2002.02902v1 [hep-ph] 7 Feb 2020

arxXiv

Parton Distribution Functions of the Charged Pion Within The xFitter Framework

xFitter Developers’ team: Ivan Novikov,"2/[| Hamed Abdolmaleki,> Daniel Britzger,* Amanda
Cooper-Sarkar,? Francesco Giuli,% Alexander Glazov,?[]] Aleksander Kusina,” Agnieszka
Luszczak,® Fred Olness,” Pavel Starovoitov,'® Mark Sutton,!! and Oleksandr Zenaiev'?

Y Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow region, Russia, 141980
2Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
38chool of Particles and Accelerators, Institute for Research in
Fundamental Sciences (IPM), P. O. Box 19395-5531, Tehran, Iran.

4 Mag-Planck-Institut fiir Physik, Fohringer Ring 6, D-80805 Minchen, Germany
5 Particle Physics, Denys Wilkinson Bdg, Keble Road, University of Ozford, OX1 3RH Ozford, UK
8 University of Rome Tor Vergata and INFN, Sezione di Roma 2,

Via della Ricerca Scientifica 1,00133 Roma, Italy
"Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
8T. Kosciuszko Cracow University of Technology, PL-30-084, Cracow, Poland
9Southern Methodist University, Department of Physics,

Bozx 0175 Dallas, TX 75275-0175, United States of America
0 Kirchhoff-Institut fiir Physik, Heidelberg University,

Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
1 Department of Physics and Astronomy, The University of Sussex, Brighton, BN1 9RH, United Kingdom
2 Hamburg University, II. Institute for Theoretical Physics,

Luruper Chaussee 149, D-22761 Hamburg, Germany
(Dated: February 10, 2020)

Using xFitter, we extract parton distribution functions of charged pions from currently available

Drell-Yan and photon production data.

While the valence distribution is well-constrained, we

find that the considered data are not sensitive enough to unambiguously determine sea and gluon
distributions. In the used approximation, we find the high-x behavior of the valence distribution
to be linear in (1 — x) at high x. Fractions of momentum carried by the valence, sea and gluon

components are discussed.

INTRODUCTION

The pion plays an important role in our understand-
ing of strong interactions. At the same time, it is
a mediator of nucleon-nucleon interactions, a pseudo-
Goldstone boson of dynamical chiral symmetry breaking
and the simplest gg state in the quark-parton model
of hadrons. However, from the experimental point of
view, the pion structure is currently poorly understood,
especially compared to the proton. Parton distribution
functions (PDFs) are a primary theoretical construct
used to describe hadron structure as it is probed in hard
processes. Much progress has been made in mapping out
the parton distribution functions of the proton in the last
decades [1].

On the other hand, theoretically, the pion is a simpler
system than the proton. Consequently, the pion struc-
ture has been investigated in several nonperturbative
theoretical models. Nambu-Jona-Lasinio model [2H4],
Dyson-Schwinger equations [5H9] (DSE), meson cloud
model [I0], and nonlocal chiral-quark model [TTHI3]
make predictions about certain aspects of PDFs of the
charged pion, or even allow calculating PDFs themselves.
First moments of pion PDFs, and, recently, pion PDFs
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themselves have been calculated on the lattice [I4HIT7].

Experimentally, the pion PDF is known mostly from
QCD analyses of Drell-Yan (DY) and prompt photon
production data [I8-21]. Within a dynamical approach,
only the relatively well-known valence distribution is
determined from DY data, with the sea and gluon
content at a very low initial scale fixed by simplifying
assumptions [22] or constraints of the constituent quark
model [23] 24]. While all modern pion PDF extractions
are performed at next-to-leading order (NLO), additional
threshold-resummation corrections and their impact on
the valence distribution at high = have been studied [25].
In addition to DY data, a recent work by the JAM collab-
oration [26] included leading neutron electroproduction
data obtained from the HERA collider (as suggested in
[27]). The latest pion PDF fit by Bourelly and Soffer [2§]
uses a novel parameterisation at the initial scale Q.

In this work we approach the pion PDFs from a
phenomenological perspective, and extract them from the
currently available experimental data on pion scatter-
ing using xFitter, an open-source PDF fitting frame-
work [29)].

The paper is organised as follows: In Section [I] we
briefly discuss the considered data. The adopted PDF
parameterisation and decomposition are described in Sec-
tion[MI] Calculation of theoretical predictions is discussed
in Section [IIl Section [Vl is devoted to the statistical
treatment used in this work and estimation of the uncer-
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tainty of the obtained PDFs. Finally, the results of the
analysis are presented and compared to results of other
studies in Section [Vl

I. EXPERIMENTAL DATA

This analysis is based on Drell-Yan data from NA10 [30]
and E615 [31] experiments, and on photon production
data from the WA70 [32] experiment. The NA10 and
E615 experiments studied scattering of a 7~ beam off a
tungsten target, with F,; = 194 and 286 GeV in the NA10
experiment and F,; = 252 GeV in the E615 experiment.
The WA70 experiment used 7% beams and a proton
target. For the Drell-Yan data, Y-resonance range,
which corresponds to bins with /7 € [0.415, 0.484], were
excluded from the analysis. Here /7 = my,/\/s, mu,
is the invariant mass of the muon pair, and /s is the
center-of-mass energy of pion-nucleon system.
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FIG. 1. Leading order Feynman diagrams for the considered

processes: Drell-Yan dimuon production (left) and direct
photon production (center and right).

Leading order Feynman diagrams for the considered
processes are shown in Fig. The Drell-Yan data
constrain the valence distribution relatively well, but are
not sensitive to sea and gluon distributions. The prompt
photon production data complement the DY data by
providing some sensitivity to the gluon distribution,
but have smaller statistics and large uncertainties in
comparison to the DY data. Additionally, the predictions
for prompt photon production have significant theoretical
uncertainty, as discussed in Section [[TI}

II. PDF PARAMETERISATION

The 7= PDF zf(x,Q?) is parameterized at an initial
scale Q2 = 1.9 GeV~, just below the charm mass thresh-
old m? = 2.04 GeV?. Neglecting electroweak corrections
and quark masses, charge symmetry is assumed: d = u,
and SU(3)-symmetric sea: v = d = s = 5. Under
these assumptions, pion PDFs are reduced to three
distributions: total valence v, total sea S, and gluon g:

v=dy —u, =(d—d) — (u—1a) =2(d —u) = 2d,,
S =2u+2d+ s+ 5= 6u,
9=29,

which we parameterise using a generic form:

zo(z) = Az (1 — 2)% (1 4+ Dyz®),
xS(x) = Asl‘BS(l — .T)CS/B(BS +1,Cs + 1),
rg(r) = Ay(Cy + (1 - x)c‘qa

where B is the Euler beta function, which ensures that
the Ag parameter represents the total momentum frac-
tion carried by the sea quarks. The B-parameters deter-
mine the low-z behavior, and C-parameters determine
the high-x behavior. Quark-counting and momentum
sum rules have the following form for 7~:

/Ov(sc)d:c =2, /Ox(v(x) +S(z)+g(x))dz=1. (1)

The sum rules determine the values of parameters A,, and
Ay, respectively. The constant factors in the definitions
of v, S, g were chosen in such a way, that (zv), (xS}, (zg)
are momentum fractions of pion carried by the valence
quarks, sea quarks, and gluons, respectively (here (xf) =
fol xf(x)dz).

The extension D,z® was introduced in zv(z) to mit-
igate possible bias due to inflexibility of the chosen pa-
rameterisation. This extension was omitted in the initial
fits (D, = 0). Afterwards, a parameterisation scan was
performed by repeating the fit with free D,, and different
fixed values of parameter «. The scan showed that only
o= % has noticeably improved the quality of the fit (see
Table [ and Section [V] for discussion). The additional
free parameter D, changes the shape of the valence
distribution only slightly (Fig. . Similar attempts to
add more parameters of the form (1+ D,z + E,x?) did
not result in significant improvement of5 x2. The final

presented results use a free D, and a = 3.

TABLE 1. Fitted parameter values and x2. The first column
corresponds to the fit with D, = 0. The second column shows
results of the fit with free D, and a = g The uncertainties
of parameter values do not include scale variations. The
valence and gluon normalization parameters A, and A, were
not fitted, but were determined based on sum rules (Eq.(T))

and values of the fitted parameters.

D,=0 free D,

*/Npor  444/373=1.19  437/372=1.18

Ay 2.60 1.72

(zv) 0.56 0.54

B, 0.75+ 0.03 0.63 = 0.06

Cy 0.95+£0.03 0.26 +£0.13

D, 0 —0.93 £ 0.06
As ={(zS) 0.21+0.08 0.25 £ 0.09

Bs 0.5 +£0.8 0.3 £0.7

Cs 8§ £3 6 =*3
Ay = (zg) 0.23 0.20

C, 3 +1 3 +1
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FIG. 2. The valence distribution when using minimal pa-
rameterisation (D, = 0) and the extended parameterisation
with free D,. The shown uncertainty bands do not include
scale variations. The high-z behavior is linear in (1 — x).

III. CROSS-SECTION CALCULATION

PDFs are evolved up from the starting scale Q3 by solv-
ing the DGLAP equations numerically using QCDNUM [33].
The evolution is performed using the variable flavor-
number scheme with quark mass thresholds at m,. =
1.43 GeV, my = 4.5 GeV. Predictions for the cross-
sections were calculated as a convolution of the evolved
pion PDFs with precomputed grids of NLO coefficients
and with PDFs of a proton or tungsten target. The
APPLgrid [34] package was used for these calculations.
The grids were generated using the MCFM [35] generator.
For Drell-Yan, the invariant mass of the lepton pair
was used for the renormalization and factorisation scales,
namely ur = urp = my;. For prompt photon production,
the scale was chosen as the transverse momentum of the
prompt photon, namely ur = pr = pr (7).

It was verified that the grid binning was sufficiently fine
by comparing the convolution of the grid with the PDFs
used for the grid generation and a reference cross-section
produced by MCFM. The deviation from the reference
cross-section, as well as estimated statistical uncertainty
of the predictions, are an order of magnitude smaller than
the uncertainty of the data. This check was performed
for each data bin.

Both the evolution and cross-section calculations are
performed at next-to-leading order (NLO). For the tung-
sten target, nuclear PDFs from nCTEQ15 [36] deter-
mination were used. In the case of a proton target,
the PDFs from ref. [37] were employed. These were
also used as the baseline in the nCTEQ15 study. The
use of another popular nuclear PDF set EPPS16 [3§]
was omitted because their fit had used the same pion-
tungsten DY data as the present analysis. Considering
7~ N data, EPPS16 fitted PDFs of tungsten using fixed
pion PDFs from an old analysis by GRV [22].

In the case of prompt photon production, the contri-
bution of fragmentation photons cannot be accounted
for using the described techniques. The model used in
the fit included only the direct photons. We estimate
the impact of the missing fragmentation contribution by

comparing the total integrated cross-sections computed
using MCFM for proton-proton collision at the WA70 energy
with and without fragmentation. The relative difference
of 32% is treated as the theoretical uncertainty in overall
normalization of the WA70 data. In the run without
fragmentation, Frixione isolation is used. In the other
run the fragmentation function set GARG__LO and cone
isolation are used. The isolation cone size parameter is
Ry = 0.4 for both cases.

IV. STATISTICAL TREATMENT AND
ESTIMATION OF UNCERTAINTIES

The PDF parameters are found by minimizing the y?
function defined as

di — El 2
=3 ( )~
[ (ijst)Q + (\/gé;@tat>

where ¢ is the index of the datapoint and « is the
index of the source of correlated error. The measured
cross-section is denoted by d;, with §5*" and 5%t being
respectively the corresponding systematic and statistical
uncertainties. The t;’s represent the calculated theory
predictions, and ¢; = t; (1 — Yo Yiaba) are theory predic-
tions corrected for the correlated shifts. ;, is the relative
coefficient of the influence of the correlated error source
«a on the datapoint ¢, and b, is the nuisance parameter
for the correlated error source a.
Sstat — ﬁ(;stat
d;

2 +Zb?xv (2)

The error rescaling is used to correct

for Poisson fluctuations of the data. Since statistical
uncertainties are typically estimated as a square root of
the number of events, a random statistical fluctuation
down in the number of observed events leads to a
smaller estimated uncertainty, which gives such points
a disproportionately large weight in the fit. The error
rescaling corrects for this effect. This correction was only
used for the Drell-Yan data.

The nuisance parameters b, are used to account for
correlated uncertainties. In this analysis the correlated
uncertainties consist of the overall normalization uncer-
tainties of the datasets, the correlated shifts in predic-
tions related to uncertainties from nuclear PDF's, and the
strong coupling constant ag(M32) = 0.118 £ 0.001. The
nuisance parameters are included in the minimization
along with the PDF parameters. They determine shifts
of the theory predictions and contribute to the y? via
the penalty term > b2. For overall data normaliza-
tion, the coefficients v;, are relative uncertainties as
reported by the corresponding experiments, and, in the
case of the WA70 data, the abovementioned additional
32% theoretical uncertainty, (listed in Table . For the
uncertainties from nuclear PDFs and ag, the coefficients
~Yio are estimated as derivatives of the theory predictions
with respect to ag and the uncertainty eigenvectors of
the nuclear PDFs as provided by the nCTEQ15 set. This



TABLE II. The normalization and partial x? for the consid-
ered datasets. The normalization uncertainty is presented
as estimated by corresponding experiments. In order to
agree with theory predictions, the measurements must be
multiplied by the normalization factor. Deviations from 1 in
the normalization factor lead to a penalty in x2, as described
in Section [Vl

Normalization Normalization

. 2
Experiment uncertainty factor X"/ Npoints
E615 15 % 1.160 £ 0.020  206/140
NA10 (194 GeV) 6.4% 0.997 £ 0.014 107/67
NA10 (286 GeV) 6.4% 0.927 £ 0.013 95/73
WA70 32% 0.737 £0.012 64,/99

linear approximation is valid only when the minimisation
parameters are close to their optimal values. It was
verified that this condition was satisfied for the performed
fits.

The uncertainty of the perturbative calculation is
estimated by varying the renormalization scale yr and
factorization scale up by a factor of two up and down,
separately for pur and pp. The scales were varied
using APPLgrid, and the variations were coherent for all
data bins. Renormalization scale variation for DGLAP
evolution was not performed. We observe a significant
dependence of the predicted cross-sections on pugr and pp:
the change in predictions is ~ 10%, which is comparable
to the normalization uncertainty of the data. This
dependence indicates that next-to-next-to-leading order
corrections may be significant.

In order to estimate the uncertainty related to the
flexibility of chosen parameterisation, the fit is repeated
with a varied initial scale Q2 = 1.9 + 0.4 GeV?. This
variation leads to only a small change in x? (Ax? < 1).
In order to stay below the charm mass, for variation up
to Q2 = 2.3 GeV? the mass threshold m? was shifted up
by the same amount. The effect of such a change in the
charm mass threshold by itself was found to be negligible.

V. RESULTS

Figure |3| shows the obtained pion PDFs in comparison
to a recent analysis by JAM [26], and to GRVPI1 [22]
— the only set available in the LHAPDF6 [39] library.
The new valence distribution presented here is in good
agreement with JAM, and both disagree with the early
GRYV analysis. The relatively difficult to determine sea
and gluon distributions are different in all three PDF
sets, however, this new PDF and the JAM determination
agree within the larger uncertainties of our fit.

In the case of valence distribution, the dominant
contribution to the uncertainty estimate is the variation
of the scales ur and pp. For the sea and gluon distribu-
tions, the missing fragmentation contribution to prompt
photon production is the dominant uncertainty source,
and the effect of scale variation is also significant.

A comparison between experimental data and theory
predictions obtained with the fitted PDF's is presented in
Fig. [f] Reasonable agreement between data and theory
is observed, with no systematic trends for any of the
kinematic regions.

The extracted value of parameter C,, is consistent with
unity, meaning that v(z) ~ (1 — z) as © — 1. However,
the data are only sensitive to some region z < 1 and do
not constrain the derivative of v(x) at x = 1. Although
the addition of the extra parameter D, changes the fitted
value of (', the valence distribution is still linear near
x ~ 1 in the experimentally accessible high-x region
(Fig. [2)). The change in C, shows that the derivative
of v(z) at x = 1 cannot be extracted from the considered
data and that the behavior of v(x) can be studied only
in some region z < 1. The behavior v(z) ~ (1 — z) is
favored by Nambu-Jona-Lasinio models [40]. At the same
time it is in conflict with approaches based on the Dyson-
Schwinger equations (DSE) [8] @], which predict v(x) ~
(1—x)2. This discrepancy between DSE predictions and
fits to pion Drell-Yan data is well-known [9], 2], 25]. It
has been shown that soft-gluon threshold resummation
— which was not included in this analysis — may be
used to account for this disagreement [25]. Alternatively,
DSE calculations using inhomogeneous Bethe-Salpeter
equations [9] produce PDFs consistent with the linear
behavior of the v(z) in the region covered by DY data,
pushing the onset of the (1 — x)? regime to very high z.

Fig. [ shows the obtained momentum fractions
in the pion as a function of Q? in comparison to
the proton momentum fractions calculated using the
NNPDF31.nlo_as_ 0118 [4I] set. The points correspond
to other studies, which are also listed in Table [[TIl The
sum of momentum fractions is forced to one according to
Eq. by adjusting the gluon normalization parameter
Agy. In comparison to the proton, in the pion the valence
quarks carry a larger momentum fraction. Above the
charm and bottom mass thresholds @@ > m., mp, the
c and b quarks and antiquarks are included in the sea
distribution.

VI. SUMMARY AND OUTLOOK

PDFs of charged pion have been determined by re-
analysing the currently available Drell-Yan and prompt
photon production data using modern tools. While
the valence distribution is well constrained, the consid-
ered data are not sensitive enough to unambiguously
determine the sea and gluon distributions. While the
data are reasonably well-described by NLO QCD, the
sensitivity to ur and pp indicates that next-to-next-
to-leading order corrections could be significant. The
valence distribution behaves as v(z) ~ (1 —z) as z — 1
in the experimentally accessible region, although the
considered data do not constrain the derivative at z = 1.
The valence momentum fraction in the pion is found to
be large in comparison to the proton. In the future, new
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FIG. 3. Comparison between the pion PDFs obtained in this work, a recent determination by the JAM collaboration [26],
and the GRVPI1 pion PDF set [22].
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FIG. 4. Momentum fractions of the pion as a function of Q. The error bands include all uncertainties described in Section
[[V] Analogous momentum fractions in the proton PDF set NNPDF31_nlo_as_0118 are shown for comparison. The labeled green,
red, and blue points show respectively valence, sea, and gluon momentum fractions as reported by other studies. The references
and numerical values for these points are listed in Table [[TI}
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FIG. 5. Considered experimental data and corresponding theory predictions. The displayed theory predictions include

correlated shifts. Bands of different colors correspond to different datasets. Width of the bands shows uncertainty of the
theory predictions. The cross-sections are shown in the same format as adopted by corresponding experimental papers. The
E615 data is given as d?0/(dy/7dzr) in nb/nucleon, averaged over each (\/7,zr) bin. The DY data from the NA10 experiment
is d®0/(dy/TdzF) in nb/nucleus, integrated over each (1/7,zr) bin. The WA70 data on direct photon production is given as

invariant cross-section Ed®¢/dp® in pb, averaged over each (pr,zr) bin.
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