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37
T. Montaruli,

27
R.W. Moore,

24

R. Morse,
36
M.Moulai,

14
P. Muth,

1
R. Nagai,

15
U. Naumann,

55
G. Neer,

23
L. V. Nguyen,

23
H. Niederhausen,

26
M. U. Nisa,

23

S. C. Nowicki,
23
D. R. Nygren,

9
A. Obertacke Pollmann,

55
M. Oehler,

30
A. Olivas,

18
A. O’Murchadha,

12
E. O’Sullivan,

47

T. Palczewski,
8,9

H. Pandya,
40
D. V. Pankova,

53
N. Park,

36
G. K. Parker,

4
E. N. Paudel,

40
P. Peiffer,

37
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The results of a 3þ 1 sterile neutrino search using eight years of data from the IceCube Neutrino

Observatory are presented. A total of 305 735 muon neutrino events are analyzed in reconstructed energy-

zenith space to test for signatures of a matter-enhanced oscillation that would occur given a sterile neutrino

state with a mass-squared differences between 0.01 and 100 eV2. The best-fit point is found to be at

sin2ð2θ24Þ ¼ 0.10 and Δm2

41
¼ 4.5 eV2, which is consistent with the no sterile neutrino hypothesis with a

p value of 8.0%.

DOI: 10.1103/PhysRevLett.125.141801

Introduction.—The three-flavor massive neutrino oscil-

lation formalism has been well-established experimentally

[1–4]. The standard paradigm has also been challenged, by

several experiments exhibiting anomalous νe (ν̄e) appear-

ance in νμ (ν̄μ) beams [5,6]. These anomalies can be

interpreted as evidence for subleading oscillations of

νμ → νe or ν̄μ → ν̄e caused by additional neutrinos with

large mass-squared differences in the range of Δm2 ∼

0.1–10 eV2 [7–11]. On the other hand, measurements of

the Z-boson decay width to invisible final states demonstrate

that only three light neutrinos participate in weak inter-

actions [12], so any additional neutrino flavor states must be

nonweakly interacting, or “sterile.” The simplest such model

is referred to as a “3þ 1” model, where in addition to the

three known mass states, a fourth heavier one is added.

The relationship between the flavor and mass states is

described by a unitary matrix, UPNMS, which in the three-

neutrino model can be parameterized in terms of three

mixing angles and one oscillation-accessible CP-violating
phase. Adding a sterile state expands the mixing matrix to

four dimensions, in which the added degrees of freedom

can be parameterized by introducing three new rotations

with angles θ14, θ24, and θ34, and two new oscillation-

accessible CP-violating phases, δ14 and δ24. The oscillation
phenomenology of the 3þ 1 model adds both shorter

baseline vacuumlike oscillations, and also novel oscillation

effects in the presence of matter [13–17]. For eV-scale

sterile neutrino states, for example, a matter-enhanced

resonance [18–23] would result in the near complete

disappearance of TeV-scale muon antineutrinos passing

through the Earth’s core, as shown in Fig. 1. By measuring

and characterizing the flux of atmospheric neutrinos in

the GeV to PeV energy range, the IceCube Neutrino

Observatory is uniquely positioned to search for such

matter-enhanced oscillations, a smoking-gun signature of

eV-scale sterile neutrinos.

Testing the 3þ 1 model as an explanation of short-

baseline anomalies and constraining its free parameters

requires measurements in multiple oscillation channels,

FIG. 1. Muon-antineutrino oscillogram. Atmospheric ν̄μ dis-

appearance probability vs true energy and cosine zenith at the

globally preferred sterile neutrino hypothesis of Ref. [11]

[Δm2

41
¼ 1.3 eV2, sin2ð2θ24Þ ¼ 0.07, sin2ð2θ34Þ ¼ 0.0]. Effects

include a matter-enhanced resonance at TeV energies, neutrino

absorption at high energy and small zenith, and vacuumlike

oscillation at low energies. The matter-enhanced resonance

appears only in the antineutrino flux for the case of small angles

and Δm2

41
> 0. Vertical white lines indicate transitions between

inner to outer core [cosðθtrueν Þ ¼ −0.98] and outer core to mantle

[cosðθtruez Þ ¼ −0.83].
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including νμ → νμ [24–32], νe → νe [33–41], and νμ → νe
[5,6,42–44]. Fits to global data [9,11,45] find a strong

preference for models with sterile neutrinos over the

standard three-neutrino paradigm. However, even at the

most preferred values of Δm2 ∼ 1 eV2, the mixing angles

required to viably explain anomalies in the νμ → νe and

ν̄μ → ν̄e channels are in strong tension with measurements

of νμ and ν̄μ disappearance [11,45]. These are also in

tension with cosmological observations [46–52], though a

number of possible solutions have been proposed [53–63].

Evidence for oscillation effects beyond the three-neutrino

paradigm in ν̄μ disappearance are yet to be observed [45].

One of these nonobservations was made by IceCube, using

a sample of 20 145 atmospheric νμ and ν̄μ events collected

over one year of detector livetime [29,64].

This Letter updates IceCube’s high-energy sterile neu-

trino search using an eight-year dataset and improved event

selection. The sample includes 305 735 well-reconstructed

charged-current νμ and ν̄μ events collected from May 13,

2011, to May 19, 2019. Events are binned uniformly in

logðEμ
recoÞ spanning E

μ
reco ∈ ½500 GeV; 9976 GeV� in 13

bins and uniformly in cos θrecoz spanning the up-going

region from −1.0 to 0.0 in 20 bins. The event counts in

each bin are used as inputs to a likelihood-based analysis to

test for evidence of eV-scale sterile neutrinos.

The increased sample size of this analysis with respect to

Ref. [29] has been accompanied by a commensurate

improvement in the precision of treatments of systematic

uncertainties and statistical methods. This Letter summa-

rizes these advances and presents the main results of this

search. A companion paper, Ref. [65], contains a more

detailed exposition of the technical aspects of the analysis,

as well as alternate interpretations of the data in a wider

space of sterile neutrino parameters.

IceCube up-going track sample.—The IceCube Neutrino

Observatory is a cubic-kilometer neutrino detector buried

in the Antarctic glacier [66]. It is comprised of photo-

multiplier tubes enclosed in glass pressure housings called

“digital optical modules” (DOMs) [67]. These are arranged

in vertical strings on a hexagonal lattice. The main array

consists of 78 strings spaced 125 m apart, each supporting

60 downward-facing DOMs with a 17 m vertical spacing.

A denser array called DeepCore [68] instruments the

clearest part of the ice within the main array. The eight

strings of DeepCore are arranged with lateral spacing

between 42 and 72 m and vertical DOM separation of

7 m. This analysis uses the complete set of IceCube DOMs

in both the main array and DeepCore.

The majority of IceCube events are produced by high-

energy muons and neutrinos from cosmic-ray air showers.

Down-going (cos θtruez > 0) atmospheric muons (and anti-

muons) can penetrate the 1450 m vertical overburden of the

detector, triggering at a rate of ∼3 kHz [69]. These events

dominate the southern-hemisphere through-going sample.

Up-going atmospheric muons, on the other hand, are

effectively removed by the large overburden provided

by the Earth. Thus, muons originating from the northern

hemisphere are dominated by those produced in charged-

current neutrino interactions. A charged-current νμ inter-

action will produce a forward secondary muon with an

energy typically between 50% and 80% of that of the parent

νμ [70]. The muon travels through the ice emitting

Cherenkov radiation. While photons travel tens to hundreds

of meters before being absorbed by the impurities in the ice

[71–73], muons with TeV energies are able to penetrate

multiple kilometers of ice before falling below the

Cherenkov threshold [74,75]. This produces an extended

tracklike signature. These events originate either inside of

the detector or from a target volume extending meters to

kilometers outside the array, depending on energy [74,76].

Events used in this analysis first pass a filter that selects

muonlike events for satellite transmission to the north, and

are then subject to further data-reduction techniques to

reject low-energy and poorly reconstructed tracks. Only

data periods with 86 active IceCube strings and greater than

5000 active DOMs in the detector are considered. A high-

level event selection is applied, leveraging morphology,

measures of track reconstruction quality, and the expected

transmission of signal events through the zenith-dependent

overburden, explained in detail in Ref. [65] and based on

Ref. [77]. The reconstructed energy and direction of each

event is calculated according to the time and geometry of

light detected throughout the array [78,79]. The angular

resolution σcos θz varies between 0.005 and 0.015 and

energy resolution of σlog10 Eμ
∼ 0.5, as in the previous

version of this analysis [29]. The energy distribution of

selected events is shown in Fig. 2.

FIG. 2. Reconstructed muon energy. Data points are shown as

black markers with error bars that represent the statistical error. The

solid blue and red lines show the best-fit sterile neutrino hypothesis

and the null (no sterile neutrino) hypothesis, respectively, with

nuisance parameters set to their best-fit values in each case.
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Cosmic-ray muon background contamination is assessed

using CORSIKA [80], with primary cosmic-ray energies

ranging from 600 to 1011 GeV. Approximately 10% of the

dataset of neutrino events are predicted to contain a

coincident cosmic-ray muon within the readout frame.

The νμ and cosmic-ray muon tracks are separated into

sub-events using an event splitter, and each subevent is

treated independently in the event selection. After splitting

and event selection, the sample is predicted to be > 99.9%

pure in νμ=ν̄μ induced events [65].

Sterile meutrino snalysis.—In this analysis, we consider

a sterile neutrino model parametrized by one mass-squared

difference, Δm2

41
, and one mixing angle, sin2ðθ24Þ. For

each hypothesis point on a grid of Δm2

41
from 10−2 to

102 eV2 and sin2ð2θ24Þ from 10−3 to 1, the neutrino flux

incident on the detector is calculated using the four-flavor

formalism.

The neutrino flux includes contributions from both

atmospheric and astrophysical neutrinos. The conventional

atmospheric νμ and ν̄μ flux is produced by the decay of

pions and kaons and is calculated using the MCEq cascade

equation solver [81,82]. The hadronic interactions are

modeled with SIBYLL2.3c [83]. The primary cosmic-ray

spectrum is a three-population model [84,85], in which

each population contains five groups of nuclei. The zenith-

dependent seasonal atmospheric density profile, through

which the cascade develops, is determined using data from

the atmospheric infrared sounder (AIRS) satellite [86]. The

prompt νμ component from the decay of charmed mesons is

implemented as in Ref. [87]. The astrophysical neutrino

flux is assumed to have equal parts of each neutrino flavor

and to be symmetric in neutrinos and antineutrinos

[88–90]; be isotropically distributed; and have a single

power-law energy spectrum consistent with previous

IceCube measurements [91]. These fluxes are subject to

a suite of systematic uncertainties, summarized in the

following section.

For each sterile neutrino hypothesis, the atmospheric and

astrophysical neutrino fluxes are propagated through the

Earth using the nuSQuIDS neutrino evolution code [92,93].

This accounts for both coherent and noncoherent inter-

actions [94]: namely charged-current, neutral-current,

and Glashow resonance interactions [95], as well as tau-

neutrino regeneration [96]. We use the CSMS [97]

neutrino-nucleon cross section to describe both interactions

during neutrino propagation and near the detector. This

requires as an input the Earth density profile, which we

parametrize via the spherically symmetric PREM model

[98]. Using the above, we obtain a prediction for the

up-going νμ flux at the detector for each physics parameter

point. These fluxes are used to weight detector Monte Carlo

(MC) event sets, with effective livetime ≥ 50× the

sample size.

We account for systematic uncertainties by means of

nuisance parameters, which reweight the MC event sets by

applying continuous parametrizations of the effects

discussed in the following section. We then compare the

data to expectation using a modified version of the

Poisson likelihood to account for MC statistical uncertainty

[99]. For our frequentist analysis, the likelihood is profiled

over the eighteen nuisance parameters to construct a test

statistic. Frequentist contours are constructed using Wilks’s

theorem [100], validated at an array of parameter points

using MC ensembles and the Feldman-Cousins [101]

procedure. A Bayesian hypothesis test is also performed,

by means of comparing the model evidences [102] with

respect to the no sterile neutrino hypothesis. The model

evidences, as a function of sterile neutrino parameters, are

computed by integrating the likelihood over the nuisance

parameters using MultiNest [103]. These two statistical

approaches are complementary: the Bayesian approach

conveys the likelihood of the model given observed data

and prior knowledge, whereas the frequentist approach

yields intervals that are likely to contain the true model

parameters for repeated experiments, enabling direct com-

parison with previous publications.

Systematic uncertainties.—Dominant sources of

uncertainty derive from the shape and normalization of

astrophysical and atmospheric neutrino fluxes; the bulk

properties of the South Pole ice; the local response of the

IceCube DOMs; and neutrino interaction cross sections.

Other uncertainties, such as the Earth density profile,

neutrino interactions in the rock and ice transition region,

prompt neutrino flux, and νμ=ν̄μ astrophysical ratio were

investigated but established as negligible relative to stat-

istical uncertainty.

Atmospheric neutrino flux:In the relevant energy range

the spectrum of cosmic-ray primaries follows approxi-

mately an E−2.65 energy (E) dependence. To account for

the uncertainty in the cosmic-ray spectral index, we apply a

spectral shift Δγ with an uncertainty of 0.03 pivoting at

2.2 TeV [104–107]. The meson production uncertainty in

the interaction between the primary cosmic ray and air and

in subsequent hadronic interactions is described through

the Barr et al. scheme [108]. In this scheme, the uncertainty

in the differential cross section for meson production is

quantified in regions of primary proton energy Ep and

meson fractional momenta xlab. The charged-kaon produc-

tion yield carries the leading uncertainty. We parametrize its

production over three kinematic regions: xlab < 0.1 and

Ep > 30 GeV; xlab ≥ 0.1 and 30 GeV < Ep < 500 GeV;

and xlab > 0.1 and Ep ≥ 500 GeV. We include two col-

lider-constrained nuisance parameters for each region, one

for particles and one for antiparticles, which rescale the

production cross section. The highest-energy uncertainties

are obtained through extrapolation, and both the scale and

energy dependence have ascribed uncertainties. Kaon

energy losses by interaction with oxygen and nitrogen

nuclei are accounted for via the total kaon-nucleus cross

sectional uncertainty [109]. The charged-pion production
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and interaction uncertainties were studied and found

negligible. The atmospheric density profile is inferred from

the zenith-dependent vertical temperature profile measured

by the AIRS satellite. To incorporate its uncertainty,

showers are recomputed through randomly perturbed

density models within the statistical and systematic uncer-

tainties reported in the AIRS measurements. Finally, the

total conventional atmospheric νμ flux carries an additional

40% normalization uncertainty following Ref. [82].

Astrophysical neutrino flux:The central astrophysical

model is a single power law with an equal normalization

for all neutrino and antineutrino flavors at 100 TeV of

0.787 × 10−18 GeV−1 sr−1 s−1 cm−2 and a spectral index of

2.5. The Gaussian priors on the normalization and spectral

index are correlated and selected to accommodate all

IceCube astrophysical neutrino flux measurements to date

[91,110–114], with allowed spectral indices of γastro ∼

2.2–2.8 at 68% confidence level (C.L.). This represents

a significant contribution to the total flux in the top two

energy bins, depending strongly on the value of γastro.

Bulk ice model:The uncertainty associated with the

measured scattering and absorption of the undisturbed

glacial ice is implemented as described in Ref. [115].

This treatment expresses the depth dependence of the ice

optical properties using a Fourier decomposition. The

covariance of the Fourier mode coefficients are determined

using LED flasher calibration data [73]. Only the six lowest

modes contribute a sizeable shape difference in the recon-

structed event distributions. The effect of these modes is

parametrized using two empirical energy-dependent basis

functions. The two associated amplitudes are incorporated

as nuisance parameters with a correlated bivariate Gaussian

prior.

DOM response and local ice effects:The ice in the

immediate vicinity of the DOMs has optical properties

distinct from the bulk ice between strings [116], caused by

bubble formation during the refreezing process after their

deployment. This introduces uncertainties via two effects.

First, the global photon detection efficiency is impacted

[117]. This is modeled by an efficiency correction with an

effectively flat prior, ultimately constrained with a tight

posterior through its effect on the overall energy scale.

Second, the bubble column influences the angular depend-

ence of photon detection. This is encoded in two para-

meters tuned to detailed optical simulations of bubble

scattering near the DOM [118], with only one having a

substantial impact.

Neutrino cross section:The neutrino-nucleon cross

section enters the analysis in two ways, influencing

(1) the absorption during the neutrino propagation through

the Earth [70,119] and (2) the rates and inelasticities of

interactions near the detector [70,97,120]. The latter

source of uncertainty was previously investigated in

Refs. [121,122] and found to be negligible. The former

is found to be non-negligible and is taken into account by

separately parametrizing the change in neutrino absorption

when the νμ and ν̄μ cross sections are scaled. The priors on

these parameters are fixed at the largest uncertainties in our

energy range from Ref. [97], which are 3% for νμ and 7%

for ν̄μ.

Results.—The frequentist analysis best-fit point is

Δm2

41
¼ 4.5 eV2 and sin2ð2θ24Þ ¼ 0.10. At this point,

the largest nuisance parameter pull was observed in the

cosmic-ray spectral index, which shifted the cosmic-ray

spectrum by 0.068 (2.3σ); the other nuisance parameter

best-fit values are within one sigma of their respective

central values and can be found in the accompanying

Ref. [65]. Figure 3 shows the signal shape at the best-fit

point, given the best-fit nuisance parameters, as well as the

pull between data and no sterile neutrino hypothesis,

evaluated at those same nuisance parameters. Figure 4

shows the 90% and 99% C.L. contours calculated accord-

ing to Wilks’s theorem with two degrees of freedom.

Sensitivity envelopes, illustrating symmetrically counted

ensembles of 68% and 95% nonclosed contours derived

from 2000 pseudoexperiments, are shown overlaid for the

FIG. 3. Best-fit signal shapes compared to data. Top: the signal

shape at the best-fit point compared to the null hypothesis with

the same nuisance parameters. Bottom: data compared to the null

hypothesis with the nuisance parameters held at the same values.
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99% contour. The IceCube 90% C.L. preferred region is

consistent with constraints from previous νμ disappearance

experiments, and the 99% contour is stronger than other

exclusion limits at values of Δm2 up to 1 eV2.

Figure 5 shows the corresponding Bayesian result, where

the pointwise Bayes factor is calculated relative to the no

sterile neutrino hypothesis. The best-model location is at

Δm2 ∼ 4.5 eV2 and sin2ð2θ24Þ ∼ 0.9 and is strongly pre-

ferred, by a factor of 10.7, to the no sterile neutrino

hypothesis. Contours are drawn in logarithmic Bayes factor

steps of 0.5, quantifying strength of evidence [125].

The best-fit point and inferred confidence regions are

found to be robust under the removal of any one of the eight

years of data, showing only minor changes in the contour

position. This is also the case for removal of any of the

following group of uncertainties: neutrino cross sections,

detector effects, atmospheric flux, and astrophysical flux.

Details can be found in Refs. [65,126]. Furthermore, a

similar best-fit point is obtained when fitting any one year

of data independently, suggesting a small effect of physical

or systematic rather than statistical origin.

The difference in likelihood to the null hypothesis is

4.94, corresponding to a p value of 8% against the null

hypothesis. The location of this point was found to be

compatible with expectations based on simulated no sterile

neutrino pseudoexperiments, which by definition produce

closed contours at 90% C.L. in 10% of trials.

In summary, we have studied 305 735 up-going atmos-

pheric and astrophysical muon neutrinos to search for

evidence of eV-sterile neutrino signatures. The best-fit

point is consistent with the no sterile neutrino hypothesis

at a p value of 8%. Because of its unique statistical strength

this result is expected to have a substantial impact on the

global sterile neutrino landscape.
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