanced and the
weights for tZq and ttZ need to be optimized in the process of hyperparameter tuning.
The hyperparameters are then optimized in the following order:

e tZq and ttZ class weights,
e learning rate,
e number of layers and neurons,

e dropout.

The batch size is also considered in the hyperparameter tuning, but it turns out that its
values don’t affect much the loss or the area under the ROC curve.

The Bayesian optimization algorithm (see Section3.4) is used for tZq and ttZ class
weights, which have been optimized by minimizing the area under the ROC curve, while
random values are set for the other hyperparameters. Figure4.6 shows the results for
this first part of the tuning: the black bullets refer to the points where the acquisition
function extractes the samples for the training, while the optimum value is marked with
a yellow star. It can be seen that the minimum of the surrogate model is reached if the
weight for tZq is ~212 and the one for ttZ ~135. The same algorithm is used for the
optimization of the learning rate, this time minimizing both the loss function and the
area under the ROC curve; in both cases, optimal values are reached for a learning rate
~ 0.6 x 1073. These results are shown in Figures 4.7a and 4.7b. The Bayesian optimiza-
tion performs well for class weights and learning rate, but it is not the best algorithm
for the remaining hyperparameters optimal values are reached where the neural network
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is overtrained. The number of neurons and layers, as well as the dropout, are then cho-
sen using the random optimization algorithm, aiming to find a combination of the three
hyperparameters with a good discrimination and not affected by overtraining.
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Figure 4.6: Results for the Bayesian optimization algorithm applied to tZq and ttZ class
weights; the area under the ROC curve is minimized. Black bullets refer to the points
where the acquisition function extracted the samples for the training, while the optimum
value is marked with a yellow star. The minimum of the surrogate model is reached if
the weight for tZq is ~212 and the one for ttZ ~135.

The final choices for the hyperparameters are listed in Table 4.6 and the output of the
DNN for tZq node is shown in Figure 4.8a, together with results of Kolmogorov-Smirnov
test between histograms obtained from training and testing; the plot in Figure 4.8b refers
to the ROC curve of tZq against the three background classes; it can be seen that a good
discrimination between tZq and the three main background classes is reached.

Table 4.6: List of the hyperparameters considered for the tuning, together with their
optimized values and the algorithm that has been used.

Hyperprameter Value Optimization algorithm
tZq class weight 212

ttZ class weight 135 Bayesian optimization

Learning rate 0.6 x 1073

Number of neurons 85

Number of hidden layers 3 Random optimization

Dropout 0.6
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Figure 4.7: Outputs of the Bayesian optimization algorthm for learning rate with the
minimization of the loss (a) and the area under the ROC curve (b). The blue line shows
the surrogate model and the light-blue area corresponds to the confidence level, while the
‘noisy’ samples are the points where the acquisition function extracts data for the training;
these samples are called 'noisy’ since it’s possible that if the training is repeated with the
exact same hyperparameters, the surrogate function might have a slightly different value.
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Figure 4.8: Output for tZq node (a), together with results of the Kolmogorov-Smirnov test
between histograms obtained from training and testing, and ROC curve of tZq against
the three background classes (b).
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4.4 Data-MC agreement

Control plots of the variables employed in the analysis are inspected in order to check
the data-MC agreement. Examples of them are reported in this section: Figures4.9a
and 4.9b show the distributions of the maximum A¢ between any jet pair and the sum
of the pr of all the jets, while the distributions in Figures4.9c and 4.9d refer to the
reconstructed mass of the hadronic top quark and the 7 of the reconstructed Z boson. In
the figures, all the minor backgrounds are grouped together and classified as "others". It
can be seen that a good agreement between data and MC is reached, even though only
statistical uncertainties are included so far.
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Figure 4.9: (a) distribution of the maximum A¢ between any jet pair and (b) the sum of
the pr of all the jets (b); (c) distribution of the reconstructed mass of the hadronic top
quark and (d) n of the reconstructed Z boson.

40



4.5 Statistical fit of the DNN output

The last part of the analysis aims to perform a statistical fit to the DNN output for
the signal extraction. The CMS Higgs Combination toolkit [27] is used to extract the
significance, taking into account both statistical and systematic uncertainties; this is
done with the ratio of profiled likelihoods, where the signal strength r is set to zero in
the numerator and it is free to float in the denominator,

L(data|r = 0,0)

—21n —,
L(data|r = +,0)

(4.4)

where 6y denotes a set of nuisance parameters parameter that maximizes £ for a specified
r and the denominator is the maximized likelihood function; more information on the
extraction of the significance in a likelihood-based fit can be found in reference [28].

Systematic errors are described for every source of systematic uncertainty. A distinc-
tion is made between rate and shape uncertainties. The first expresses the possible
systematic deviation of a source in normalization. Shape uncertainties are more complex
and are taken into account by vertical interpolation of the histograms: for each shape
uncertainty and for each channel affected by it, two additional input histograms are pro-
vided. These are obtained by shifting the relevant parameter of uncertainty up and down
by one standard deviation.

The fit is then performed simultaneously on three DNN output distributions correspond-
ing to tZq, DY and tt nodes. In order to have orthogonal categories, only events for
which the node value is maximum among all nodes have been included in each distribu-
tion. In each bin of the distributions, the number of events is assumed to be the sum
of the yields for signal and for DY, ¢, ttZ and minor backgrounds. Contributions from
DY and tt are treated as freely floating rate parameters, in order to be determined from
data without any prior constraint.

As mentioned above, both statistical and systematic uncertainties are included in the
fit. Systematics are listed in Table4.7, grouped according to whether they affect the
normalization or the shape of the distributions; it should be noted that the list is not
fully complete, since the fit is still being finalized: matrix element uncertainties for DY,
tt and minor backgrouds are still missing, and JECs (Jet Energy Corrections) should be
splitted into the different sources. Uncertainties on the normalization of backgrounds
other than tf and DY are set as log-normal effects, with an uncertainty equal to 15% for
both ttZ and minor backgrounds.
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Table 4.7: List of systematic uncertainties grouped according to whether they affect the
normalization or the shape of the distributions. The list is not complete, since the fit still
needs to be finalized: matriz element uncertainties for DY, tt and minor backgrouds are
still missing, and JECs should be split into the different sources.

Systematics

Normalization uncertainties

luminosity (2.5% for 2016 and 2018, 2.3% for 2017)
trigger (2% for all the three years)
normalization for ttZ and others

Shape uncertainties

JEC

MET

matrix element (only for tZq and tt2)
b-tag scale factors

lepton scale factors

parton shower weights (2017 and 2018)
pile-up weights

L1 prefire weights (2016 and 2017)

Pre-fit plots for the three categories, together with statistical and systematic uncer-
tainties, are shown in Figure4.10.

Each systematic is included in the fit as a nuisance parameter 6; its impact on the
signal strength r is defined as the shift Ar that is induced as 8 is fixed and brought to
its =10 post-fit values, with all other parameters profiled as normal. This is a measure
of the correlation between the nuisance parameters and the signal strength, which is
useful to determine which systematics have the largest effect. The plots in Figures4.11a
and 4.11b summarise the nuisance parameter values and impacts on the signal strength.
The direction of the +10 and -1o impacts (i.e. when 6 is moved to its +10 or -1o val-
ues) on r indicates whether the parameter is correlated or anti-correlated with it. The
left panel in the summary plot shows the value of (6 — 6y)/A8, where 6 and 6, are the
post and pre-fit values of the nuisance parameter and A6 is the pre-fit uncertainty; the
difference between 6 and 6y is equal to zero in this case, since a toy data is constructed
using MC and the result does not depend on the observed dataset. The error bars show
the pre-fit uncertainty divided by the post-fit uncertainty; parameters with error bars
smaller than +1 are constrained in the fit, meaning that the initial estimation of the
uncertainty needs to be revisited or the fit should be investigated further.

It can be seen that major systematics are JECs and they are also strongly constrained:
this still needs to be examined in detail, for example splitting to the different JEC sources,
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which could give additional information and help identify the problem.
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Figure 4.10: Pre-fit distributions for the three categories, corresponding to (a) tZq, (b)
DY and (c) tt output nodes. Statistical and systematic uncertainties are shown at the top
of each histogram.

Under these conditions, the expected significance of this analysis is 2.40, while it was
equal to 40 before considering systematics. The result may change after finalizing the fit
with a more thorough study of uncertainties.

Additional categories could also be added in the fit in order to increase the expected
significance: looking into regions with looser lepton IDs or with a different number of
jets might allow to recover signal events which are lost with the current selections, or
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Figure 4.11: Nuisance parameter values and tmpacts on the signal strength. The direction
of the impacts on r indicates whether the parameter is correlated or anti-correlated with
it. The left panel shows the value of (60 — 6y)/A0, where 6 and 6y are the post and pre-fit
values of the nuisance parameter and A is the pre-fit uncertainty. The error bars show
the pre-fit uncertainty divided by the post-fit uncertainty.
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Chapter 5

Conclusions

The Z-boson associated single top quark production (¢Zq) has been investigated in this
work, particularly focusing on final states with two leptons originating from the Z boson
and the top quark decaying hadronically. Major backgrouds in this channel come from
the dileptonic decays of Drell-Yan (DY), t¢ and ¢tZ events.

The first part of the analysis aims to study the event reconstruction, focusing on the
top quark and the recoil jet, in order to achieve the highest reconstruction efficiency. For
the top quark, taking the permutation of jets that gives, respectively within the resolu-
tions, the closest dijet and trijet masses to the W boson and top quark mass turned out
to be the method with the highest efficiency, while a likelihood ratio test using 1 and pr
of the recoil jet is done for the identification of the recoil jet.

A Deep Neural Network (DNN) has been designed in order to further discriminate signal
from backgrounds; the training has been made with the outcome of the event reconstruc-
tion and other variables corresponding to kinematic properties of the physic objects: it
has been shown that the use of jet kinematics that are associated with the top quark
and the recoil jet improves the performance over cases where the event reconstruction
information is not used. The Bayesian and the random optimization algorithms have
been used for the process of hypermarameter tuning.

In the last part of the analysis, a statistical fit to the DNN output is performed for
signal extraction. The fit is performed simultaneously on three DNN output distribu-
tions, corresponding to tZ¢q, DY and ¢t nodes. Contributions from DY and ¢f have been
treated as freely floating rate parameters, in order to be determined from data without
any prior constraint. Major systematics are Jet Energy Corrections (JECs) and they are
also strongly constrained: this needs to be studied in more detail.

Under these conditions, the expected significance of the tZgq signal over backgrounds

is 2.40, but the result may change after finalizing the fit with a more thorough study of
uncertainties. Additional categories could also be added in the fit in order to increase the
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expected sensitivity: looking into regions with looser lepton IDs or with a different num-
ber of jets might allow to recover signal events which are lost with the current selections,
or give additional information on the backgrounds.
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