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1 αQED, eff(s) for precision physics at the FCC-ee/ILC
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Discovering “Physics behind precision” at future linear or circular colliders (ILC/FCC
projects) requires improved SM predictions based on more precise input parameters. I will
review the role αQED, eff at future collider energies and report on possible progress based on
results from low energy machines.

1.1 α(M2

Z
) in precision physics (precision physics limitations)

Uncertainties of hadronic contributions to the effective fine structure constant α ≡ αQED are a
problem for electroweak (EW) precision physics. Presently, we have α,Gµ,MZ as the most pre-
cise input parameters, which together with the top Yukawa yt and the Higgs self-coupling λ and
the strong interaction coupling αs allow us to make precision predictions for the particle reaction
cross sections encompassed by the Standard Model (SM). The cross-section data unfolded form
detector and photon radiation resolution effects often are conveniently representable in terms
of so-called pseudo-observables like sin2 Θf , vf , af ,MW ,ΓZ ,ΓW , · · · as illustrated in Fig. B.1.
Because of the large 6% relative correction between α in the classical limit and the effective
value α(M2

Z) at the Z mass scale, where 50% of the shift is due to non-perturbative hadronic
effects, one is loosing about a factor of five orders of magnitude in precision. Nevertheless, for
vector-boson Z and W , top-quark and Higgs-boson precision physics possible at future e+e−

colliders, the best effective input parameters are given by α(MZ), Gµ,MZ . The effective α(s)
at a process scale

√
s is given in terms of the photon vacuum polarization (VP) self-energy

correction ∆α(s) by

α(s) =
α

1 − ∆α(s)
; ∆α(s) = ∆αlep(s) + ∆α

(5)
had(s) + ∆αtop(s) . (1.1)

To be included are the perturbative lepton and top-quark contributions in addition to the
non-perturbative hadronic VP shift ∆α

(5)
had(s) from the five light quarks and the hadrons they

form.

The present accuracies of the corresponding SM input parameter are the following:
δα
α

∼ 3.6 × 10−9 ,

δGµ

Gµ
∼ 8.6 × 10−6 ,

δMZ

MZ
∼ 2.4 × 10−5 ,

δα(MZ)
α(MZ)

∼ 0.9 ÷ 1.6 × 10−4 (present : lost 105 in precision!) ,

δα(MZ)
α(MZ)

∼ 5 × 10−5 (FCC − ee/ILC requirement) .

(1.2)

We further note that δMW

MW
∼ 1.5 × 10−4 , δMH

MH
∼ 1.3 × 10−3 , δMt

Mt
∼ 2.3 × 10−3 , at present.

Evidently, α(MZ) is the least precise among the basic input parameters α(MZ), Gµ,MZ and

9



Fred Jegerlehner

requires a major effort of improvement. As an example, one of the most precisely measured
derived observable, the leptonic weak mixing parameter sin2 Θℓ eff = (1 − vℓ/aℓ)/4 = 0.23148 ±
0.00017 and also the related W mass MW = 80.379 ± 0.012 GeV are affected by the present
hadronic error δ∆α(MZ) = 0.00020 in predictions by δ sin2 Θℓ eff = 0.00007 and δMW/MW ∼
4.3 × 10−5, respectively.

Here one has to keep in mind that besides ∆α there is a second substantial leading 1-
loop correction, which enters the neutral to charged current effective Fermi-couplings ratio

ρ = GNC(0)/GCC(0) = 1 + ∆ρ , where ∆ρ =
3
√

2M2
t Gµ

16π2 is quadratic in the top-quark mass. The
mentioned δMt

Mt
uncertainty affects the MW and sin2 Θℓ eff predictions as given by

δMW

MW

∼ M2
W/(2M

2
W −M2

Z) · ∆ρ
δMt

Mt

∼ 1.3 × 10−2 δMt

Mt

≃ 3.0 × 10−5 , (1.3)

δ sin2 Θf

sin2 Θf

∼ 2 cos2 Θf

cos2 Θf − sin2 Θf

∆ρ
δMt

Mt

∼ 2.7 × 10−2 δMt

Mt

≃ 6.2 × 10−5 , (1.4)

which are comparable to the present uncertainties from δ∆α. Thus an inprovement of δMt by a
factor 5 looks to be as important as an improvement of α(MZ). We remind that the dependence
on MH is very much weaker because of the custodial symmetry which implies the absence of
M2

H corrections such that only relatively weak logHM effects are remaining.

The input-parameter uncertainties affect most future precision tests and may obscure new
physics searches! In order to reduce hadronic uncertainties for perturbative QCD (pQCD) con-
tributions, last but not least, it is very crucial also to improve the precision of QCD parameters
αs, mc, mb, mt which is a big challenge also for lattice-QCD.

The relevance of α(M2

Z
)

Understanding precisely even the simplest four fermion, vector boson and Higgs boson produc-
tion and decay processes, requires very precise input parameters. Unlike in QED and QCD
in the SM, a Spontaneously Broken non-Abelian Gauge Theory (SBGT), there are intricate
parameter inter-dependences, all masses are related to couplings, only 6 quantities (besides
f 6= t fermion masses and mixing parameters) α, Gµ, MZ in addition to the QCD coupling
αs, the top-quark Yukawa coupling yt and the Higgs boson self-coupling λH are independent.
The effective α(M2

Z) exhibits large hadronic correction that affect prediction like versions of
the weak mixing parameter via

sin2 Θi cos2 Θi =
π α√

2Gµ M2
Z

1

1 − ∆ri

; ∆ri = ∆ri(α,Gµ,MZ ,mH ,mf 6=t,mt) , (1.5)

with quantum corrections from gauge boson self-energies, vertex- and box- corrections. ∆ri

depends on the definition of sin2 Θi. The various definitions coincide at tree level and hence
only differ by quantum effects. From the weak gauge boson masses, the electroweak gauge
couplings and the neutral current couplings of the charged fermions we obtain

sin2 ΘW = 1 − M2
W

M2
Z

, (1.6)

sin2 Θg = e2/g2 =
πα√

2Gµ M2
W

, (1.7)

sin2 Θf =
1

4|Qf |

(

1 − vf

af

)

, f 6= ν , (1.8)
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SU(2)L ⊗U(1)Y
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sin
2
ΘW
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Fig. B.1: Many precisely measurable pseudo-observables associated with scattering-,
production- and decay processes are interrelated and predictable in terms of a few indepen-
dent input parameters.

for the most important cases and the general form of ∆ri reads

∆ri = ∆α− fi(sin
2 Θi) ∆ρ+ ∆ri reminder , (1.9)

with a universal term ∆α, which affects the predictions of MW , ALR, Af
F B, Γf , etc. The

leading corrections are ∆α(M2
Z) = Π′

γ(0) − ReΠ′
γ(M2

Z) from the running fine structure constant

and ∆ρ = ΠZ(0)
M2

Z

− ΠW (0)
M2

W

+ 2 sin ΘW

cos ΘW

ΠγZ(0)

M2
Z

, which is proportional to Gµ M
2
t and therefore large,

dominated by the heavy top-quark mass effect, respectively, by the large top Yukawa coupling.

The uncertainty δ∆α implies uncertainties δMW , δ sin2 Θi given by

δMW

MW

∼ 1

2

sin2 ΘW

cos2 ΘW − sin2 ΘW

δ∆α ∼ 0.23 δ∆α , (1.10)

δ sin2 Θf

sin2 Θf

∼ cos2 Θf

cos2 Θf − sin2 Θf

δ∆α ∼ 1.54 δ∆α . (1.11)

Also affected are the important relationships between couplings and masses like

λ = 3
√

2Gµ M
2
H (1 + δH(α, · · · )) ; y2

t = 2
√

2Gµ M
2
t (1 + δt(α, · · · ) , (1.12)

which by now offer the only way to determine λ and yt via the experimentally accessible masses
MH and Mt. The direct measurement of λ and yt likely will be possible only at future lepton
colliders like the FCC-ee.

The parameter relationships between very precisely measurable quantities provide strin-
gent precision tests and at high enough precision would reveal the physics missing within the

SM. Presently, the non-perturbative hadronic contribution ∆α
(5)
had(M2

Z) is limiting the preci-
sion predictions. Concerning the relevance of quantum corrections and their precision, one
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should keep in mind that a 30 SD disagreement between some SM prediction and experiment
is obtained when subleading SM corrections are neglected, and only the leading corrections
∆α(M2

Z) and ∆ρ in (1.9) are accounted for. Calculate for example the W and Z mass from α(MZ), Gµ

and sin2 Θℓ eff : first sin2 ΘW = 1 − M2
W /M2

Z is related to sin2 θℓ,eff(MZ) via

sin2 θℓ,eff(MZ) =

(

1 +
cos2 ΘW

sin2 ΘW

∆ρ

)

sin2 ΘW ,

where the leading top quark mass square correction is

∆ρ =
3 M2

t

√
2Gµ

16 π2
; Mt = 173 ± 0.4 GeV

The iterative solution with input sin2 θℓ,eff(MZ) = 0.23148 is sin2 ΘW = 0.22426 while 1 − M2
W /M2

Z = 0.22263
is what one gets using PDG

M exp
W = 80.379 ± 0.012 GeV ; M exp

Z = 91.1876 ± 0.0021 GeV .

Predicting then the masses we have

MW =
A0

sin2 ΘW

; A0 =

√

πα√
2Gµ

; MZ =
MW

cos ΘW

where, including photon VP correction α−1(MZ) = 128.953 ± 0.016. For the W, Z mass we then get

M the
W = 81.1636 ± 0.0346 GeV ; M the

Z = 92.1484 ± 0.0264 GeV .

This gives the following SD values:
W : 23 σ ; Z : 36 σ

Errors from sin2 θ, α(Mz), Mt and the experimental ones are added in quadrature. The result is of course

scheme-dependent, but illustrates well the sensitivity to taking into account the proper radiative corrections.

Actually, including full one-loop and leading two-loop corrections reduces the disagreement below the 2 σ level.

1.2 The ultimate motivation for high precision SM parameters

After the ATLAS and CMS Higgs discovery at the LHC, the Higgs vacuum stability issue is
one of the most interesting to be clarified at future e+e− facilities. Much more surprising than
the discovery of its true existence is the fact that the Higgs boson turned out to exhibit a
mass very close to what has been expected from vacuum stability extending up to the Planck
scale ΛPl (see Fig. B.2). It looks to be a very tricky conspiracy with other couplings to reach
this “purpose”. Related is the question of whether the SM allows us to extrapolate it up to
Planck scale. So, the central issue for the future is the very delicate “acting together” between
SM couplings, which make the precision determination of SM parameters more important than
ever. Therefore, higher precise SM parameters g′, g, gs, yt, λ are mandatory for progress in this
direction. Actually, the vacuum stability in controversial at present at the 1.5 σ level between a
meta-stable and an stable EW vacuum, which depends on whether λ stays positive up to ΛPl or
not. This is illustrated in Fig. B.3. If the SM extrapolates stable to ΛPl, obviously the resulting
effective parameters affect early cosmology, Higgs inflation, Higgs reheating etc. [3]. The sharp
dependence of the Higgs vacuum stability on the SM input parameters and on possible SM
extensions and the vastly different scenarios that can result as a consequence of minor shifts
in parameter space makes the stable vacuum case a particularly interesting one and it could
reveal the Higgs particle as “the master of the universe”. After all, it is commonly accepted
that dark energy provided by some scalar field is the “stuff” shaping the universe both at very
early (inflation) as well as at the late times (accelerated expansion).
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LHC

Fig. B.2: Left: Plot by Riesselmann and Hambye in 1996, the first 2-loop analysis after knowing
Mt from CDF [1]. Right: the SM dimensionless couplings in the MS scheme as a function of
the renormalization scale for MH = 124 − 126GeV, which were obtained in [2–5].

Fig. B.3: Left: Shaposhnikov et al., Degrassi et al. matching [6, 7]. Right: the shaded bands
show the difference in the SM parameter extrapolation using the central values of the MS
parameters obtained from differences in the matching procedures.

It is very well conceivable that perturbation expansion works up to the Planck scale
without a Landau pole or other singularities and Higgs potential remains (meta)stable! The
discovery of the Higgs boson for the first time has supplied us with the complete set of SM
parameters and for the peculiar SM configuration, revealed that all SM couplings with the
exception of the hypercharge g1 are decreasing with energy. Very surprisingly, this implies
that perturbative SM predictions get the better the higher the energy. More specifically the
pattern now looks as follows: the gauge coupling related to U(1)Y is screening (IR free), the
ones accociated with SU(2)L and SU(3)c are antiscreening (UV free). Thus g1, g2, g3 behave as
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expected (standard wisdom). In contrast, the top Yukawa coupling yt and Higgs self-coupling
λ, while screening if standalone (IR free, like QED), as part of the SM, they are transmuted
from IR free to UV free. The SM reveals an amazing parameter conspiracy, which reminds us
of phenomena often observed in condensed matter systems “... there is a sudden rapid passage

to a totally new and more comprehensive type of order or organization, with quite new emergent

properties ..." [8] i.e. there must be reasons that couplings are as they are. This manifests itself
in the QCD dominance within the renormalization group (RG) of the top-Yukawa coupling,
which requires g3 >

3
4
yt and in the top-Yukawa dominance within the RG of the Higgs-boson

coupling, which requires λ < 3 (
√

5−1)
2

y2
t in the gaugeless (g1, g2 = 0) limit. In the focus is

the Higgs self-coupling. Does it stay positive λ > 0 up to ΛPl? A zero λ = 0 would be
essential singularity. The key question/problem concerns the precise size of the top-Yukawa
coupling yt, which decides about the stability of our world! The meta-stability vs. stability
controversy will be decided by getting more precise input parameters and by better established
EW matching conditions. Most important in this context is the direct measurements of yt and
λ at future e+e−-colliders. But also the important role that the running gauge couplings are
playing, requires substantial progress in obtaining more precise hadronic cross sections in order
to reduce hadronic uncertainties in α(MZ) and α2(MZ). A big challenge for low energy hadron
facilities. Complementary, progress in lattice QCD simulations of two-point correlators will be
important to pin down hadronic effects from first principles. Such improvement in SM precision
physics could open the new gate to precision cosmology of the early universe!

1.3 R-data evaluation of α(M2

Z
)

What we need is a precise calculation of the hadronic photon vacuum polarization function. The

non-perturbative hadronic piece from the five light quarks ∆α
(5)
had(s) = −

(

Π′
γ(s) − Π′

γ(0)
)(5)

had

can be evaluated in terms of σ(e+e− → hadrons) data via the dispersion integral

∆α
(5)
had(s) = −α s

3π

(

P
E2

cut
∫

m2
π0

ds′ Rdata
γ (s′)

s′(s′ − s)
+ P

∞
∫

E2
cut

ds′ RpQCD
γ (s′)

s′(s′ − s)

)

, (1.13)

where Rγ(s) ≡ σ(0)(e+e− → γ∗ → hadrons)/
(

4πα2

3s

)

measures the hadronic cross-section in

units of the tree level e+e− → µ+µ− cross-section sufficiently above the muon pair production
threshold (s ≫ 4m2

µ). The master equation (1.13) is based on analyticity and the optical
theorem

γ γ
had ⇔

Π
′
had

γ (q2)

γ

had

2

∼ σhad
tot (q

2) .

A compilation of the available R-data is shown in Fig. B.4 for the low energy ππ channel
and in Fig. B.5 for R(s) above the ρ resonance peak. Since the mid 90’s [54] enormous
progress has been achieved, also because the new Initial State Radiation (ISR) radiative return
approach∗ provided high statistics data from φ- and B-meson factories (see [9–52]). Still, an
issue in hadronic vacuum polarization (HVP) is the region 1.2 to 2 GeV, where we have a

∗It has been pioneered by the KLOE Collaboration, followed by BaBar and BESIII experiments.
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Fig. B.4: The low energy tail of R is provided by π+π− production data. Shown is a compilation
of the modulus square of the pion form factor in the ρ meson region. The corresponding R(s)
is given by R(s) = 1

4
β3

π |F (0)
π (s)|2 , βπ = (1 − 4m2

π/s)
1/2 is the pion velocity (s = E2). Data

from CMD-2, SND, KLOE, BaBar, BESIII and CLEOc [9–23] besides some older sets.

Fig. B.5: The compilation of R(s)-data utilized in the evaluation of ∆αhad. The bottom line
shows the relative systematic errors within the split regions. Different regions are assumed to
have uncorrelated systematics. Data from [24–52] and others. We apply pQCD from 5.2 GeV
to 9.46 GeV and above 11.5 GeV using the code of [53].

test-ground for exclusive (more than 30 channels) versus inclusive R measurements, where
data taking and/or data analysis is ongoing with CMD-3 and SND detectors [scan] and BaBar
and BESIII detector data [radiative return]. The region still contributes about 50% to the
uncertainty of the hadronic contribution to the muon g − 2, as we may learn from Fig. B.8
below. Above 2 GeV fairly accurate BES II data [48–50] are available. Recently, a new inclusive
determination of Rγ(s) in the range 1.84 to 3.72 GeV has been obtained with the KEDR
detector at Novosibirsk [51, 52] (see Fig. B.5). At present the results from the direct and the
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2012 2017

excl. vs incl. clash

Fig. B.6: Illustrating progress by BaBar and NSK exclusive channel data vs. new inclusive
data by KEDR. Why point at 1.84 GeV so high?

Adler function improved approach to be discussed in Sect. 1.4 reads

∆α
(5)
hadrons(M

2
Z) = 0.027756 ± 0.000157

0.027563 ± 0.000120 Adler
α−1(M2

Z) = 128.916 ± 0.022
128.953 ± 0.016 Adler

(1.14)

In Fig. B.7 we show the effective fine structure constant as a function of the c.m. energy
E =

√
s, for the time-like and the space-like region. The question now, what are the possible

improvements? Evidently,
• a direct improvement of the dispersion integral requires reducing the error of R(s) to 1%
up to above the Υ resonances, likely nobody will do that. One may trust relying on pQCD
above 1.8 GeV and refer to quark-hadron duality as in [55]. Then experimental input above
1.8 GeV is not required. But then we are left with questions about where precisely to assume
thresholds and what are the mass effects near thresholds. Commonly, pQCD is applied taking
into account uncertainties in αs only. This certainly does not provide a result that can be fully
trusted, although the R-data integral in this range is much less precise at present. The problem
is that in this theory-driven approach 70% of ∆α

(5)
had(M2

Z) comes from pQCD. Thereby one has
to assume that in the time-like region above 1.8 GeV pQCD in average works as precise as the
usually adopted MS parametrization suggests. Locally, pQCD does not work near thresholds
and resonances obviously.

The more promising approach discussed in the following relies on the
• Euclidean split method (Adler-function controlled pQCD), which only requires improved R
measurements in the exclusive region from 1 to 2 GeV. Here NSK, BESIII, and Belle II can
top what BaBar has achieved. However, in this rearrangement, as important is a substantially
more precise calculation of the pQCD Adler-function. Required is an essentially exact massive
4-loop result, which is equivalent to sufficiently high order low- and high-energy expansions, of
which a few terms are available already (see [56]).

Because of the high sensitivity to the precise charm and bottom quark values one also
needs better parameters mc and mb besides αs. Here one can profit from activities going on
anyway and the FCC-ee/ILC projects pose further strong motivation to attempt to reach higher
precision for QCD parameters.
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Fig. B.7: Left: the effective α(s) at time-like vs. space-like momentum transfer, showing quark-
hadron duality at work. In the time-like region, the effective charge is varying dramatically near
resonances but agrees quite well on average with the space-like version. Locally, it is ill-defined
near OZI suppressed meson decays J/ψ, ψ1,Υ1,2,3 where Dyson series of self-energy insertions
do not converge (see Sect. 5 of [57]). Right: a first experimental determination of the effective
charge in the ρ resonance region by KLOE-2 [58], which demonstrates the pronounced variation
of the vacuum polarization (charge screening) across a resonance.

∆αhad(M2

Z
) results from ranges

Table B.1 shows the contributions and errors to ∆α
(5)
had(MZ) for MZ = 91.1876 GeV in units

10−4 from different regions. Typically, depending on cuts applied the direct evaluation of the
dispersion integral of R yields 43% from data and 57% from perturbative QCD. Here, pQCD is
used between 5.2 GeV and 9.5 GeV and above 11.5 GeV. Systematic errors are taken correlated
within the different ranges, but taken as independent between the different ranges.

In Fig. B.8 we illustrate the relevance of different energy ranges by comparing the hadronic
contribution to the muon g−2 with the one to the hadronic shift of the effective charge at MZ .
The point is that the new muon g−2 experiments strongly motivate efforts the measure R(s) in
the low energy region more precisely. From Fig. B.8 we learn that low energy data alone are not
able to substantially improve a direct evaluation of the dispersion integral (1.13). Therefore, in

order to achieve the required factor 5 improvement alternative methods to determine ∆α
(5)
had(s)

at high energies have to be developed.

1.4 Reducing uncertainties via the Euclidean split trick: Adler function controlled
pQCD

As we learn from Fig. B.5 it is difficult if not impossible to tell at what precision pQCD can
replace data. This especially concerns resonance and threshold effects and to what extent quark-
hadron duality can be made precise. This is much simpler to accommodate by comparison in the
Euclidean (space-like) region, as it has been suggested by Adler [59] long time ago and has been
successfully tested in [60]. As the data pool has been improving a lot since the “experimental”
Adler-function is known with remarkable precision by now. Actually, on the experiment side
new more precise measurements of R(s) are going on primarily in the low energy range. On the

- 17 -



Fred Jegerlehner

Table B.1: ∆α
(5)
had(MZ) in terms of e+e−-data and pQCD. The last two columns list the relative

accuracy and the % contribution of the total. The systematic errors (syst) are assumed to be
independent among the different energy ranges listed in the table.

final state range (GeV) ∆α
(5)
had × 104 (stat) (syst) [tot] rel abs

ρ ( 0.28, 1.05) 34.14 ( 0.03) ( 0.28)[ 0.28] 0.8% 3.1%
ω ( 0.42, 0.81) 3.10 ( 0.03) ( 0.06)[ 0.07] 2.1% 0.2%
φ ( 1.00, 1.04) 4.76 ( 0.04) ( 0.05)[ 0.06] 1.4% 0.2%
J/ψ 12.38 ( 0.60) ( 0.67)[ 0.90] 7.2% 31.9%
Υ 1.30 ( 0.05) ( 0.07)[ 0.09] 6.9% 0.3%

had ( 1.05, 2.00) 16.91 ( 0.04) ( 0.82)[ 0.82] 4.9% 26.7%
had ( 2.00, 3.20) 15.34 ( 0.08) ( 0.61)[ 0.62] 4.0% 15.1%
had ( 3.20, 3.60) 4.98 ( 0.03) ( 0.09)[ 0.10] 1.9% 0.4%
had ( 3.60, 5.20) 16.84 ( 0.12) ( 0.21)[ 0.25] 0.0% 2.4%

pQCD ( 5.20, 9.46) 33.84 ( 0.12) ( 0.25)[ 0.03] 0.1% 0.0%
had ( 9.46,11.50) 11.12 ( 0.07) ( 0.69)[ 0.69] 6.2% 19.1%

pQCD (11.50, 0.00) 123.29 ( 0.00) ( 0.05)[ 0.05] 0.0% 0.1%
data ( 0.3,∞) 120.85 ( 0.63) ( 1.46)[ 1.58] 1.0% 0.0%
total 277.99 ( 0.63) ( 1.46)[ 1.59] 0.6% 100.0%

theory side, pQCD calculations for Euclidean two-point current correlators are expected to be
pushed further. Advance is also expected from lattice QCD, which also can produce data for the
Adler function. As suggested in [61–63] in the Euclidean region a split into a non-perturbative
and a pQCD part is self-evident. One may write

α(M2
Z) = αdata(−M2

0 ) +
[

α(−M2
Z) − α(−M2

0 )
]pQCD

+
[

α(M2
Z) − α(−M2

Z)
]pQCD

, (1.15)

where the space-like offset M0 is chosen such that pQCD is well under control for −s < −M2
0 .

The non-perturbative offset αdata(−M2
0 ) may be obtained integrating R(s) data, by choosing

s = −M2
0 in (1.13).

The crucial point is that the contribution from different energy ranges to αdata(−M2
0 ) is

very different form that to αdata(M2
Z). Table B.1 now is replaced by Table B.2 where αdata(−M2

0 )
is listed for M0 = 2 GeV in units 10−4. Here 94% results using data and only 6% pQCD,
applied again between 5.2 GeV and 9.5 GeV and above 11.5 GeV. Of ∆α

(5)
had(M2

Z) 22% data,
78% pQCD! The split point M0 may be shifted to optimize the uncertainty contributed from
the pQCD part and the data based offset value. A reliable estimate of the latter is mandatory
and we also have crosschecked its evaluation using the phenomenological effective Lagrangian
global fit approach [64, 65], specifically, within the broken Hidden Local Symmetry (BHLS)
implementation.

In Fig. B.9 we illustrate the relevance of different energy ranges by comparing the hadronic
shift of the effective charge as evaluated at s space-like low energy scale M0 = 2 GeV with the
ones at the time-like MZ scale. The crucial point is that the profile of the offset α at M0

much more resembles the profile found for the hadronic contribution to aµ and improving

ahad
µ automatically lead to an improvement of ∆α

(5)
had(−M2

0 ), this is the profit gained from the
Euclidean split trick.

What does this have to do with the Adler function? The Adler function is i) the monitor to
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Fig. B.8: A comparison of the weights and square uncertainties between ahad
µ and ∆α

(5)
had(M2

Z) of
contributions from different regions. It reveals the importance of the different energy regions.
In contrast to the low energy dominated ahad

µ , ∆α
(5)
had(M2

Z) is sensitive to data from much higher
energies.
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Fig. B.9: Contributions and square errors from e+e− data ranges and form pQCD to
∆α

(5)
had(−M2

0 ) vs. ∆α
(5)
had(M2

Z).
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Table B.2: ∆α
(5)
had(−M2

0 ) at M0 = 2 GeV in terms of e+e−-data and pQCD. Labels as in
Table B.1

final state range (GeV) ∆α
(5)
had(−M2

0 ) × 104 (stat) (syst) [tot] rel abs
ρ ( 0.28, 1.05) 29.97 ( 0.03) ( 0.24)[ 0.24] 0.8% 14.3%
ω ( 0.42, 0.81) 2.69 ( 0.02) ( 0.05)[ 0.06] 2.1% 0.8%
φ ( 1.00, 1.04) 3.78 ( 0.03) ( 0.04)[ 0.05] 1.4% 0.6%
J/ψ 3.21 ( 0.15) ( 0.15)[ 0.21] 6.7% 11.2%
Υ 0.05 ( 0.00) ( 0.00)[ 0.00] 6.8% 0.0%

had ( 1.05, 2.00) 10.56 ( 0.02) ( 0.48)[ 0.48] 4.6% 56.9%
had ( 2.00, 3.20) 6.06 ( 0.03) ( 0.25)[ 0.25] 4.2% 15.7%
had ( 3.20, 3.60) 1.31 ( 0.01) ( 0.02)[ 0.03] 1.9% 0.2%
had ( 3.60, 5.20) 2.90 ( 0.02) ( 0.02)[ 0.03] 0.0% 0.2%

pQCD ( 5.20, 9.46) 2.66 ( 0.02) ( 0.02)[ 0.00] 0.1% 0.0%
had ( 9.46,11.50) 0.39 ( 0.00) ( 0.02)[ 0.02] 5.7% 0.1%

pQCD (11.50, 0.00) 0.90 ( 0.00) ( 0.00)[ 0.00] 0.0% 0.0%
data ( 0.3,∞) 60.92 ( 0.16) ( 0.62)[ 0.64] 1.0% 0.0%
total 64.47 ( 0.16) ( 0.62)[ 0.64] 1.0% 100.0%

control the applicability of pQCD and ii) the pQCD part [α(−M2
Z) − α(−M2

0 )]
pQCD

is favorably

calculated by integrating the Adler functionD(Q2). The small remainder [α(M2
Z) − α(−M2

Z)]
pQCD

can be obtained in terms of the VP function Π′
γ(s). In fact, the Adler function is the ideal

monitor for comparing theory and data. The Adler function is defined as the derivative of the
VP function:

D(−s) .
=

3π

α
s

d

ds
∆αhad(s) = −

(

12π2
)

s
dΠ′

γ(s)

ds
(1.16)

and can be evaluated in terms of e+e−-annihilation data by the dispersion integral

D(Q2) = Q2
(

E2
cut
∫

4m2
π

ds
R(s)data

(s + Q2)2 +
∫ ∞

E2
cut

ds
RpQCD(s)

(s + Q2)2

)

. (1.17)

It is a finite object not subject to renormalization and it tends to a constant in the high energies
limit, where it is perfectly perturbative. Comparing the direct R(s)-based and the D(Q2)-based
methods

pQCD ↔ R(s) pQCD ↔ D(Q2)
very difficult to obtain smooth simple function

in theory in Euclidean region

we note that in time-like approach pQCD only works well in “perturbative windows” roughly in
ranges 3.00 - 3.73 GeV, 5.00 - 10.52 GeV and 11.50 GeV - ∞ (see [53]), while in the space-like
approach pQCD works well for Q > 2.0 GeV, a clear advantage.

In Fig. B.10 the “experimental” Adler–function is confronted with theory (pQCD + NP).
Note that in contrast to most xfR-plots, like Fig. B.5, showing statistical errors only in Fig. B.10
the total error is displayed as the shaded band. We see that while 1-loop and 2-loop predictions
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pQCD

æ

Update spring 2017

Fig. B.10: Monitoring pQCD vs. data: the pQCD prediction of D(Q2) works well down to
M0 = 2.0 GeV, provided full massive QCD at 3- or higher-loop order is employed.

fail clearly to follow the data band, a full massive 3-loop QCD prediction in the gauge invariant
background field MOM scheme [66] reproduces the experimental Adler function surprisingly
well. This has been worked out in [60] by Padé improvement of the moment expansions provided
in [67–69]. The figure also shows that non-perturbative (NP) contributions from the quark
and gluon condensates [70, 71]† start to contribute substantially only at energies where pQCD
fails to converge because one is approaching the Landau pole in MS parametrized QCD. Strong
coupling constant freezing as in analytic perturbation theory (APT) advocated in [72] or similar
schemes actually are not able to improve the agreement in the low energy regime. Coupling
constant freezing also contradicts lattice QCD results [73].

From the three terms of (1.15) we already know the low energy offset ∆αhad(−M2
0 ) for

M0 = 2.0 GeV. The second term we obtain by integrating the pQCD predicted Adler function

∆1 = ∆αhad(−M2
Z) − ∆αhad(−M2

0 ) =
α

3π

∫ M2
Z

M2
0

dQ′2 D(Q′2)

Q′2 , (1.18)

based on a complete 3-loop massive QCD analysis. The QCD parameters used are αs(MZ) =
0.1189(20), mc(mc) = 1.286(13)[Mc = 1.666(17)]GeV , mb(mc) = 4.164(25)[Mb = 4.800(29)]GeV .
The result obtained is

∆1 = ∆αhad(−M2
Z) − ∆αhad(−M2

0 ) = 0.021074 ± 0.000100 .

†These are evaluated by means of operator product expansions and the explicit expressions may be found
in [60].
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This includes a shift +0.000008 from the massless 4-loop contribution included in the high
energy tail. The error ±0.000100 will be added in quadrature. Up to three-loops all contri-
butions have the same sign and are substantial. Four- and higher-orders could still add up to
non-negligible contribution. An error for missing higher order terms is not included.

The remaining term concerns the link between the space-like and the time-like region at
the Z boson mass scale and is given by the difference

∆2 = ∆α
(5)
had(M2

Z) − ∆α
(5)
had(−M2

Z) = 0.000045 ± 0.000002 ,

which can be calculated in pQCD. It accounts for the iπ-terms from the logs ln(−q2/µ2) =
ln(|q2/µ2|)+ iπ . Since the term is small we can get it as well from direct data integration based
on our data compilation. We obtain ∆αhad(−M2

Z) = 276.44 ± 0.64 ± 1.78 and ∆αhad(+M2
Z) =

276.84 ± 0.64 ± 1.90, and taking into account that errors are almost 100% correlated we have
∆αhad(M2

Z) − ∆αhad(−M2
Z) = 0.40 ± 0.12 less precise but in agreement with the pQCD result.

We then have

∆α
(5)
had(−M2

0 )data = 0.006409 ± 0.000063

∆α
(5)
had(−M2

Z) = 0.027483 ± 0.000118

∆α
(5)
had(M2

Z) = 0.027523 ± 0.000119 .

In order to get α−1(M2
Z) we have to include also the leptonic piece [74]

∆αlep(M2
Z) ≃ 0.031419187418 , (1.19)

and the top-quark contribution. A very heavy top-quark decouples like

∆αtop ≃ − α

3π

4

15

s

m2
t

→ 0

when mt ≫ s. At s = M2
Z , the top-quark contributes

∆αtop(M2
Z) = −0.76 × 10−4 . (1.20)

Collecting terms, this leads to the result presented in (1.14) above. One should note that
the Adler function controlled Euclidean data vs. pQCD split approach is only moderately
more pQCD-driven, than the time-like approach adopted by Davier et al. [55] and others as
follows from the collection of results shown in Fig. B.11. The point is that the Adler function
driven method only uses pQCD where reliable predictions are possible and direct cross checks
against lattice QCD data may be carried out. Similarly, possible future direct measurements of
α(−Q2) in µ-e scattering [75] can provide Euclidean HVP data, in particular also for the offset
∆αhad(−M2

0 ) .

1.5 Prospects for future improvements

The new muon g − 2 experiments at Fermilab and at JPARC in Japan (expected to go into
operation later) trigger the continuation of e+e− → hadrons cross section measurements in the
low energy region by CMD-3 and SND at BINP Novosibirsk, by BES III at IHEP Beijing and
soon by Belle II at KEK Tsukuba. This automatically helps to improve ∆α(−M2

0 ) and hence
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Fig. B.11: How much pQCD? Here a history of results by different authors. It shows that the
Adler-function controlled approach to ∆α

(5)
had(M2

Z) is barely more pQCD driven than many of
the standard evaluations. The pQCD piece is 70% in Davier et al. [55] and 77% in our Adler-
driven case. With an important difference: in the Adler controlled case, the major part of 71%
is based on pQCD in the space-like region and only 6% contributing to the non-perturbative
offset value is evaluated in the time-like region, while in the standard theory-driven as well as
in the more data-driven approaches pQCD is applied in the time-like region, where it is much
harder to be tested against data.

α(M2
Z) via the Adler function controlled split-trick approach. As important are the results from

lattice QCD, which come closer to be competitive with the data-driven dispersive method.

The improvement by a factor 5 to 10 in this case largely relies on improving the QCD
prediction of the two-point vector correlator above the 2 GeV scale, which is a well defined
comparably simple task. The mandatory pQCD improvements required are:

• 4-loop massive pQCD calculation of Adler function. In practice, this requires the calcu-
lation of a sufficient number of terms in the low- and high-momentum series expansions,
such that an accurate Padé improvement is possible.

• mc, mb improvements by sum rule and/or lattice QCD evaluations.

• improved αs in low Q2 region above the τ mass.

Note that the direct dispersion relations (DR) approach requires precise data up to much
higher energies or a heavy reliance on the pQCD calculation of the time-like R(s)! The virtues
of Adler-function approach are obvious:

– no problems with physical threshold and resonances,
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270 280

direct

space-like split

∆α
(5)
had(M

2
Z) in units 10−4

?

?

?

?

276.00± 0.90 e+e− Davier et al. 2017

276.11± 1.11 e+e− Keshavarzi et al. 2017

277.56± 1.57 e+e− my update 2017

277.56± 0.85 e+e− δσ < 1% < 11 GeV

276.07± 1.27 e+e− M0 = 2.5 GeV Adler 2017

275.63± 1.20 e+e− M0 = 2.0 GeV Adler

275.63± 1.06 e+e− δσ < 1% < 2 GeV

275.63± 0.54 e+e− + pQCD error ≤ 0.2%

275.63± 0.40 e+e− + pQCD error ≤ 0.1%

Fig. B.12: Comparison of possible improvements. My “direct” analysis is data-driven adopting
pQCD in window 5.2 − 9.5 GeV and above 11.5 GeV . The Adler-driven results under “space-
like split” show the present status for the two offset energies M0 = 2.5 GeV and 2 GeV. The
improvement potential is displayed for 3 options: reducing the error of the data offset by a factor
two, improving pQCD to a 0.2% precision Adler-function in addition and the same by improving
pQCD to a 0.1% precision Adler-function. The direct results are from Refs. [55,76,77].

– pQCD is used only where we can check it to work accurately (Euclidean Q>∼ 2.0 GeV),

– no manipulation of data, no assumptions about global or local duality,

– the non-perturbative “remainder” ∆α(−M2
0 ) is mainly sensitive to low energy data,

– ∆α(−M2
0 ) would be directly accessible in a MUonE experiment (project) [75] or in lattice

QCD.

In the direct approach e.g. Davier et al. [55] use pQCD above 1.8 GeV, which means that no
error reduction follows from remeasuring cross-sections above 1.8 GeV. Also there is no proof
that pQCD is valid at 0.04% precision as adopted. This is a general problem when utilizing
pQCD at time-like momenta exhibiting non-perturbative features.

What we can achieve is illustrated in Fig. B.12 and the following tabular on the precision
in α(M2

Z) :

present direct 1.7 × 10−4

Adler 1.2 × 10−4

future Adler QCD 0.2% 5.4 × 10−5

Adler QCD 0.1% 3.9 × 10−5

future via Aµµ
FB off Z 3 × 10−5 [78] .
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Our analysis shows that the Adler function inspired method is competitive with Patrick Janot’s [78]
direct near Z pole determination via a measurement of the forward backward asymmetry Aµµ

FB in
e+e− → µ+µ−. The modulus square of the sum of the two tree level diagrams has three terms:
the Z-exchange alone Z ∝ (M2

ZGµ)2, the γ−Z interference I ∝ α(s)M2
ZGµ and the γ-exchange

only G ∝ α2(s). The interference term determines the forward-backward (FB) asymmetry,
which is linear in α(s). v denotes the vector Zµµ coupling that depends on sin2 Θℓ eff(s), while
a denotes the axial Zµµ coupling that is sensitive to ρ-parameter (strong Mt dependence). In
extracting α(M2

Z) one is using the v and a couplings as measured at Z-peak directly. At tree
level one then has

Aµµ
FB = Aµµ

FB,0 +
3 a2

4 v2

I
Z + G ; Aµµ

FB,0 =
3

4

4v2a2

(v2 + a2)2
, (1.21)

where

G =
c2

γ

s
, I =

2cγcZ v
2 (s−M2

Z)

(s−M2
Z)2 +M2

ZΓ2
Z

, Z =
c2

Z (v2 + a2) s

(s−M2
Z)2 +M2

ZΓ2
Z

cγ =

√

4π

3
α(s) , cZ =

√

4π

3

M2
Z

2π

Gµ√
2
, v = (1 − 4 sin2 Θℓ) a , a = −1

2
.

Note that M2
ZGµ = M2

WGµ/ cos2 ΘW = π√
2

α2(s)
cos2 Θg(s)

and sin2 Θg(s) = α(s)/α2(s). i.e. all

parameters vary more or less with energy depending on the renormalization scheme utilized.
The challenges for this direct measurement are precise radiative corrections (see [79, 80] and
references therein) and requires dedicated off-Z peak running. Short accounts of the methods
proposed for improving α(M2

Z) may be found in Sects. 8 and 9 of [81].

The Adler-function based method is much cheaper to get, I think, and does not depend on
understanding the Z peak region with unprecedented precision. Another very crucial point may
be that the dispersive method and the Adler-function modified version provide the effective α(s)
for arbitrary c.m. energies, not at s = M2

Z only; although supposed we are given a very precise
α(M2

Z) one can reliably calculate α(s) − α(M2
Z) via pQCD for s-values in the perturbative

regime, i.e. especially when going to higher energies. In any case the requirements specified
above to be satisfied in order to reach a factor 5 improvement looks to be achievable.

1.6 The need for a space-like effective α(t)

As a normalization in measurements of cross-sections in e+e− collider experiments, small angle
Bhabha scattering is the standard choice. This reference process is dominated by the t-channel
diagram of the Bhabha scattering process shown in the left of Fig. B.14. In small angle Bhabha
scattering we have δHVPσ/σ = 2 δα(t̄)/α(t̄), and for the FCC-ee luminometer

√
t̄ ≃ 3.5 GeV

near Z peak and ≃ 13 GeV at 350 GeV [82]. The progress achieved after LEP times is displayed
in Fig. B.13. What can be achieved for the FCC-ee project is listed in the following tabular:

√
s

√
t̄ 1996 [83,84] present FCC–ee expected [82]

MZ 3.5 GeV 0.040% 0.013% 0.6 × 10−4

350 GeV 13 GeV 1.2 × 10−4 2.4 × 10−4

The estimates are based on expected improvements possible for ∆αhad(−Q2) in the appropriate

energy ranges, centered at
√
t̄.
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where Q2(x) ≡ x2

1−x
m2

µ is the space-like square momentum-transfer and

∆αhad(−Q2) =
α

α(−Q2)
+ ∆αlep(−Q2) − 1 (1.24)

directly compares with lattice QCD data and the offset α(−M2
0 ) discussed before. We propose

to determine very accurately ∆αhad (−Q2) at Q ≈ 2.5GeV by this method (one single number!)
as the non-perturbative part of ∆αhad (M2

Z) as needed in the “Adler-function approach”. It
also would be of direct use for a precise small angle Bhabha luminometer! Because of the high
precision required accurate radiative corrections are mandatory and corresponding calculations
are in progress [85–88].

1.7 Conclusions

Reducing the muon g− 2 prediction uncertainty remains the key issue of high precision physics
and strongly motivates more precise measurements of low energy e+e− → hadrons cross sec-
tions. Progress is expected from Novosibirsk (VEPP 2000/CMD3,SND), Beijing (BEPCII/BE-
SIII) and Tsukuba (SuperKEKB/BelleII). This helps to improve α(t) in the region relevant
for small angle Bhabha scattering and in calculating α(s) at FCC-ee/ILC energies via the Eu-
clidean split-trick method. The latter method requires pQCD prediction of the Adler-function
to improve by a factor 2. This also means that we need improved parameters, in particular, mc

and mb.

One question remains to be asked: Are presently estimated and essentially agreed-on
evaluations of ∆α

(5)
had(M2

Z) in terms of R-data reliable? One has to keep in mind that the
handling of systematic errors is rather an art than a science. Therefore alternative methods
are very important and fortunately are under consideration.

Patrick Janot’s approach certainly is an important alternative method directly accessing
α(M2

Z) with very different systematics. A challenging project.

Another interesting option is an improved radiative return measurement of σ(e+e− →
hadrons) at the GigaZ, allowing for directly improving dispersion integral input, which would
include all resonances and thresholds in one experiment!

In any case, on paper, e−µ+ → e−µ+ looks to be the ideal process to perform an un-
ambiguous measurement of α(−Q2), which determines the LO HVP to aµ as well as the non-
perturbative part of α(s)!

Lattice QCD results are very close to becoming competitive here as well. Thus, in the
end, we will have alternatives available allowing for important improvements and crosschecks.

The improvement obtained by reducing the experimental error to 1% in the range from
φ to 3 GeV would allow one to choose a higher cut point e.g. for

√
M0 = 3.0 GeV. One

then can balance the importance of data vs. pQCD differently. This would provide further
important consolidation of results. For a 3 GeV cut one gets ∆αhad(−M2

0 ) = 82.21 ± 0.88[0.38]
in 10−4. The QCD contribution is then smaller as well as safer because the mass effects that are
responsible for the larger uncertainty of the pQCD prediction also gets substantially reduced.
In view that a massive 4-loop QCD calculation is a challenge, the possibility to optimize the
choice of split scale M0 would be very useful. Therefore the ILC/FCC-ee community should
actively support these activities as an integral part of e+e−-collider precision physics program!
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1.8 Addendum: the coupling α2, MW and sin2 Θf

Besides α also the SU(2) gauge coupling α2 = g2/(4π) is running and thereby affected by non-
perturbative hadronic effects [77, 89, 90]. Related with the UY (1) ⊗ SUL(2) gauge couplings,
is the running oft the weak mixing parameter sin2 Θf , which is actually defined by the ratio
α/α2. In [77,89,90] the hadronic effects have been evaluated by means of DRs in terms of e+e−

data with appropriate flavor separation and reweighting. Commonly, a much simpler approach
is adopted in studies of the running of sin2 Θf , namely by using pQCD with effective quark
masses [91–94], which have been determined elsewhere.

Given g ≡ g2 and the Higgs VEV v then M2
W = g2 v2

4
= π α2√

2 Gµ
. The running sin2 Θf (s)

relates electromagnetic to weak neutral channel mixing at the LEP scale to low energy νee
scattering as

sin2 Θlep(M2
Z) =

{

1 − ∆α2

1 − ∆α
+ ∆νµe,vertex+box + ∆κe,vertex

}

sin2 Θνµe(0) . (1.25)

The first correction from the running coupling ratio is largely compensated by the νµ charge-
radius, which dominates the second term. The ratio sin2 Θνµe/ sin2 Θlep is close to 1.002, inde-
pendent of top and Higgs mass. Note that errors in the ratio 1−∆α2

1−∆α
can be taken to be 100%

correlated and thus largely cancel. A similar relation between sin2 Θlep(M2
Z) and the weak mix-

ing angle appearing in polarized Møller scattering asymmetries has been worked out in [91,92].
It includes specific bosonic contribution ∆κb(Q

2) such that

κ(s = −Q2) =
1 − ∆α2(s)

1 − ∆α(s)
+ ∆κb(Q

2) − ∆κb(0) (1.26)

where , in our low energy scheme, we require κ(Q2) = 1 at Q2 = 0. Explicitly [91,92], at 1-loop
order

∆κb(Q
2) = − α

2π sW

{

−42 cW + 1

12
ln cW +

1

18
−
(

r

2
ln ξ − 1

)

[

(7 − 4z) cW (1.27)

+
1

6
(1 + 4z)

]

− z

[

3

4
− z +

(

z − 2

3

)

r ln ξ + z (2 − z) ln2 ξ

]}

,

∆κb(0) = − α

2π sW

{

−42 cW + 1

12
ln cW +

1

18
+

6 cW + 7

18

}

, (1.28)

with z = M2
W/Q

2, r =
√

1 + 4z, ξ = r+1
r−1

, sW = sin2 ΘW and cW = cos2 ΘW . Results obtained
in [91, 92] based on one-loop perturbation theory using light quark masses mu = md = ms =
100 MeV are compared with results obtained in our non-perturbative approach in Fig. B.17.

How to evaluate the leading non-perturbative hadronic corrections to α2? Like in the case
of α they are related to quark-loop contributions to gauge-boson self-energies (SE) γγ, γZ, ZZ
and WW , in particular those involving the photon, which exhibit large leading logarithms.
In order to disentangle the leading corrections decompose the self-energy functions as follows
(s2

Θ = e2/g2 ; c2
Θ = 1 − s2

Θ)

Πγγ = e2 Π̂γγ ,

ΠZγ = eg
cΘ

Π̂3γ
V − e2 sΘ

cΘ
Π̂γγ

V ,

ΠZZ = g2

c2
Θ

Π̂33
V −A − 2 e2

c2
Θ

Π̂3γ
V +

e2 s2
Θ

c2
Θ

Π̂γγ
V ,

ΠW W = g2 Π̂+−
V −A ,

(1.29)
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with Π̂(s) = Π̂(0) + sΠ′(s), we find the leading hadronic corrections

∆α
(5)
had(s) = −e2

[

ReΠ′γγ
(s) − Π′γγ

(0)
]

, (1.30)

∆α
(5)
2 had(s) = − e2

s2
Θ

[

ReΠ′3γ
(s) − Π′3γ

(0)
]

, (1.31)

which exhibit the leading hadronic non-perturbative parts, i.e. the ones involving the photon
field via mixing. Besides ∆α

(5)
had(s) also ∆α

(5)
2 had(s) can then be obtained in terms of e+e−-data

together with isospin flavor separation of (u, d) and s components

Π3γ
ud =

1

2
Πγγ

ud ; Π3γ
s =

3

4
Πγγ

s (1.32)

and for resonance contributions

Πγγ = Π(ρ) + Π(ω) + Π(φ) + · · ·
Π3γ =

1

2
Π(ρ) +

3

4
Π(φ) + · · · (1.33)

We remind that gauge-boson SE are potentially very sensitive to new physics (oblique correc-
tions) and the discovery of what is missing in the SM may be obscured by non-perturbative
hadronic effects. Therefore it is important to reduce the related uncertainties. Interestingly,
flavor separation assuming OZI violating terms to be small implies a perturbative reweight-
ing, which however has been shown to disagrees with lattice QCD results [95–98]! Indeed, the
“wrong” perturbative flavor weighting

Π3γ
ud =

9

20
Πγγ

ud ; Π3γ
s =

3

4
Πγγ

s

clearly mismatch lattice results, while the replacement 9
20

⇒ 10
20

is in good agreement. This also
means the OZI suppressed contributions should be at the 5% level and not negligibly small.
Actually, if we assume flavor SU(3) symmetry to be an acceptable approximation one obtains

Π3γ
uds =

1

2
Πγγ

uds ,

which does not require any flavor separation in the uds-sector, i.e. up to the charm threshold
at about 3.1 GeV. The Fig. B.15 shows a lattice QCD test of two flavor separation schemes.
One labeled “SU(2)” denotes the perturbative reweighting advocated in [91–94] and the other
one labeled “SU(3)” represents the one proposed in [89]. Lattice data clearly disprove pQCD
reweighting for the uds-sector! This also shows that pQCD-type predictions based on effective
quark masses cannot be accurate. This criticism also applies in cases where the effective quark
masses have been obtained by fitting ∆α

(5)
had(s). Even more so when constituent quark masses

are used.

The updated sin2 ΘW (s) is shown in Fig. B.17 for time-like as well as for space-like mo-
mentum transfer. Note that sin2 ΘW (0)/ sin2 ΘW (M2

Z) = 1.02876 a 3% correction is established
at 6.5 σ. Except for the LEP and SLD points (which deviate by 1.8 σ), all existing measure-
ments are of rather limited accuracy, unfortunately. Upcoming experiments will improve results
at low space-like Q substantially. We remind that sin2 Θℓ eff exhibiting a specific dependence on
the gauge boson self-energies is an excellent monitor for New Physics. At pre-LHC times it has
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∆α2 from alphaQED, SU(2) flavour separation
∆α2 from alphaQED, SU(3) flavour separation
lattice data linearly extrapolated to mπ in CL

Q2
[

GeV2
]

∆
α
h
v
p

2
(Q

2
)

1086420

0.02

0.015

0.01

0.005

0

Fig. B.15: Testing flavor separation in lattice QCD. Left: a rough test by checking the Eu-
clidean time correlators clearly favors the flavor separation of (1.33) [95–97], while the pQCD
reweighting (not displayed) badly fails. Right: the renormalized photon self-energy at Eu-
clidean Q2 [98] is in good agreement with the flavor SU(3) limit, while again it fails with the
SU(2) case which coincides with perturbative reweighting.

Fig. B.16: ∆αQED(E) and ∆α2(E) as functions of energy E in the time-like and space-like do-
main. The smooth space-like correction (dashed line) agrees rather well with the non-resonant
“background” above the φ-resonance (kind of duality). In resonance regions as expected “agree-
ment” is observed in the mean, with huge local deviations.

been the predestinated monitor for virtual Higgs particle effects and a corresponding limiter
for the Higgs boson mass.
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Fig. B.17: sin2 ΘW (Q) as a function of Q in the time-like and space-like region. Hadronic
uncertainties are included but barely visible in this plot. Uncertainties from the input parameter
sin2 ΘW (0) = 0.23822(100) or sin2 ΘW (M2

Z) = 0.23153(16) are not shown. Note the substantial
difference from applying pQCD with effective quark masses. Future FCC-ee/ILC measurements
at 1 TeV would be sensitive to Z ′, H−− etc.
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