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Radiation-induced damage of biological matter is an ubiquitous problem in nature. The influence
of the hydration environment is widely discussed, but its exact role remains elusive. Utilising well
defined solvated-molecule aggregates, we experimentally observed a hydrogen-bonded water molecule
acting as a radiation protection agent for ionised pyrrole, a prototypical aromatic biomolecule. Pure
samples of pyrrole and pyrrole(H2O) were outer-valence ionised and the subsequent damage and
relaxation processes were studied. Bare pyrrole ions fragmented through the breaking of C–C or
N–C covalent bonds. However, for pyrrole(H2O)+, we observed a strong protection of the pyrrole
ring through the dissociative release of neutral water or by transferring an electron or proton across
the hydrogen bond. Overall, a single water molecule strongly reduces the fragmentation probability
and thus the persistent radiation damage of singly-ionised pyrrole.

INTRODUCTION

The damage of biological matter upon the interaction
with UV radiation [1] or ionising radiation [2], such as x-
rays [2, 3], γ-rays [4], and α-particles [5], or other charged
particles [3, 6, 7] is a major environmental impact on
living organisms [1, 2]. For instance, inner-shell-, inner-
valence-, or outer-valence-ionised states can relax in vari-
ous pathways that form cationic species, which can result
in break up of the molecules [3, 8, 9]. One highly rele-
vant mechanism of DNA-strand breaks is via autoionisa-
tion or excitation caused by low-energy secondary elec-
trons [3, 6, 7, 10, 11].

Regarding the radiation damage of molecules, ionisa-
tion and excitation are similar: In both cases, vacancies
are created in the occupied molecular orbitals, and this
can lead to bond breaking. In the case of ionisation, the
electron is directly transferred to the continuum, leaving
the molecular ion behind, while excitation may result in
the population of dissociative excited states [12]. Typical
sources for single ionisation of biological matter in aque-
ous environments are deep UV radiation or the interaction
with radicals, slow electrons, or ions [2, 3, 12, 13]. While
deep UV radiation is efficiently blocked by the earth’s at-
mosphere [14] it is omnipresent in outer space [15]. Harder,
e. g. ionising, radiation penetrates the atmosphere.

Molecular assemblies such as clusters, droplets, and
even large molecules like proteins in their natural solvation
environment are known to allow for additional relaxation
pathways due to intermolecular interactions [8, 16–24].
These pathways may lead to a protection of the molecule
especially if the biomolecule is directly affected by the ra-
diation [1]. On the other hand, secondary species originat-

ing from the ionisation of surrounding solvent molecules
can induce new pathways that lead to biomolecular de-
struction.

Hydrogen-bonded solute-solvent complexes allow for
quantitative investigations of these effects [25–28]. One
of the important electronic relaxation channels of such
solvated-molecule clusters after x-ray ionisation, electron-
impact ionisation, or α-particle irradiation was ascribed
to intermolecular Coulombic decay (ICD) [8, 9, 25–27, 29].
This resulted in the formation of mainly charge-separated
di-cationic complexes which undergo fragmentation via

electrostatic repulsion. A competing ultrafast relaxation
channel of hydrogen-bonded complexes after inner-shell
ionisation, which may protect biomolecules, is intermolec-
ular electron- or proton-transfer-mediated charge separa-
tion [22, 24, 27]. This was also observed following x-ray
ionisation of the water dimer [28] and liquid water [30, 31].

To examine the influence of nano-hydration on the dy-
namics of biomolecules various studies using mass spectro-
metric techniques were performed [32–41]. These experi-
ments can essentially be divided into three approaches: In
the first approach one uses mass selective ion beam meth-
ods to extract individual clusters in the case of cationic
and anionic samples [32, 33, 42]. The initialisation of the
dynamics, e. g. ionisation or collisions, is species unspe-
cific which results in an undefined initial condition. For
instance, it is not possible to avoid ionisation of the water
as the initial step. The second approach of experiments
utilises a localised initiation for the dynamics inside the
cluster using, e. g. multi-photon ionisation [34–36] or
slow electrons [37–39]. Here, however, experiments are
done with mixed samples, e. g. various cluster sizes and
isomers present in the molecular beam simultaneously.
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radius pr ion counts in disk ion counts in ring area of disk/π area of ring/π
60 167522 167522 3600 3600

140 225860 58338 19600 16000

200 229120 3260 40000 20400

TABLE I. Total ion counts as well as the areas of disks and rings within specific radii chosen in the momenta map.

charge state ion counts ion counts/area
+1 (single) 167522− 3.486 · 3600− 0.1598 · 3600 = 154397 154397/3600 = 42.89

+2 (double) 58338 · (19600/16000)− 0.1598 · 19600 = 68332 68332/19600 = 3.486

+3 (triple) 3260 · (40000/20400) = 6392 6392/40000 = 0.1598

TABLE II. Number of ion counts per area of each disk, and the estimated number of ions formed after the single, double, and
triple ionisation, respectively.

contributions from single, double, and triple ionisation
processes.

The measured momentum map for m/q = 35 . . . 45 u/e
is shown with Figure 8 as an example. Circles indicate
corresponding cuts in the 2D projection of the 3D mo-
mentum sphere formed from each ionisation process: The
white circle with a radius of pr = 60 u km/s represents the
edge of the momentum for dissociative single ionisation,
the green circle with pr = 140 u km/s corresponds to the
maximum momentum of ions from Coulomb explosion
following the double ionisation, and the red circle with
pr =

√
2 ∗ 140 ≈ 200 u km/s is the maximum momen-

tum of ions from triple ionisation, assuming a two-body
fragmentation into a singly-charged and a doubly-charged
ion.

The total ion count corresponding to the disks defined
by these specific radii and the signal in the two outer
rings are provided in Table I. Areas of the specific disks
and rings are also given. Ion counts inside the outer
ring, 140 < pr < 200, correspond to triple ionisation
without contribution from single and double ionisation.
However, the middle ring, 60 < pr < 140, represents
the double-ionisation channels and it has contributions
from triple ionisation; similarly, the innermost disk, 0 <
pr < 60, representing single ionisation has contributions
from ions originating in double and triple ionisation. The
corrected total number of ions from single, double, and
triple ionisation are provided in Table II assuming a flat
ion distribution in the inner part of the corresponding
rings and disks. The relative contribution of the ion yield
from the triple-ionisation process to the total ion yield in
the given mass-to-charge region is < 5 %, i. e. negligible.

Determination of real ion numbers taking into

account detector saturation

Here, the connection between the measured number
of ions Ndet and the real number of ions produced Nreal

taking into account saturation effects of the detection
system are discussed. The saturation effects appear, e. g.
for the parent ions, pyrrole and pyrrole-water, due to the
small areas on the detector where these ions are detected.
The small areas are accounted for the fact that the spec-
trometer was operated in VMI conditions in combination
with the translational molecular beam temperature below
1 K. Furthermore, all parent ions arrive on the detector
at the same TOF within the temporal resolution of the
Timepix3 camera. This makes it impossible to determine
the real number of parent ions per shot by counting since
only a single event is detected at an instant of time by
our detection system. Assuming a Poissonian distribu-
tion Pλ(Nreal) of the real ions created, however, allows
to estimate the real number of ions Nreal from the de-
tected number of ions Ndet. Table III summarises the
numbers and probabilities of various channels. The first
column indicates the parent system under investigation.
The corresponding ions are listed in the second column
including the fragments. The corresponding number of
laser shots are denoted with Nshots. The detected hit rate
per shot Rdet = Ndet/Nshots indicates the probability to
detect an event for a single laser shot per channel. The
probability to detect 0 ions within a laser shot is given by
Pλ(0) = 1− Rdet. This value can be used to determine
the mean number of ions per shot λ = − ln(Pλ(0)) ac-
cording to the Poissonian distribution. The real number
of ions Nreal is then given by Nreal = Nshotsλ. For the
ring fragmentation channels, we set Nreal = Ndet due to
the larger spatio-temporal volume covered by these ions
on the detector. The ring fragmentation probability for
pyrrole and pyrrole(H2O) after SFI taking into account
saturation effects of the detection system is therefore
given by PP = (548485 + 241298)/241298 = 3.273 and
PPW = (1301176 + 159591 + 91799)/91799 = 16.912, re-
spectively. This gives rise to a ring protection factor given
by P = PPW/PP = 16.912/3.273 = 5.167.
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Parent molecule Ion Ndet Nshots Rdet Pλ(0) λ Nreal

pyrrole pyrrole+ 234626 270028 0.8688 0.1312 2.0310 548485
pyrrole fragments 241298 270028 0.89360 - - 241298
pyrrole(H2O) pyrrole+ 926658 1801197 0.5144 0.4856 0.7223 1301176
pyrrole(H2O) pyrrole(H2O)+ 152728 1801197 0.08479 0.91521 0.08860 159591
pyrrole(H2O) fragments 91799 1801197 0.05097 - - 91799

TABLE III. Measured number of ions, probabilities, correction factors, and real number of ions.

Pyrrole and pyrrole-water isotopologue peaks

The missing isotopologue peak for pyrrole is attributed
to the dead time in the order of µs of the Timepix3 camera
in combination with the relatively high detection rate per
shot given by Rdet = 0.8688 (see Table III) and the finite
spatio-temporal resolution. The natural abundancy of C13

isotope is in the order of 1.1%. This results in an expected
relative peak height in the order of 4.5% for the C13 parent
ion peak due to the 4 carbon atoms present in pyrrole.
Due to the dead time, we expect only C13 containing
parent ions to be detected when no C12-only containing
parent ion was detected before. Taken into account the
ion rate per shot provided for pyrrole, results in a dead
time corrected relative peak height for its isotopologue
of (1− 0.8688) · 0.045 = 0.6%. This is in the noise level
of the pyrrole peak. For the doubly charged parent, ion
the isotopologue peak is present in Figure 2. Here, we
only have a detection rate per shot given by 0.1073. The
rate for the corresponding isotopologue peak is given by
0.00381. This gives rise to a corresponding C13 containing
fraction of 3.4% close to the estimate provided above. The
same arguments hold for the observed isotopologue peaks
in the case of pyrrole-water Figure 3. Here, due to
lower count rates, the isotopologue peaks are present for
C4H5N

+ and C4H5N(H2O)+.

Data and materials availability

The data that support the findings of this
study are available from the repository at
https://doi.org/10.5281/zenodo.7857990

Code availability

The code used for the data analysis is available at
https://doi.org/10.5281/zenodo.7857990
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