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A search for heavy neutral Higgs bosons is performed using the LHC Run 2 data, corresponding
to an integrated luminosity of 139 fb−1 of proton-proton collisions at

ffiffiffi

s
p ¼ 13 TeV recorded with the

ATLAS detector. The search for heavy resonances is performed over the mass range 0.2–2.5 TeV for the
τþτ− decay with at least one τ-lepton decaying into final states with hadrons. The data are in good
agreement with the background prediction of the standard model. In the M125

h scenario of the minimal
supersymmetric standard model, values of tan β > 8 and tan β > 21 are excluded at the 95% confidence
level for neutral Higgs boson masses of 1.0 and 1.5 TeV, respectively, where tan β is the ratio of the vacuum
expectation values of the two Higgs doublets.
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The ATLAS and CMS collaborations discovered in 2012
a new boson with a mass of 125 GeV [1,2]. Current
measurements [3,4] indicate that the new particle is
compatible with the Higgs boson predicted by the standard
model (SM) [5–7]. This discovery opens the way for
studies of the structure of the Higgs sector. Many theo-
retical models beyond the SM, such as two-Higgs-doublet
models (2HDMs) [8], extend the Higgs sector to include a
second Higgs doublet which implies the existence of new
heavy pseudoscalar (A) and scalar (H) states, while the
observed scalar particle would correspond to the lightest
Higgs boson (h). The decay probability of these scalar
states into τþτ− pairs can be enhanced relative to other
decay modes in 2HDMs of type II, such as the minimal
supersymmetric SM (MSSM) [9,10], the minimal exten-
sion of the SM that realizes supersymmetry [11–16].
At tree level, the properties of the MSSM Higgs sector

depend only on two non-SM parameters, which can be
chosen to be the mass of the pseudoscalar Higgs boson,mA,
and the ratio of the vacuum expectation values of the two
Higgs doublets, tan β. Beyond tree level, the Higgs sector is
affected by additional parameters, the choice of which
defines various MSSM benchmark scenarios. In the M125

h

scenario [17], the parameters are such that the mass of the
lightest CP-even Higgs boson,mh, is close to the measured
mass of the Higgs boson discovered at the LHC [18] and
the masses of all superparticles are heavy enough to only

mildly affect the production and decays of the MSSM
Higgs bosons. The couplings of the MSSM heavy Higgs
bosons to down-type fermions are enhanced with respect to
the SM for large tan β values, resulting in increased
branching fractions to τ leptons and b quarks, as well as
a higher cross section for Higgs boson production in
association with b quarks (bbH). For the mass range
considered in this Letter, the mass difference between
the A and H bosons is much smaller than the experimental
resolution and they are treated as degenerate in mass.
This Letter describes a search for massive scalar and

pseudoscalar resonances decaying into a τ-lepton pair
(throughout this Letter the inclusion of charge-conjugate
decay modes is implied). The search is conducted on a
sample of proton-proton collision data with an integrated
luminosity of 139 fb−1 at a center-of-mass energy of
ffiffiffi

s
p ¼ 13 TeV, collected with the ATLAS detector [19–
21] during the Run 2 of the LHC (2015–2018) [22]. The
τlepτhad and τhadτhad decay channels are considered, where
τlep denotes the decay of the τ lepton into neutrinos and an
electron (τe) or into neutrinos and a muon (τμ) and τhad
denotes the decay into a neutrino and hadrons. This search
improves on the results obtained by previous searches
performed by the ATLAS and CMS collaborations at a
center-of-mass energy of

ffiffiffi

s
p ¼ 13 TeV [23–25] by about a

factor of 4–5 for a scalar boson in the mass range 700–
2500 GeV, thanks to improvements of the modeling of the
top-quark background and of the backgrounds estimated
from data, of the reconstruction of high-pT τ leptons and
the increase of integrated lumnosity.
The ATLAS detector at the LHC covers nearly the entire

solid angle around the collision point [26]. It consists of an
inner tracking detector surrounded by a thin superconduct-
ing solenoid, electromagnetic and hadronic calorimeters,
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and a muon spectrometer incorporating three large super-
conducting toroidal magnets.
Samples of Monte Carlo (MC) simulated events are used

to optimize the event selection, estimate the signal effi-
ciencies, and model some of the background processes. The
generators and parton showers used to simulate the differ-
ent MC processes are summarized in Table I. The pro-
duction cross sections and branching fractions for the
various MSSM scenarios are calculated using procedures
described in Refs. [27,28]. The cross sections for gluon-
gluon fusion (ggF) production calculated with SUSHI

[29,30] include next-to-leading-order (NLO) supersymmet-
ric-QCD corrections [31–36], next-to-next-to-leading-
order (NNLO) QCD corrections for the top quark [37–41],
and light-quark electroweak effects [42,43]. The bbH cross
sections are calculated in the five-flavor [44] and four-
flavor schemes [45,46], and the predictions are combined
as described in Refs. [47–50]. The other production modes
contribute negligibly in the M125

h scenario and are not
considered. The masses and mixing (and effective Yukawa
couplings) of the Higgs bosons are computed with
FEYNHIGGS [51–58]. Branching fractions of Higgs bosons
are computed using a combination of results calculated by
FEYNHIGGS, HDECAY [59,60], and PROPHECY4F [61,62],
following the procedure discussed in Ref. [27]. The
samples were produced with the ATLAS simulation infra-
structure [63] using the full detector simulation performed
by the GEANT4 [64] toolkit, with the exception of bbH
production of the MSSMHiggs boson signal, for which the
ATLFASTII [63] fast simulation framework was used.
In this search, the leptonic τ decays are identified by

their charged decay product, either an electron or a
muon. Electron candidates are reconstructed from energy
deposits in the electromagnetic calorimeter associated
with a charged-particle track measured in the inner detector
[93]. They are required to have jηj < 2.47. The transition
region between the barrel and end cap calorimeters
(1.37 < jηj < 1.52) is excluded.
Muon candidates are reconstructed in the range jηj < 2.5

by matching tracks found in the muon spectrometer to
tracks found in the inner detector [94]. The selected leptons
in the τlepτhad channel are required to have a transverse

momentum pT > 30 GeV, pass the “medium” quality
requirement for both the electrons [93] and muons [94]
and satisfy a pT- and η-dependent isolation criterion called
“Gradient”, which uses calorimetric and tracking informa-
tion. The efficiencies for the identification and isolation
criteria are given in Refs. [93,94].
Jets are reconstructed from topological clusters [95] of

energy depositions in the calorimeter using the anti-kt
algorithm [96], with a radius parameter value R ¼ 0.4 [97].
The average energy contribution from pileup is subtracted
according to the jet area and the jets are calibrated as
described in Ref. [98]. Jets are required to have pT >
20 GeV and jηj < 2.5. The effect of pileup is reduced by
using tracking information associated with the calorimeter-
based jets to reject those not originating from the primary
vertex [99]. The primary vertex is chosen as the proton-
proton vertex candidate with the highest sum of the squared
transverse momenta of the associated tracks.
In order to identify jets containing b hadrons (b jets),

a multivariate algorithm (MV2) is used [100]. The algo-
rithm has an average efficiency of 70% for b jets
and rejections of approximately 9, 36, and 300 for c jets,
τ decays with hadrons, and jets initiated by light quarks or
gluons, respectively, as determined in simulated tt̄ events.
Correction factors are applied to the simulated event
samples to compensate for differences between data and
simulation in the b-tagging efficiencies for b jets, c jets and
light-flavor jets.
Hadronic τ decays are composed of a neutrino and a set

of visible decay products (τhad-vis), typically one or three
charged pions and up to two neutral pions. The τhad-vis
candidates reconstructed from seeding jets [101] must have
pT > 25 (65) GeV in the τlepτhad (τhadτhad) channel, jηj <
2.5 excluding 1.37 < jηj < 1.52, one or three associated
tracks and an electric charge of �1. A boosted-decision-
tree identification procedure, based on calorimetric shower
shapes and tracking information, is used to reject jets.
The τhad-vis candidates must satisfy “loose” or “medium”

τ identification criteria [101] with efficiencies of about 85%
(75%) and 75% (60%) for one-track (three-track) τhad-vis
candidates, respectively. The rejections factors of “loose”
and “medium” τ identification in multijet events are about

TABLE I. Generators used to describe the signal and background processes, parton distribution function (PDF) sets for the hard
process, and models used for parton showering, hadronization and the underlying event (UEPS). The orders of the total cross sections
used to normalize the events are also given. V represents either W or Z gauge bosons.

Process Generator PDF UEPS Cross section order

ggF POWHEG-BOX v2 [65–69] CT10 [70] PYTHIA 8.1 [71] See text
bbH MG5_aMC@NLO 2.1.2 [72,73] CT10 PYTHIA 8.2 [74] See text
W þ jets SHERPA 2.2.1 [75] NNPDF 3.0 NNLO [76] SHERPA 2.2.1 [77] NNLO [78]
Z þ jets POWHEG-BOX v1 [65–67,79] CT10 PYTHIA 8.1 NNLO [78]
VV=Vγ� SHERPA 2.2 NNPDF 3.0 NNLO SHERPA 2.2 NLO
tt̄ POWHEG-BOX v2 [65–67,80] NNPDF 3.0 NLO PYTHIA 8.2 NNLOþ NNLL [81–87]
Single t POWHEG-BOX v2 [65–67,88–90] NNPDF 3.0 NLO PYTHIA 8.2 NNLOþ NNLL [91,92]
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20 (200) and 30 (500) for one-track (three-track) τhad-vis
candidates, respectively.
The missing transverse momentum, Emiss

T , is calculated
as the negative vectorial sum of the pT of all fully
reconstructed and calibrated physics objects [102]. In
addition, this procedure includes a soft term, which is
calculated using the inner-detector tracks that originate
from the hard-scattering vertex but are not associated with
reconstructed objects.
Events in the τlepτhad channel are selected using single-

electron and single-muon triggers with pT thresholds
ranging from 20 to 26 GeV and various isolation criteria
[103,104]. The events must contain at least one τhad-vis
candidate passing the medium identification and exactly
one isolated lepton (l). The τhad-vis candidate must have
jηj < 2.3 to reduce misidentified-electron background
[105]. The isolated lepton and the τhad-vis candidate must
have opposite electric charge and be back to back in the
transverse plane: jΔϕðplT ; p

τhad-vis
T Þj > 2.4 rad. To reduce

background from W þ jets production the transverse mass
mTðplT ;Emiss

T Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pl

TE
miss
T ½1 − cosΔϕðplT ;Emiss

T Þ�
p

, cal-
culated with the lepton pT and the event Emiss

T , must be
less than 40 GeV. To reduce background from Z → ee
production in the τeτhad channel, events inwhich the isolated
lepton and the τhad-vis candidate have an invariant mass
between 80 and 110 GeV are rejected. The background
contribution from Z → μμ in the τμτhad channel is found to
be negligible. The signal acceptance times efficiency for
each of the τeτhad and τμτhad channels varies between 2%and
7% for signals with masses of 0.2–2.5 TeV (the acceptance
is calculated with respect to the sum of all τ decay modes;
the efficiency is calculated taking into account detector
acceptance, reconstruction and selection efficiencies).
Events in the τhadτhad channel are selected by single-τ

triggers with pT thresholds of 80 GeV (5.4 fb−1 from June
2015 to May 2016), 125 GeV (9.3 fb−1 in May–June 2016)
and 160 GeV (124 fb−1 from June 2016 to October 2018).
Events must contain at least two τhad-vis candidates and no
electrons or muons. The pT of the leading τhad-vis candidate
must exceed the trigger pT threshold by 5 GeV. The leading
(subleading) τhad-vis candidate must satisfy the medium
(loose) identification criteria. The two τhad-vis must have
opposite electric charge and be back to back in the

transverse plane: jΔϕðpτ
1

had-vis
T ; p

τ2had-vis
T Þj > 2.7 rad. The signal

acceptance times efficiency varies between 2% and 20%
for signals with masses of 0.35–2.5 TeV, and it decreases
rapidly for lower mass values due to the selection
criteria imposed on the pT of the decay products of the
τ leptons.
Events satisfying the selection criteria of either channel

are divided into categories to exploit the different produc-
tion modes in the MSSM: the b-tag category for events
containing at least one b-jet and the b-veto category for
events containing no b jets. These categories are the signal
regions used by the analysis.

The ττ mass reconstruction is crucial for good separation
between signal and background events. However, its
reconstruction is challenging due to the presence of neu-
trinos from the τ-lepton decays. The mass reconstruction
used for both channels is the total transverse mass, defined
asmtot

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðpτ1
T þ p

τ2
T þ Emiss

T Þ2 − ðpτ1T þ p
τ2
T þ Emiss

T Þ2
p

for
either (l, τhad-vis) or (τ1had-vis, τ

2

had-vis) as (τ1, τ2).
The dominant background contribution in the τlepτhad

channel arises from processes where the τhad-vis candidate
originates from a jet. Such background events are divided
into those where the selected lepton is correctly identified,
mainly from W þ jets (tt̄) production in the b-veto (b-tag)
category, and those where the selected lepton arises from
a jet, mainly from multijet production. These contributions
are estimated using a data-driven technique, which is
similar to that described in Ref. [24]. Three orthogonal
control regions are defined using the same selection as for
the signal region, except that the lepton candidate fails
isolation requirements in CR-0, the τhad-vis candidate fails τ
identification in CR-1, and both fail these conditions in CR-
2. The multijet background events are estimated from CR-0
weighted with lepton correction factors, called fake factors,
which are ratios of the numbers of lepton candidates
passing and failing the isolation requirements [24] (here-
after, fake factors refer to ratios of the number of candidates
passing a certain identification requirement to the number
of candidates failing the requirement). The W þ jets (tt̄)
background events are estimated from CR-1 after sub-
tracting the multijet background contributions estimated
from CR-2 corrected with lepton fake factors. Real τ-lepton
contributions in CR-1 are subtracted using MC simulation.
The τ-lepton fake-factor weights measured in data are then
applied to the events in CR-1 to estimate the W þ jets (tt̄)
background in the signal region. Backgrounds where both
the lepton and τhad-vis candidates originate from electrons,
muons or τ leptons arise from Z=γ� → ττ production in the
b-veto category and tt̄ production in the b-tag category,

TABLE II. Relative increase in the expected 95% C.L. upper
limits for the production cross section times branching fraction
relative to the statistical only expected limit for each systematic
uncertainty under consideration, shown for scalar bosons with
mass of 400 GeV and 1 TeV produced via ggF and bbH
production.

Source
ggF

(400 GeV)
ggF

(1 TeV)
bbH

(400 GeV)
bbH

(1 TeV)

Tau id. efficiency 0.14 0.16 0.12 0.08
Tau energy scale 0.33 0.09 0.22 0.03
Z þ jets bkg.
modeling

0.27 0.19 0.08 0.04

Mis-id. τhad-vis bkg. 0.22 0.01 0.14 0.03
Others 0.09 0.04 0.11 0.02

Total 0.54 0.28 0.45 0.13
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with minor contributions from Z=γ� → ll, diboson and
single top-quark production. These contributions are esti-
mated using MC simulation. To constrain the normalization
of the tt̄ contribution, a top-quark control region enhanced
in tt̄ events is defined by substituting the transverse
mass requirement with mTðplT ;Emiss

T Þ > 110 (100) GeV
in the b-tag category of the τeτhad (τμτhad) channel. This
region is included in the fitting procedure. Other major
background contributions can be adequately constrained in
the signal regions.
The dominant background contribution in the τhadτhad

channel is from multijet production, which is estimated
using a data-driven technique described in Ref. [24]: the

background is estimated from a control region whose
events pass the same selection as for the signal region,
except the subleading τhad-vis candidates fail τ identification.
Then the events areweightedwith fake factorsmeasured in a
region enriched with multijet events to obtain the multijet
background estimation in the signal region. The other
nonnegligible backgrounds contributions are Z=γ� → ττ

production in the b-veto category, tt̄ production in the b-
tag category, and to a lesser extentW (→ τν;lν)+jets, single
top-quark, diboson, and Z=γ� ð→ llÞ þ jets production.
These contributions are estimated using MC simulation. To
improve the modeling of jets faking hadronic τ decays (fake
τ leptons), events in the simulation that contain quark- or
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FIG. 1. Themtot
T for the b-veto (left) and b-tag (right) categories of the τlepτhad channel (top) and τhadτhad channel (bottom). The binning

displayed is that entering into the fit. The predictions and uncertainties for the background processes are obtained from the fit assuming
the background-only hypothesis. Expectations from signal processes are superimposed. Overflows are included in the last bin of the
distributions.
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gluon-initiated jets that are misidentified as τhad-vis candi-
dates are corrected to follow rates of fake τ leptonsmeasured
in W þ jets and tt̄ enhanced regions in data.
Uncertainties affecting the simulated signal and back-

ground contributions are considered in the statistical
analysis. These include uncertainties associated with the
determination of the integrated luminosity [106,107], the
detector simulation, the theoretical cross sections, and
the background modeling. For MSSM Higgs boson sam-
ples, various sources of uncertainty which affect the signal
acceptance are considered, such as the impact of varying
the factorization and renormalization scales and uncertain-
ties in the modeling of initial- and final-state radiation, as
well as multiple parton interactions. The sensitivity of the
search is limited by statistical uncertainties, especially for
scalars with mass values above 600 GeV. The main
systematic uncertainties are shown in Table II. They are
related to the determination of the τhad-vis identification
efficiency and energy scale, estimation of the backgrounds
with misidentified τhad-vis and modeling of Z þ jets back-
ground. The uncertainty in the τhad-vis identification effi-
ciency is determined from measurements of Z → ττ events
and, for the high pT regime, an additional uncertainty is
assigned from the validation of the τhad-vis properties in
high-pT dijet events. The uncertainty in the τhad-vis energy
scale is derived from Z → ττ events as well, and from
single hadron test-beam data, and it is validated for high-pT

τhad-vis with top-quark events and Zð→ ττÞ events with large
transverse momentum. Uncertainties in the determination
of backgrounds with misidentified τhad-vis include the
uncertainty from the subtraction of other backgrounds in
the control regions, the uncertainty from the limited number
of events in the control regions and the uncertainty from

differences in the jet composition between control regions
and signal regions. For Z þ jets production, cross-section
and modeling uncertainties are taken from Refs. [108,109].
A simultaneous fit of the mtot

T distributions of the top-
quark control region and of the b-veto and b-tag categories
of the τlepτhad and τhadτhad channels is performed in the
statistical analysis. The numbers of observed events in the
b-veto and b-tag categories of the τlepτhad channel are 728
174 and 19 542, while event yields of 728 200� 2900 and
19 600� 400 for the background-only hypothesis are
obtained from the statistical analysis, which includes the
fit of the nuisance parameters associated with the system-
atic uncertainties.
For the τhadτhad channel, the numbers of observed events

in the b-veto and b-tag categories are 8420 and 381, and the
fitted event yields from background processes are 8430�
150 and 368� 27. The mtot

T distributions obtained from the
fit performed simultaneously in the b-veto and b-tag
categories of the two channels are shown in Fig. 1.
The data are found to be in good agreement with the

obtained background yields, and the results are given in
terms of exclusion limits. Upper limits on the cross section
times branching fraction for a scalar boson (generically
called ϕ) decaying into τ-lepton pairs are set at the
95% confidence level (C.L.) as a function of the boson
mass. They are computed using a modified frequentist CLs
method [110] with the profile likelihood ratio as the test
statistic. The asymptotic approximation is used [111]. The
upper limits cover the mass range 0.2–2.5 TeV and are
shown for a production entirely via ggF in Fig. 2(a) and
entirely via b-quark associated production in Fig. 2(b). The
observed (expected) upper limits are 1.8 fb (3.8 fb) for ggF
and 1.1 fb (2.2 fb) for bbH production at mϕ ¼ 1 TeV. For
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FIG. 2. The observed and expected 95% C.L. upper limits on the production cross section times branching fraction for a scalar boson
(ϕ) produced via (a) ggF and (b) b-associated production. The limits are calculated from a statistical combination of the τlepτhad and
τhadτhad channels. The excluded region from the 2015–2016 data ATLAS search [24] is depicted by the dotted pink line. The 95% C.L.
upper limits on tan β as a function ofmA in theM125

h scenario is shown (c). The lowest value of tan β considered for theM125

h scenario is
0.5. In the small lower-left region shown in solid blue, the mass splitting between A and H bosons is above 50% of the mass resolution
and therefore the simple addition of the cross sections is not valid. However, this region of parameter space in theM125

h scenario provides
predictions that are incompatible with the measured mass value of the observed Higgs boson by more than 3σ. The exclusion limit
aroundmA ¼ 350 GeV reflects the behavior of the A → ττ branching fraction close to the A → tt̄ kinematic threshold for low tan β. The
hatched area defines which side of the curve is excluded by the search.
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ggF, the lowest local p0, the probability that the back-
ground can produce a fluctuation greater than the excess
observed in data, is 0.014 (2.2σ) at mϕ ¼ 400 GeV, while
for bbH production it is 0.003 (2.7σ) at mϕ ¼ 400 GeV.
The natural width of the scalar boson is assumed to be
negligible compared to the experimental resolution. Results
are interpreted in terms of the MSSM in Fig. 2(c), which
shows the regions in the mA– tan β plane excluded at the
95% C.L. in the M125

h scenario. The observed (expected)
upper limits exclude tan β > 21 (24) for mA ¼ 1.5 TeV.
In conclusion, a search for heavy neutral Higgs bosons

decaying into a pair of τ leptons is performed in the mass
range 0.2–2.5 TeVusing a data sample corresponding to an
integrated luminosity of 139 fb−1 from proton-proton
collisions at

ffiffiffi

s
p ¼ 13 TeV recorded by the ATLAS detec-

tor at the LHC. No significant excess over the expected SM
backgrounds is found. Upper limits on the cross section for
the production of a scalar boson times the branching
fraction to ττ final states are set at the 95% C.L., signifi-
cantly increasing the sensitivity and explored mass range
compared to previous searches. They are in the range 240–
1.2 fb (230–1.0 fb) for gluon-gluon fusion (b-associated)
production of scalar bosons with masses of 0.2–2.5 TeV. In
the M125

h scenario, the data exclude tan β > 8 for mA ¼
1.0 TeV and tan β > 21 formA ¼ 1.5 TeV at the 95% C.L.
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PHYSICAL REVIEW LETTERS 125, 051801 (2020)

051801-18



35d
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69a
INFN Sezione di Milano, Italy

69b
Dipartimento di Fisica, Università di Milano, Milano, Italy
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eeAlso at Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève, Switzerland.
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