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Precise dark matter relic abundance in decoupled sectors
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Dark matter (DM) as a thermal relic of the primordial plasma is increasingly pressured by direct
and indirect searches, while the same production mechanism in a decoupled sector is much less
constrained. We extend the standard treatment of the freeze-out process to such scenarios and
perform precision calculations of the annihilation cross section required to match the observed DM
abundance. We demonstrate that the difference to the canonical value is generally sizeable, and can
reach orders of magnitude. Our results directly impact the interpretation of DM searches in hidden

sector scenarios.

Introduction.— Cosmological observations require
the existence of a dark matter (DM) component making
up about 80 % of the matter in our Universe [1], likely
consisting of a new type of elementary particle [2, 3]. The
most often adopted paradigm for the production of such
particles is via freeze-out from the primordial plasma of
standard model (SM) particles [4]. This roughly requires
weak-scale couplings for DM masses at the electroweak
scale — which has been argued to be an intriguing coinci-
dence in view of proposed solutions to the hierarchy prob-
lem of the SM [5] — but the same mechanism also works
for lighter DM and correspondingly weaker couplings [6].
The formalism to calculate the thermal relic abundance
in these scenarios [7, 8] is well established and successfully
used in a plethora of applications, e.g. for benchmarking
the reach of experimental searches for non-gravitational
DM interactions [1, 9-13]. Based on this standard pre-
scription, several public numerical codes [14-17] provide
precision calculations of the DM abundance, matching
the percent level observational accuracy.

More recently, the focus has shifted to models where
DM couples much more strongly to particles in a ‘se-
cluded’ dark sector than to any of the SM particles [18—
22].  This development is partially motivated by the
fact that more traditional DM candidates are increas-
ingly pressured by the absence of undisputed signals in
direct searches as well as at colliders [23-25], but also
from a theoretical perspective there is no fundamental
argument why DM — or other new elementary particles
— should be charged under the SM gauge group. Re-
markably, thermal freeze-out works equally well also in
these models, providing a compelling potential explana-
tion for the observed DM abundance. As a consequence,
couplings needed to achieve this goal are often either im-
plicitly fixed or explicitly targeted in various searches for
hidden sector particles [26-33].

Despite this development, relic density calculations in
dark sector models have not yet reached the same level
of precision as for freeze-out scenarios in the visible sec-

tor, although a number of interesting effects which pos-
sibly impact the dark matter abundance have been iden-
tified [19, 34-36]. In this work we update previous treat-
ments by self-consistently taking into account all relevant
effects, including some that have so far been neglected.
We present highly accurate results for the annihilation
cross section required to obtain the correct relic density in
these scenarios, matching for the first time the precision
of corresponding predictions in the standard case [37].

Standard freeze-out.— We start by briefly revisiting
the canonical approach. The number density n; of dark
matter particles ¢ = x, ¥ initially in thermal equilibrium
with the SM heat bath at temperature T is described by
the Boltzmann equation [7]

dni
dt

where H is the Hubble rate,
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and Ny eq = Nygeq = gymyKa(z)/(2n°z). Here we de-
fined x = m, /T, K; are the modified Bessel functions
of order j, g, denotes the internal degrees of freedom
(d.o.f.) of x, o is the total cross-section for DM annihila-
tions, for a center-of-mass energy /s = 2m,, V'3, and vpap
is the velocity of one of the DM particles in the rest-frame
of the other.

Let us stress two main assumptions that enter in this
widely used form of the Boltzmann equation. The first
is that the DM particles have a phase-space distribu-
tion f; o< fy,eq, With the equilibrium distribution being
well approximated by fy eq = exp(—Ey/T) for my > T,
i.e. that kinetic decoupling [38] happens much later than
chemical decoupling and freeze-out (see Ref. [39] for a
treatment of early kinetic decoupling). The second as-
sumption is that the annihilation products indeed con-
stitute a heat bath, in the sense that none of them builds

+3Hn; = (0v) (Ny,eqMx,eq — MxTx) 5 (1)

(ov) = /lozéavlab , (2)
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FIG. 1. The value of a constant thermally averaged anni-
hilation rate, (ov), resulting in a relic density of Majorana
(orange) or Dirac (blue) DM particles matching the observed
cosmological DM abundance. Solid lines show the case of DM
in equilibrium with the SM until freeze-out (shaded areas in-
dicate the effect of varying Qpuh?® within 30 [1]). Dashed
(dotted lines) show the case of DM in equilibrium with a hid-
den sector containing gs = 1 (gs = 5) light scalar degrees of
freedom (with ps = 0), which decoupled from the standard
model at T' >» max[m,,m:]. See Appendix A for correspond-
ing results for p-wave annihilation.

up significant chemical potentials. As we will see shortly,
both assumptions can be violated in decoupled sectors.

Before doing so, let us first solve Eq. (1) in the stan-
dard scenario. In Fig. 1 we indicate with solid lines the
value of (ov) (assuming a constant value of this quan-
tity around chemical decoupling) that is needed to ob-
tain a relic density matching the observed cosmological
DM abundance of Qpyh? = 0.120 [1]. The orange solid
lines show the case of Majorana DM (with g, = 2 and
Q, = Qg = Qpwm), updating the conventionally quoted
‘thermal relic cross section’ in Ref. [37] with a more re-
cent measurement of Qpy and recent lattice QCD results
for the evolution of d.o.f. in the early universe [40] (as im-
plemented in DarkSUSY [14]). For comparison, the blue
lines indicate the slightly less standard case of Dirac DM
(with g, = gy = 2 and Q, = Qg = Qpwm/2) to stress
the not typically appreciated fact that the required value
of {ov) is not exactly twice as large as in the Majorana
case.

A secluded dark sector.— The idea [18-22, 26] that
DM could be interacting only relatively weakly with the
SM, but much more strongly with itself or other particles
in a secluded dark sector (DS), has received significant
attention [29, 35, 41-46]. In such scenarios, both sectors
may well have been in thermal contact at high temper-

ature, until they decoupled at a temperature Tyec.. This
results in a non-trivial evolution of the temperature ratio
&€ =T,/T. Aslong as the DM interactions with at least
one massless DS species S are efficient enough to estab-
lish thermal equilibrium, entropy is conserved separately
in the two sectors and the DS temperature evolves with
the effective number of relativistic entropy d.o.f., ng’DS,
as
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For a precise description of the freeze-out process of x
in such a secluded DS the standard Boltzmann equation
(1) then needs to be adapted at three places: both i)
the equilibrium density neq and #) the thermal average
(ov) must be evaluated at T, rather than the SM tem-
perature T, and 4i¢) the Hubble rate must be increased
to take into account the additional energy content resid-
ing in the DS. During radiation domination, in partic-
ular, this means that H? = (87°/90)ges Mp,°T?, where
et = gsm + Oy 00 + % 25 g7)E* and the sum tuns over
the internal d.o.f. of all fully relativistic DS bosons (b)
and fermions (f) (in our numerical treatment, we always
use the full expression for gesr). To the best of our knowl-
edge, precision calculations of the relic density in a de-
coupled DS that fully and self-consistently implement all
three effects have not been performed previously. Here
we adapt the relic density routines of DarkSUSY to allow
calculations of this kind for a large range of DS models.

Model setup.— Let us for concreteness consider a
setup where the DS consists of massive fermions y, act-
ing as DM, and massless scalars S with pg = 0, con-
stituting the heat bath. We assume that the DS de-
coupled from the SM at high temperatures, such that
92 (Taee) = 106.75 and gP%(Taec) = gs + (7/4)Ny in
Eq. (3), where N, = 1 (N, = 2) for Majorana (Dirac)
DM. In Fig. 1 we show the ‘thermal’ annihilation cross
section for xx — SS in such a scenario, for different val-
ues of gg. The fact that this differs significantly from the
standard case, in comparison to the observational uncer-
tainty in the cosmological DM abundance also indicated
in the figure, constitutes our first main result. It is worth
stressing that this updated relic density calculation di-
rectly applies to a large number of DS models where an-
nihilation proceeds via an s-wave [20, 26, 29, 41, 47-50]
(see Appendix A for corresponding results in the case of
p-wave annihilation).

To understand the behaviour of the curves shown in
Fig. 1, let us first recall that we consider here a constant
{ov) — which by definition is not affected by a change in
£. For gg = 1, furthermore, the change in geg and hence
the Hubble rate has only a subdominant effect (but be-
comes somewhat more important for gg = 5). The main
effect visible in the figure thus originates from changing
Ny eq(@) = Ny eq(z/€). For large DM masses and hence




freeze-out temperatures, in particular, the heating in the
DS due to xx — SS9, c.f. the nominator of Eq. (3), is
more efficient than the heating in the SM, leading to
& > 1 around freeze-out. This leads to a larger DM
density, at a given SM temperature T, which has to be
compensated for by a larger (ov) to match the observed
relic abundance. Below DM masses of a few GeV, the
drop in the SM d.o.f. until freeze-out is more significant
than that in the DS (especially during the QCD phase
transition), leading to & < 1 and hence the need for a
smaller value of {ov) compared to the standard case rep-
resented by the solid lines. We note that the value of £
just before the onset of BBN, on the other hand, does
not depend on m, for the range of DM masses plotted
here. Expressing the final energy density of S in terms of
an effective number of relativistic neutrino species, this
corresponds to ANeg = 0.104(0.202) for Majorana DM
with gg = 1(5), and ANgg = 0.201(0.275) for Dirac DM
— which is below current CMB bounds on this quantity,
ANr < 0.29 (95% C.L.) [1], but within reach of next-
generation CMB experiments [51, 52].

Chemical potentials during freeze-out.— The above
treatment still assumes that the annihilation products
constitute or are in equilibrium with a heat bath during
the entire chemical decoupling process. This is consis-
tent for massless DS particles S, which retain a vanishing
chemical potential during freeze-out due to unavoidable
number changing interactions such as xx — xx5. For
a fully decoupled DS only containing massive degrees of
freedom, however, such interactions are less efficient and
may already decouple before freeze-out, implying that all
particles will generally build up chemical potentials (and
not only the DM particles, as in the standard scenario).
In order to demonstrate how to correctly describe the
evolution of the DS in this more general case, we will
consider the same setup as before but mostly focus on
DS particles x and S that are close in mass.

As long as all DS particles remain in kinetic equilib-
rium, in particular, their phase-space densities are given
by Fermi-Dirac or Bose-Einstein distributions with DS
temperature T, and chemical potentials p, = py and
s, respectively. To determine the temporal evolution
of these three parameters, we consider the Boltzmann
equations for the number densities,

fi +3Hn; = €/Ny, nfg+3Hnsg=—¢, (4)

where the integrated collision operator € is specified in
Appendix B, as well as energy conservation in the DS
during freeze-out, V ﬂT]gg = 0. The latter takes the form

pps +3H [pps + Pps] =0, (5)

with total energy density pps = N, p, + ps and pressure
Ppg = N, P+ Ps. Note that Egs. (4) and (5) generally
do not imply entropy conservation. However, we find
that the respective change in entropy is negligible for
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FIG. 2. Evolution of particle abundances Y, for x (solid lines)
and S (dashed lines), as a function of z/¢§ = m, /T, for dif-
ferent mass ratios 6m/my = (my —ms)/my = (1,0.6,1072).
For comparison, dotted lines indicate how the DM abundance
Y, would evolve when instead using the standard Boltzmann
equation (1) assuming thermal equilibrium of S with an addi-
tional massless DS heat bath particle. All curves are based on
the same ‘MX;(_@S G- const., adjusted to give the correct
relic density in the limit mgs — 0.

all practical calculations we consider. The final step is
to note that, since x and S stay in kinetic equilibrium
for all relevant temperatures, all cosmological quantities
Q € {na,pa,Pala € {x,X,S}} can be interpreted as
functions of Ty, p, and pg. Consequently, the relation

s 0Q . 0Q oQ
Q= ot Ty + NN (6)
can be used to transform Egs. (4) and (5) into a set of
differential equations for Ty, p, and pg, which we solve
numerically (with g, = py = pg as initial condition).

In Fig. 2 we demonstrate the resulting evolution of the
particle abundances Y = n/s, with s the total entropy
density in the SM and DS. For definiteness we choose a
Majorana DM particle with m, = 100GeV and a con-
stant annihilation amplitude that would result in the cor-
rect relic density in the standard treatment (translating
to a value of (ov)7, 0 about 10% larger than the orange
lines in Fig. 1). The red curves show the case of mg =0
for which, following the discussion above, we explicitly
set pg = 0. The resulting evolution of x (red solid line)
therefore coincides exactly with the result of the standard
treatment of solving Eq. (1). We note that the increase
in ¥Yg around T, ~ m,, is due to the Boltzmann suppres-
sion of x, analogous to the increase in n.,/s during ete”
annihilation in the SM.

For more degenerate masses (green and purple lines in
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FIG. 3. The required value of the thermally averaged annihi-
lation rate, (ov)r, -0, that results in a relic density of Majo-

rana DM particles with a constant ‘MXX—)SS ? matching the
observed DM abundance. Colors correspond to the same mass
ratios as in Fig. 2, while the line style distinguishes whether S
decays into dark radiation (solid, independent of lifetime 7s)
or into SM states (dash-dotted, for 75 = 18 x (1 GeV /mg)?).

Fig. 2), we allow all chemical potentials to evolve freely.
This leads to a rise in pg, compensating the would-be
Boltzmann suppression of S, and an asymptotic abun-
dance Y;nal ~~ Yénltlal 4 Y)inltlal because Y)énltlal > Y)?nal.
The greater number of S particles then delays the Boltz-
mann suppression of n, from around T, ~ m, to when
the mean kinetic energy of S drops below dm, roughly
around T}, ~ dm. For reference we also show an applica-
tion of Eq. (1) (dotted lines) assuming thermal equilib-
rium of S with additional massless DS heat bath particles
such that gg = 0 and Ty, o a~! with the scale factor a.
Comparing the purple lines (§m/m,, = 1072), e.g., Boltz-
mann suppression of x for the solid line occurs at temper-
atures T, around two orders of magnitude smaller than
for the dotted line, or a one order of magnitude larger
(T, < a2 at Ty, < mg for the solid line). Approximat-
ing the annihilation rate by (UU)n?( o a~ %, whereas the
dilution by cosmic expansion is 3Hn, a~®, this im-
plies that freeze-out happens when x is less Boltzmann-
suppressed and Y, is enhanced by ~ a, i.e. around one
order of magnitude. In general, the correct treatment
of the chemical potentials thus leads to an enhanced DM
abundance compared to the ‘nalve’ assumption of pg =0
and T, o a~'. Comparing instead to the mg = 0 case,
c.f. the standard situation depicted in Fig. 1, Yf“al first
decreases up to a mass ratio of mg/m, = 0.4 (green
lines), then increases again with S and x becoming more
and more degenerate.

For S close in mass to x, the final DM relic abun-

dance will not only depend on the decoupling process
but also on how S decays after freeze-out. If S was sta-
ble, in particular, it would simply contribute to the to-
tal DM density, by far overshooting the observed value
(unless allowing for sufficiently small temperature ratios
&1 00 € 1, thus relaxing our assumption of initial ther-
mal contact between SM and DS). In Fig. 3 we explore
two concrete decay scenarios, by showing the ‘thermal’
annihilation cross section for the same mass ratios as dis-
cussed in Fig. 2. The first scenario is S decaying to ef-
fectively massless DS states, or dark radiation (DR), and
indicated by solid lines. The additional effective rela-
tivistic d.o.f. resulting from the decay of .S will in general
depend on the lifetime 75, because the energy densities
of matter and radiation red-shift differently. As already
for mg = 0 one has AN = 0.104 (see above), the case
mg ~ My is generally in conflict with the CMB limit
even if the decay happens shortly after freeze-out. The
second example (dash-dotted lines) considers S decays to
SM states. In this case, the resulting entropy injection
into the SM plasma will lead to a dilution of DM, low-
ering the required DM annihilation cross section. This
effect has recently been argued to allow for DM masses
above the naive unitarity limit [36, 53, 54]. Note that
the lifetime 7 = 1s x (1 GeV/mg)? chosen here for il-
lustration is expected to be in conflict with observations
of primordial element abundances for 7 > 0.1s [55], i.e.
mg < 3GeV.

To summarize, the solid lines in Fig. 3 show the re-
quired DM annihilation cross section to obtain the ob-
served DM abundance assuming S decays without in-
jecting entropy in the SM and thus diluting the DM
abundance. These therefore provide an upper limit to
scenarios where S decays into the SM after DM freeze-
out, as exemplary illustrated by the dash-dotted lines. It
is evident that the required DM annihilation cross sec-
tion can be very different from the canonical value shown
in Fig. 1, in particular for small mass differences. In
the extreme case of degenerate masses, mg = m,, 1o
Boltzmann suppression of y can occur — independently
of the DM annihilation cross section — implying that the
observed DM abundance can only be achieved for suffi-
ciently small temperature ratios £7_,o <€ 1 as discussed
above for a stable S.

Discussion.— For the choice of parameters discussed
above we explicitly checked, c.f. Appendix B, that the as-
sumption of kinetic equilibrium is always satisfied during
the freeze-out process, justifying our ansatz for the phase-
space distributions f,. Let us stress that this is particu-

1 This is implemented by adding —ng /g to the r.h.s. of Eq. (4) for
ng, —msngs/7s to the r.h.s. of Eq. (5), and an additional energy
density in dark radiation ppr + 4Hppr = mgng/7s for decays
in effectively massless DS states, or psm + 3H(psm + Psm) =
mgng/Ts for decays into SM particles.



larly important for small mass splittings, where pg ~ mg
makes it mandatory to include the full quantum statis-
tics for all particles. The commonly used assumption of
a Maxwell-Boltzmann distribution is, in other words, no
longer justified and leads to quantitatively wrong results
in the relic density calculation.

So far we have focussed on a fully secluded DS, in which
case the most prominent observables to test such models
are OQpy and ANgg. It is however worth mentioning that
in many models there are additional tiny couplings to the
SM that would allow further experimental signatures. A
setup where hidden sector freeze-out can naturally oc-
cur while still allowing for sufficiently large couplings to
the SM to be probed by particle physics experiments,
e.g., are scalar or pseudoscalar mediators with Yukawa-
like coupling structure [30, 32, 33, 56-58]. Also indirect
DM searches for secluded dark sectors [59] provide a po-
tentially promising avenue, in particular for the strongly
enhanced annihilation rates necessary to accommodate
DM degenerate in mass with its annihilation products.

Conclusions.— In this work we have presented a
framework for precision calculations of DM freeze-out
in a secluded sector, matching the observational accu-
racy on the one hand, and the increasing demand for
consistent interpretations of phenomenological dark sec-
tor studies on the other hand. We have provided new
benchmark ‘thermal’ annihilation cross sections for rel-
ativistic heat bath particles, and demonstrated that the
difference to the standard treatment can be even larger
for non-relativistic DM annihilation products. The lat-
ter case is intrinsically strongly model-dependent, and
will be studied in more detail elsewhere. Further inter-
esting extensions, not the least in view of the significant
model-building activity in these areas, would be to gen-
eralise the precision relic calculations presented here to
models where the DM particles in the hidden sector do
not obey a Z symmetry [60-62], are asymmetric [63]
or have a relic abundance set by freeze-in rather than
freeze-out [64, 65].

Acknowledgements.— This work is supported by the
ERC Starting Grant ‘NewAve’ (638528) as well as by
the Deutsche Forschungsgemeinschaft under Germany’s
Excellence Strategy — EXC 2121 ‘Quantum Universe’ —
390833306.

b [107% cm? /s

107¢ 10° 10 10% 10% 10* 10°

FIG. 4. Same as Fig. 1 in the main text, but for p-wave
annihilation with vy, = bod,,.

A. DM annihilation via p-wave

In the case of s-wave annihilation to massless final
states, the velocity-weighted annihilation cross section is
constant in the limit of small DM velocities, resulting in
(ov) = ovap. This simplified ansatz for (ov) (neglecting
higher-order contributions in v, following common prac-
tice) has been presented in Fig. 1 in the main text, both
for DM annihilating to SM particles and for situations
in which the relic abundance is set via freeze-out in a
hidden sector.

Here we complement this by considering instead the
case of p-wave annihilation, which also has been fre-
quently considered for DS freeze-out production of
DM [29, 30, 32, 49, 56-58]. To describe such models, we
will again take a simplified ansatz for the cross section
by only keeping the leading term in the DM velocities,

OUVlab = bvlzab ) (7)

where we assume b to be constant. For the ther-
mally averaged cross section entering in the Boltz-
mann equation, Eq. (1), this implies {(ov) = b X
[6(z/€) 1 —27(x/€) 2 + ...]. The value of b resulting in
the correct DM relic abundance in this case is shown in
Fig. 4, for the same choice of DM models (Dirac and Ma-
jorana fermions, respectively) and heat bath components
as in Fig. 1 in the main text.

In comparison, the main differences in these figures
are that i) the value of b resulting in the correct relic
density is about one order of magnitude larger than the
value of (ov) required in the case of s-wave annihilation
and that #) this ‘thermal’ value of b rises faster with
m, than its s-wave counterpart. Both of this can be



traced back to the fact that also for p-wave annihilation
it is (ow) around chemical decoupling, and not b, that
sets the relic density. In the SM case, e.g., b/{ov) =
Zcq/6, where z.q depends logarithmically on the DM
mass and rises from z.q ~ 18.8 (for m, = 100MeV)
to xeq ~ 31.6 (for m, = 100TeV). The above estimate
should be corrected by another factor of about 2 be-
cause decoupling does not happen instantaneously, and
JdT (ov)p~vave/ [dT(ov)* "¢ ~ 1/2 (as first stressed
in Ref. [66]). The same general trend, finally, is also vis-
ible for annihilations in the hidden sector, with £ # 1.
Compared to Fig. 1, furthermore, the difference between
SM and DS results is somewhat larger because £ enters
directly in {(ov).

B. Collision term including chemical potential

For general two-body annihilation processes xx <>
SS’, and assuming CP-invariance, the integrated colli-
sion operator from Eq. (4) in the main text takes the
form

€ =22 [ (2m)5(p + i~ ps ~ p )My
X [fsfsr(1 = fx) (1 = fx) = Fefs(L+ fs)(1 + fs)]
X dHXdHansdHS/ s (8)

where dII, = dspa/(27r)32Ea and [Myyss/|? is the
squared matrix element, averaged (summed) over the
spins of all initial (final) state particles. We as-
sume all involved particles to be in kinetic equilibrium,
i.e. the phase-space distributions take the form f, =
1/[eFa=ra)/T +1], with a € {x, X, 5,5’} and the — (+)
sign is used for bosons (fermions). In the special case of a
constant matrix element — which is justified for contact-
like interactions and which we adopt as benchmark sce-
nario in the main text — Eq. (8) can be simplified to

9X|MXXHSS| / / /
PP K dcos0dE, dE; ,

C5120N Y S Sy S
9)

Moreover,
K=a.(1-f)0-f) = fufx B+2a+a), (10)
with
4m%
B = 1-— m ) (11)
T B /T _ o(B'—p'B+2us)/(2Ty)
o = 7); IOg E/ ’ / 12)
p e /Tx — e(E +p'B+2ps)/(2Ty)
2
Oy = b+ 2a (13)

e(B'=2ps)/Tx — 1

where p' = |\ + x| = (P} + P2 + 2pypy cos 0)'/2 and
E' = E, + Ex.

For highly non-relativistic DM, the annihilation cross
section for a constant matrix element becomes indepen-
dent of the center-of-mass energy, and hence ouv, =~
(ov). In this limit, annihilation cross section and am-
plitude are related as

167Tm?<

———————(0xx—ssV)1, >0 (14)
1 —m?%/m2
\/ 5/My

In the simplest models, the same constant matrix ele-
ment also describes the scattering process xS <+ xS, in
which case the above expression provides a convenient
means of estimating the time of kinetic decoupling for a
given value of (ov). For m, ~ mg, e.g., this happens
when the scattering rate falls behind the Hubble rate,
ng(0ysoysv) ~ H, while for m, > mg it is instead the
(smaller) momentum exchange rate v that provides the
relevant scale (see, e.g., Refs. [38, 39]). Using this condi-
tion, we explicitly checked that S and y remain in kinetic
equilibrium during the freeze-out process.

|m><>2—>SS|2 =
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