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Abstract

The proposed ARIANNA-200 neutrino detector, located at sea-level on the Ross Ice

Shelf, Antarctica, consists of 200 autonomous and independent detector stations sepa-

rated by 1 kilometer in a uniform triangular mesh, and serves as a pathfinder mission

for the future IceCube-Gen2 project. The primary science mission of ARIANNA-200 is

to search for sources of neutrinos with energies greater than 10
17

eV, complementing the

reach of IceCube. An ARIANNA observation of a neutrino source would provide strong

insight into the enigmatic sources of cosmic rays. ARIANNA observes the radio emission

from high energy neutrino interactions in the Antarctic ice. Among radio based concepts

under current investigation, ARIANNA-200 would uniquely survey the vast majority of

the southern sky at any instant in time, and an important region of the northern sky, by

virtue of its location on the surface of the Ross Ice Shelf in Antarctica. The broad sky

coverage is specific to the Moore’s Bay site, and makes ARIANNA-200 ideally suited to

contribute to the multi-messenger thrust by the US National Science Foundation, Win-

dows on the Universe – Multi-Messenger Astrophysics, providing capabilities to observe

explosive sources from unknown directions. The ARIANNA architecture is designed to

measure the angular direction to within 3
◦ for every neutrino candidate, which too plays

an important role in the pursuit of multi-messenger observations of astrophysical sources.

1 Science enabled by ARIANNA-200

The ARIANNA-200 neutrino detector, located at sea-level on the Ross Ice Shelf, Antarctica,
consists of 200 autonomous and independent detector stations separated by 1 kilometer in
a uniform triangular mesh. As a consequence of the reflection properties at the ice-water
interface at the bottom of the Ross Ice Shelf, ARIANNA-200 views almost the entire southern
sky, including the galactic center, with nearly uniform exposure. ARIANNA-200 (Figure
1) exceeds the instantaneous sky coverage of all other radio-based neutrino detectors being
studied. It’s broad sky coverage is ideally suited to contribute to multi-messenger campaigns
initiated by gravitational-wave detectors, gamma-ray telescopes, cosmic ray observatories, and
neutrino telescopes targeting lower energies such as IceCube [1] in the Southern hemisphere,
and KM3NeT [2] and Baikal-GVD [3] in the Northern hemisphere.

The sky coverage of ARIANNA-200 augments the point source capabilities of IceCube. At
high neutrino energies (Eν > ∼10

14
eV), the Earth becomes opaque. Thus, at higher energies,

both IceCube and ARIANNA-200 observe mostly the Southern sky, leading to a substantial
overlap in sky coverage. Figure 2 examines the relative sensitivity as a function of energy
for an explosive or flaring source at an arbitrary declination of −23

◦ in the Southern sky.
The strong second minimum at 10

18
eV indicates that ARIANNA-200 will observe about one

event for every three sources of the highest energy cosmic rays observed by IceCube, assuming
neutrino production above 10

15
eV with an unbroken power law up to 10

20
eV proportional to

E
−2
ν

. A spatially and temporally coincident detection of the same source would establish a
hard spectrum up to an energy of 1018 eV or greater, and provide a direct link to an accelerator
of the very highest energy cosmic rays. A more speculative spectrum proportional to E

−1.8
ν

would produce one event in ARIANNA-200 for every neutrino in IceCube with Eν > 10
15
eV.

The model parameter-space for neutrino fluxes of sources is large. Some models suggest that
the flux from some neutrino sources may be enhanced at energies close to maximum sensitivity
of ARIANNA-200, for example [4, 5, 6], while others predict no observable emission. It is quite
possible that new experimental results will be able to guide theory in this respect.
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3 Description of ARIANNA-200 and performance

Similar in basic design to several stations in the 10 station test-bed array, each ARIANNA-200
station includes 8 antenna channels: 4 log periodic dipole antennas (LPDA) pointing down, 3
LPDAs pointing up, and a dipole (Fig. 4 left). The LPDAs, which are high-gain broadband
receivers, are installed to a depth of only 2m, while the dipole is located 10m below the surface.
Each station will operate autonomously using solar and wind power and will communicate in
almost real time through the Iridium satellite network. Based on the ARIANNA test bed
experience [48], there are several options to deploy two hundred ARIANNA stations. In one
method, for example, the deployment team installs all LPDA antennas in rectangular slots
created by electrically heated melting devices, which incorporates the key design elements
of the cylindrical hole-melter that successfully drilled several holes to the required depth
without the need for continuous supervision. Based on the ARIANNA test bed experience,
we estimate that two ARIANNA-200 stations can be deployed per day with an 8 person team.
The complete ARIANNA-200 array can be deployed in three years.

The performance and reliability of the ARIANNA architecture was also demonstrated
by the ARIANNA test bed array, consisting of 10 ARIANNA stations. It ran successfully
from December 2014 to completion of the program in November 2019, achieving operational
live-time of 86% during the sunlit summer months, and a neutrino analysis efficiency of 80%
relative to trigger level at a trigger threshold of 4 times the RMS noise [48]. An experimental
prototype of a portable wind generator survived for 2 years and achieved 39% runtime during
periods when sunlight was not available. Incremental changes in the geometry of the wind
generator and battery capacity are expected to increase the operational live-time to 70%
during the completely dark winter months [49]. To summarize: ARIANNA-200 is expected to
operate for more than 80% of the year using non-centralized fuel-free sources of power.

ARIANNA-200 achieves state-of-the-art sensitivity by optimizing the trigger bandwidth
for the high gain LPDA antennas, reaching an equivalent threshold in signal to noise of 2 times
the RMS noise. The effective area of ARIANNA-200 (Fig. 2 left) grows rapidly at neutrino
energies above 10

17
eV, complementing the capabilities of IceCube at lower energies.

The angular direction of the neutrino is computed from the polarization angle, the arrival
direction at the detector and the viewing angle relative the Cherenkov cone. The viewing
angle measurement benefits from the large bandwidth of the LPDAs and data acquisition
electronics. ARIANNA-200 will measure the angular direction of nearly every event with an
accuracy of 3◦ or better and the energy to within a factor 2 [24]. Neutrino energy requires
a measurement of the distance to the interaction vertex, which is measured by the powerful
DnR technique, to identify the location of the vertex of nearly every event with high precision
[50]. In the DnR method, the distance to the vertex is related to time difference between two
signal paths of the radio emission, one that propagates directly to the dipole receiver and the
second ray that reflects from the surface to the dipole. Many systematic uncertainties are
reduced by observing the time delay in a single dipole. Consequently, ARIANNA test bed
studies have shown that the relative precision of the time delay is <0.1 ns [50].

Though the baseline reconstruction capabilities have been established by the ARIANNA
test bed, we plan additional in-situ calibration campaigns to improve the precision of ice
modeling and reduce systematic errors currently limiting the response of the detector. These
goals will be facilitated by continuous monitoring of the snow accumulation.
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4 Practical advantages of architecture and site location

The Moore’s Bay site is only 110 km from McMurdo Station, the largest science base in
Antarctica. The relatively close location provides important logistical flexibility, including the
possibility to support construction operations by using overland tracked vehicles to transport
cargo. The sea-level location is generally warmer than higher elevation sites in Antarctica,
and the site has better conditions for wind-generated power [49].

ARIANNA technologies consume only 5 watts of power per station, which is supplied by
solar panels during summer months and wind generators during the continuously dark winter
months. The ARIANNA concept avoids the need to deploy (and eventually retrieve) hundreds
of kilometers of power and/or communication cables from a central location. The utility of this
forward-looking feature will be more evident as the area footprint of the neutrino telescopes
increase in future designs.

Due to advances by the ARIANNA collaboration in event recognition by deep-learning and
other proven analysis techniques [48], high priority neutrino candidates will be transmitted
over the reliable Iridium satellite network, which was used routinely in the ARIANNA test
bed. Deep learning will be employed to identify neutrino candidates in a matter of seconds,
providing a real time alert for the multi-messenger communities.

The near surface location of the components of the ARIANNA station allows routine
maintenance and possibility of technology upgrades, providing the opportunity for ARIANNA
to follow the science. The existing infrastructure provides advanced capabilities to implement
system upgrades. For example, new trigger software can be uploaded remotely over wireless
connections during summer operations.

5 Backgrounds

The protected geography of Moore’s Bay shields ARIANNA-200 from anthropogenic radio-
frequency noise created by McMurdo Station, about 100 km distant. Backgrounds associated
with radio production by cosmic ray collisions in the atmosphere are intrinsically directional
and they can be identified by upward facing LPDA antennas [51]. In addition, cosmic ray
signals will not produce the characteristic double pulse waveform in the dipole antenna em-
ployed by the DnR method for neutrino vertex reconstruction [50]. Perhaps the most serious
background arises from high-energy muons in cosmic ray air showers that penetrate the ice
surface and occasionally radiate high energy photons within the ice [52]. The photons initiate
an electromagnetic shower in the vicinity of the ARIANNA station that appears identical
to a neutrino signal. We thoroughly studied this potential background and found that the
expected rate of background events for the full ARIANNA-200 array is less than 0.01 events
per year. Thus, for the sensitivity of this pathfinder project, muon background events are
negligible even after 10 years of operation. We note that a large part of the background events
can be rejected by tagging cosmic-ray air showers and by measuring the muon energy so that
this background can be further mitigated if required by a future detector with significantly
larger sensitivity.
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6 Summary

ARIANNA architecture is fully vetted and ready to contribute to the multi-messenger science
program by searching for high-energy neutrino emission from more than half the sky. We
propose to expand ARIANNA to 200 stations, with the potential to produce transformative
science, by measuring the energy and direction of every neutrino candidate, which is vital to
unraveling the mystery of cosmic ray acceleration.
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