
EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

Submitted to: Phys. Rev. Lett. CERN-EP-2020-030

8th April 2020

Measurement of the Lund jet plane using charged
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The prevalence of hadronic jets at the LHC requires that a deep understanding of jet formation
and structure is achieved in order to reach the highest levels of experimental and theoretical
precision. There have been many measurements of jet substructure at the LHC and previous
colliders, but the targeted observables mix physical effects from various origins. Based
on a recent proposal to factorize physical effects, this Letter presents a double-differential
cross-section measurement of the Lund jet plane using 139 fb−1 of

√
s = 13 TeV proton–proton

collision data collected with the ATLAS detector using jets with transverse momentum above
675 GeV. The measurement uses charged particles to achieve a fine angular resolution and is
corrected for acceptance and detector effects. Several parton shower Monte Carlo models are
compared with the data. No single model is found to be in agreement with the measured data
across the entire plane.

© 2020 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

ar
X

iv
:2

0
0

4
.0

3
5

4
0

v
1

  
[h

ep
-e

x
] 

 7
 A

p
r 

2
0

2
0



Jets are collimated sprays of particles resulting from high-energy quark and gluon production. The details
of the process that underlies the fragmentation of quarks and gluons with quantum chromodynamic (QCD)
charge into neutral hadrons is not fully understood. In the soft gluon (‘eikonal’) picture of jet formation, a
quark or gluon radiates a haze of relatively low energy and statistically independent gluons [1, 2]. As QCD
is nearly scale-invariant, this emission pattern is approximately uniform in the two-dimensional space
spanned by ln(1/z) and ln(1/θ), where z is the momentum fraction of the emitted gluon relative to the
primary quark or gluon core and θ is the emission opening angle. This space is called the Lund plane [3].
The Lund plane probability density can be extended to higher orders in QCD and is the basis for many
calculations of jet substructure observables [4–7].

The Lund plane is a powerful representation for providing insight into jet substructure; however, the plane
is not observable because it is built from quarks and gluons. A recent proposal [8] describes a method to
construct an observable analog of the Lund plane using jets, which captures the salient features of this
representation. Jets are formed using clustering algorithms that sequentially combine pairs of proto-jets
starting from the initial set of constituents [9]. Following the proposal, a jet’s constituents are reclustered
using the Cambridge/Aachen (C/A) algorithm [10, 11], which imposes an angle-ordered hierarchy on the
clustering history. Then, the C/A history is followed in reverse (‘declustered’), starting from the hardest
proto-jet. The Lund plane can then be approximated by using the softer (harder) proto-jet to represent
the emission (core) in the original theoretical depiction. For each proto-jet pair, at each step in the C/A
declustering sequence, an entry is made in the approximate Lund plane (henceforth, the ‘primary Lund jet
plane’ or LJP) using the observables ln (1/z) and ln (R/∆R), with

z =
pemission

T

pemission
T + pcore

T

and ∆R2
= (yemission − ycore)2 + (φemission − φcore)2,

where pT is transverse momentum,1 y is rapidity, R is the jet radius parameter, and ∆R is a measure of
angular separation. Using this approach, individual jets are represented as a set of points within the LJP.
Ensembles of jets may be studied by measuring the double-differential cross section in this space. The
substructure of emissions, which may themselves be composite objects, is not considered in this analysis.
To leading-logarithm (LL) accuracy, the average density of emissions within the LJP is expected to be
uniform [8]:

1
Njets

d2Nemissions

d ln(1/z)d ln(R/∆R) ∝ constant, (1)

where Njets is the jet multiplicity of an event. This construction of the plane is selected to separate
momentum and angular measurements, although other choices such as (ln(R/∆R), kt = z∆R) are also
valid.

The Lund plane has played a central role in state-of-the-art QCD calculations of jet substructure [12–17]
which have so far only been studied with the jet mass mjet [18, 19] (which is itself a diagonal line in the
LJP: ln 1/z ∼ ln m2

jet/p2
T − 2 ln R/∆R) and groomed jet radius [20, 21]. The number of emissions within

regions of the LJP is also calculable within QCD and provides optimal discrimination between quark and
gluon jets [5].

This Letter presents a double-differential cross-section measurement of the LJP which is corrected for
detector effects, using an integrated luminosity of 139 fb−1 of

√
s = 13 TeV proton–proton (pp) collision

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector
and the z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC ring, and the y-axis points
upward. Cylindrical coordinates (r , φ) are used in the transverse plane, φ being the azimuthal angle around the beam pipe. The
pseudorapidity is defined in terms of the polar angle ϑ as η = − ln tan(ϑ/2).
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data collected by the ATLAS detector. A unique feature of this measurement is that contributions from
various QCD effects such as initial-state radiation, the underlying event and multi-parton interactions,
hadronization, and perturbative emissions are well-separated in the LJP. This factorization is shown in
Figure 1(a), which qualitatively indicates the regions populated by soft vs. hard, wide-angle vs. collinear, and
perturbative vs. nonperturbative radiation. Since different regions are dominated by factorized processes,
the LJP measurement can be useful for tuning nonperturbative models and for constraining the model
parameters of advanced parton shower (PS) Monte Carlo (MC) programs [22–25].

The ATLAS detector [26–28] is a general-purpose particle detector which provides nearly 4π coverage in
solid angle. The inner tracking detector (ID) is inside a 2 T magnetic field and measures charged-particle
trajectories up to |η | = 2.5. The innermost component of the ID is a pixelated silicon detector with fine
granularity that is able to resolve ambiguities inside the dense hit environment of jet cores [29], surrounded
by silicon strip and transition radiation tracking detectors. Beyond the ID are electromagnetic and hadronic
calorimeters, from which topologically connected clusters of cells [30] are formed into jets using the
anti-kt algorithm with radius parameter R = 0.4 [31, 32]. The jet energy scale is calibrated so that, on
average, the detector-level jet energy is the same as that of the corresponding particle-level jets [33].

Events are selected using single-jet triggers [34, 35]. The leading and subleading jets are used for the
measurement and are required to satisfy p

leading
T > 675 GeV and p

leading
T < 1.5 × p

subleading
T . This jet-pT

balance requirement simplifies the interpretation of the final state in terms of a 2 → 2 scattering process.
Both jets must have |η | < 2.1 to be within the ID acceptance. About 29.5 million jets satisfy these selection
criteria.

Particle-level charged hadrons and their reconstructed tracks are used for this measurement because
individual particle trajectories can be precisely identified with the ID. As the LJP observables are
dimensionless and isospin is an approximate symmetry of the strong force, the difference between the
LJP observables constructed using all interacting particles and charged particles is small [20]. Tracks are
required to have pT > 500 MeV, and to be associated with the primary vertex with the largest sum of track
p2

T in the event [36]. Tracks within ∆R = 0.4 of the cores of selected jets are used to construct the LJP
observables by clustering them using the C/A algorithm and populating the plane by iterative declustering.
The fiducial region of the measurement spans 19 bins in ln(1/z) between ln(1/0.5) and 8.4 × ln(1/0.5),
and 13 bins in ln(R/∆R) between 0.0 and 4.33. The maximum ∆R is the jet radius and the minimum ∆R is
comparable to the pixel pitch. The maximum z is 0.5 and the minimum is 500 MeV/p

jet
T .

Samples of dijet events were simulated in order to perform the unfolding and to compare with the corrected
data. The nominal sample was simulated using Pythia 8.186 [37, 38] with the NNPDF2.3 LO [39] set of
parton distribution functions (PDF), a pT-ordered PS, Lund string hadronization [40, 41], and the A14
set of tuned parameters (tune) [42]. Additional samples were simulated by Pythia 8.230 [43] with the
NNPDF2.3 LO PDF set and the A14 tune, using either the Pythia LO matrix elements (MEs) or NLO
MEs from Powheg [44–47]; Sherpa 2.1.1 [48] with the CT10LO PDF set, a pT-ordered PS [49], an ME
with up to three partons (merged with the CKKW prescription [50]) and the AHADIC (A HADronization
model In C++) cluster-based hadronization model [51, 52]; Sherpa 2.2.5 with the CT14NNLO PDF
set [53] including 2 → 2 MEs and either the AHADIC hadronization model or the Lund string model; and
Herwig 7.1.3 [25, 54, 55] with the MMHT2014NLO PDF set [56] and either the default angle-ordered
(Ang. ord.) PS or a dipole PS and a cluster hadronization model [51]. Further details of these samples
may be found in Ref. [57]. The Pythia 8.186 and Sherpa 2.1.1 events were passed through the ATLAS
detector simulation [58] based on Geant 4 [59]. The effect of multiple pp interactions in the same and
neighboring bunch crossings (pileup) was modeled by overlaying the hard-scatter event with minimum-bias
pp collisions generated by Pythia 8 with the A3 tune [60] and the NNPDF2.3 LO PDF set. The distribution
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of pileup vertices was reweighted to match the data events, which have an average of 33.7 simultaneous
interactions per bunch-crossing.

Figures 1(b)–1(d) illustrate the kinematic domains of various physical effects in the LJP using ratios at
charged-particle level between pairs of MC simulations where one component of the simulation is varied.
Varying the PS model in Herwig 7.1.3 (Figure 1(b)) results in differences of up to 50% in the perturbative
hard and wide-angle emissions entering the lower-left region of the LJP. Changing the hadronization model
in Sherpa 2.1.1 (Figure 1(c)) causes variations up to 50% in a different region of the plane, populated by
the softer and more collinear emissions at the boundary between perturbative and nonperturbative regions.
Varying the ME from LO (Pythia 8.230) to NLO (Powheg+Pythia 8.230) (Figure 1(d)) causes small
changes of up to 10% only in the region populated by the hardest and widest-angle emissions.

Selected data are unfolded to correct for detector bias, resolution, and acceptance effects by applying iterative
Bayesian unfolding [61] with four iterations implemented in RooUnfold [62]. The MC generator used to
unfold the data is Pythia 8.186. The number of iterations was chosen to minimize the total uncertainty.
The unfolding procedure corrects the LJP constructed from detector-level objects to charged-particle level,
where jets and charged particles are defined similarly to those at detector level: jets are reconstructed using
the same anti-kt algorithm with detector-level stable (cτ > 10 mm) non-pileup particles, excluding muons
and neutrinos, as inputs. The same kinematic requirements as for detector-level jets are imposed on the
particle-level jets; charged particles with pT > 500 MeV within ∆R = 0.4 of the cores of particle-level jets
are used to populate the charged-particle-level LJP.

Emissions at detector level and charged-particle level are uniquely matched in η−φ to construct the response
matrix. The matching procedure follows the order of the C/A declustering, starting from the widest-angle
detector-level emission and iterating towards the jet core. The closest charged-particle-level match with
angular separation ∆R < 0.1 takes precedence. Unmatched emissions from tracks not due to a single
charged particle (detector level) and from nonreconstructed charged particles (charged-particle level) are
accounted for with purity and efficiency corrections. Corrections are applied before (purity) and after
(efficiency) the regularized inversion of the response matrix. Both the purity and efficiency corrections
are about 20% for wide-angle, hard emissions (the lower-left quadrant of the LJP), increasing to 80% for
the most collinear splittings and to 50% in the lowest-z bins. For matched emissions, the ln(1/z) and
ln(R/∆R) bin migrations between particle level and detector level are largely independent of each other.
Furthermore, since the differential cross section varies slowly across the LJP, the purities and efficiencies
are approximately the same across the entire LJP. The ln(R/∆R) migrations in a given ln(1/z) bin are less
than 60% for the smallest opening angles and decrease to less than 40% for the widest angles. The ln(1/z)
migrations decrease from about 50% for the softest to about 20% for the hardest emissions, with some
degradation for the softest emissions at small opening angles. Migrations for both observables are nearly
symmetric except for ln(R/∆R) > 3, where harder-to-resolve small opening angles are measured with
asymmetric resolution. In less than 10% of these cases, particle-level and detector-level emissions are
mismatched and therefore measured with the wrong ln(1/z). While the ln(R/∆R) migrations are nearly the
same when ln(1/z) migrates by one bin, the ln(1/z) migrations increase by about 30% when ln(R/∆R)
migrates by one bin.

The unfolded distribution is normalized to the number of jets that pass the event selection, rendering the
measurement insensitive to the total jet cross section. After normalization, the integral of the LJP is the
average number of emissions within the fiducial region.

Experimental systematic uncertainties are evaluated by applying variations to each source, propagating
them through the unfolding procedure, and taking the difference between the modified result and the
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nominal result. The theoretical uncertainties are due to the modeling of jet fragmentation. Different
systematic uncertainties are treated as being independent. The size of various sources of systematic
uncertainty within selected regions of the LJP is displayed in Figure 3.

Uncertainties in the jet energy scale and resolution are determined using a mixture of simulation-based and
in situ techniques [33]. These uncertainties cause the migration of jets into or out of the fiducial acceptance,
and are typically above 3% in total, reaching at most 7%. Uncertainties related to the reconstruction
of isolated tracks and tracks within dense environments are considered by modifying the measured pT

of individual tracks or removing them completely [29, 63]. These uncertainties are small, contributing
less than 0.5%. Other experimental uncertainties related to the modeling of pileup and to the stability
of the measurement across data-taking periods are less than 1% except for the most collinear splittings,
where they reach 5%. A data-driven nonclosure uncertainty is determined by unfolding the detector-level
distribution following a reweighting based on a comparison of the corresponding simulated detector-level
distribution with the data [64]. This uncertainty is less than 1% except for the most collinear splittings,
where it approaches 5%. An uncertainty for the matching procedure between emissions at detector level and
charged-particle level is determined by repeating the unfolding and iterating through the C/A declustering
sequence in reverse (from the most collinear emissions to the most wide-angled), taking the change in the
resulting unfolded data as an uncertainty. This uncertainty is less than 1% everywhere.

Theoretical uncertainties arise mainly from the accuracy of jet fragmentation modeling. Varying the jet
fragmentation modeling can impact the result through a combination of sources: the efficiency/purity
corrections, the response matrix, and the unfolding prior. These contributions are estimated by repeating
the unfolding with Sherpa 2.2.1. As the correlation between the various uncertainty sources is unknown,
an envelope of the 100% and 0% correlation hypotheses is taken as the total modeling uncertainty. The
total modeling uncertainty ranges between 5% and 20% depending on the region (larger for soft-collinear
splittings) and is the largest single source of uncertainty. Experimental uncertainties are found to be
comparable to those arising from modeling in some regions of the LJP.

The total systematic uncertainty varies across the LJP; an uncertainty between 5% and 20% is achieved.
The uncertainty is found to increase as kt = z∆R decreases: the bin with the smallest kt is also measured
least-precisely, and has a total uncertainty of about 20%.

The unfolded LJP is shown in Figure 2. A triangular region with kt & ΛQCD is populated nearly uniformly by
perturbative emissions, agreeing with the LL expectation of Eq. (1). A large number of emissions are found
at the transition to the nonperturbative regime, as αs is enhanced for small values of kt . Emissions beyond
the transition fall within the nonperturbative region of the LJP (for which kt . ΛQCD), and are suppressed.
The average number of emissions in the fiducial region is measured to be 7.34 ± 0.03 (syst.) ± 0.11 (stat.).
The uncertainty is estimated by propagating uncertainties from the measurement in an uncorrelated and
symmetrized manner. The corresponding average value for Pythia 8.230 is 7.64 emissions, and is
7.67 emissions for Powheg+Pythia 8.230. The average value for Sherpa 2.2.5 is 6.90 for AHADIC
hadronization and 7.30 for Lund string hadronization. The average value for Herwig 7 is 7.41 for the
dipole PS and 7.37 for the angle-ordered PS. While a similar bracketing of the data by Pythia and Sherpa

with AHADIC hadronization was noted in Ref. [65], the particle multiplicity inside jets has not previously
been decomposed into perturbative and nonperturbative components.

Figure 3 shows data from four selected horizontal and vertical slices through the LJP, along with a
breakdown of the systematic uncertainties. The data are compared with predictions from several MC
generators. While no prediction describes the data accurately in all regions, the Herwig 7.1.3 angle-ordered
prediction provides the best description across most of the plane. The differences between the PS algorithms
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implemented in Herwig 7.1.3 are notable at large values of kt = z∆R, where the two models disagree
most significantly for hard emissions reconstructed at the widest angles (Figures 3(a) and 3(b)). The
Powheg+Pythia and Pythia predictions only differ significantly for hard and wide-angle perturbative
emissions, where ME corrections are relevant. The hadronization algorithms implemented in Sherpa 2.2.5
are most different at small values of kt , particularly for soft-collinear splittings at the transition between
perturbative and nonperturbative regions of the plane. The ability of the LJP to isolate physical effects is
highlighted in Figure 3(b), where as emissions change from wide-angled to more collinear, the distribution
passes through a region sensitive to the choice of PS model, and then enters a region which is instead
sensitive to the hadronization model. Figures 3(c) and 3(d) show regions dominated by nonperturbative
effects. The Pythia samples describe the data in the collinear region of the jet core well, but all simulations
fail to describe the softest, widest-angle emissions, which are characteristic of contributions from the
underlying event. The Pythia 8.186 and Sherpa 2.2.1 predictions are not shown, but are consistent
with the Pythia 8.230 and Sherpa 2.2.5 (Lund string hadronization) predictions, respectively. These
observations indicate that the LJP may provide useful input to both perturbative and nonperturbative model
development and tuning.

In summary, a measurement of the jet substructure based on the Lund jet plane is reported. The analysis
dataset corresponds to an integrated luminosity of 139 fb−1 of 13 TeV LHC proton–proton collisions
recorded by the ATLAS detector. The measurement is performed on an inclusive selection of dijet events,
with a leading jet pT > 675 GeV. Selected jets are reconstructed from topological clusters using the anti-kt
algorithm with R = 0.4, and their associated charged-particle tracks are used to construct the observables
of interest. The data are presented as an unfolded double-differential cross section, and compared with
several Monte Carlo generators with various degrees of modeling accuracy. This measurement illustrates
the ability of the Lund jet plane to isolate various physical effects, and will provide useful input to both
perturbative and nonperturbative model development and tuning.
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Figure 4: The LJP reconstructed using jets in 13 TeV pp collisions, as simulated by the Pythia 8.230 MC generator.
The inner set of axes indicate the coordinates of the LJP itself, while the outer set indicate corresponding values of z

and ∆R.
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Figure 5: The LJP reconstructed using jets in 13 TeV pp collisions, as simulated by the Powheg +Pythia 8.230 MC
generator. The inner set of axes indicate the coordinates of the LJP itself, while the outer set indicate corresponding
values of z and ∆R.
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Figure 7: The LJP reconstructed using jets in 13 TeV pp collisions, as simulated by the Sherpa 2.2.5 MC generator
with a Lund string fragmentation model. The inner set of axes indicate the coordinates of the LJP itself, while the
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Figure 9: The LJP reconstructed using jets in 13 TeV pp collisions, as simulated by the Herwig v7.1.3 MC generator
with an angular parton shower. The inner set of axes indicate the coordinates of the LJP itself, while the outer set
indicate corresponding values of z and ∆R.
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Figure 10: The LJP measured using jets in 13 TeV pp collision data, corrected to particle level. The inner set of
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figure is the same as Figure 2, but reproduced with a logarithmic scale.
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and pile-up) as a function of the LJP.
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