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Abstract

Axion inflation entails a coupling of the inflaton field to gauge fields through the Chern-Simons
term. This results in a strong gauge field production during inflation, which backreacts on the
inflaton equation of motion. Here we show that this strongly non-linear system generically experi-
ences a resonant enhancement of the gauge field production, resulting in oscillatory features in the
inflaton velocity as well as in the gauge field spectrum. The gauge fields source a strongly enhanced
scalar power spectrum at small scales, exceeding previous estimates. For appropriate parameter
choices, the collapse of these over-dense regions can lead to a large population of (light) primordial

black holes with remarkable phenomenological consequences.
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1 Introduction

Axion-like particles are among the prime candidates for particle physics implementations of cosmic
inflation. Protected by an approximate shift-symmetry, these Pseudo Nambu Goldstone Bosons nat-
urally come with a sufficiently flat scalar potential to support slow-roll inflation. Many concrete
realizations of axion inflation in field theory have been proposed beginning with Ref. [1], for axions in
string theory see [2,3].
The shift-symmetry of the axion-like inflaton ® allows for a derivative coupling to the field strength
tensor F),, of a (dark) gauge sector,
Lo =~V T, P, 1)
with f denoting the axion decay constant and for simplicity, we will consider F},,, to describe a hidden

' This interaction triggers a tachyonic instability of

sector abelian gauge group, i.e. a dark photon.
the dark photon driven by the velocity ® of the inflaton, leading to an exponential production of
dark photons [6—8]. The resulting non-thermal gauge field distribution backreacts on the inflaton,
dampening its motion. At the same time, the gauge fields act as a source of scalar and tensor
perturbations [9-12], in addition to the standard vacuum fluctuations amplified during cosmic inflation.
These perturbations can be probed by CMB observations [9,13], searches for primordial black holes [14—
17] and gravitational wave experiments [12, 18-20], rendering axion inflation not only a theoretically

well motivated but also an experimentally testable proposal for cosmic inflation [10].

Hf the theory contains particles charged under this U(1) (as is e.g. the case for the Standard Model hypercharge),
these particles must be included in the analysis if they are sufficiently light, as they will be produced via Schwinger
production from the vacuum, thereby significantly damping the gauge field production. On the contrary, the impact of

heavier particles is exponentially suppressed and they can be safely integrated out [4,5].



In this work we have a closer look at the backreaction of the gauge field distribution on the inflaton
equations of motion. Since this determines the evolution of the homogeneous inflaton field, this has a
crucial impact on all potential observables of this framework. The interaction (1) results in a friction
term in the background equation of motion for ® which is proportional to (F F ). In Fourier space, this
non-linear interaction involves an integral over all relevant Fourier modes of the gauge field, leading to
a integro-differential system describing the evolution of the gauge field modes and the homogeneous
component of the inflaton.

In many previous works, this system is solved by assuming the inflaton velocity to be constant
in the gauge field equation of motion (see e.g. [10]), motivated by the usual slow-roll approximation
employed in cosmic inflation. However, since the gauge field enhancement and hence the backreaction
on the inflaton are exponentially sensitive to this velocity, this approximation becomes invalid in the
phenomenologically interesting regime of sizable gauge field production. Recently, several alternative
approaches have been put forward. Lattice simulations [21-23], focusing mainly on the preheating
phase, accurately capture the backreaction but are limited in the amount of time evolution that can
be tracked. Ref. [24] proposed a gradient expansion of the generated electric and magnetic field. Self-
consistent numerical solutions of the integro-differential system have been obtained in Refs. [25-27].
These latter studies noted the appearance of remarkable oscillatory features in the inflaton velocity. In
this work, we reproduce these findings and quantitatively explain the occurring resonance phenomenon
based on semi-analytical arguments. Since the enhancement of the gauge field modes is most sensitive
to the inflaton velocity around horizon crossing whereas the backreaction is dominated by super-
horizon gauge field modes, the system responds with a time delay to a change in the inflaton velocity.
This time delay is logarithmically sensitive to the inflaton velocity. As the inflaton velocity increases
of the course of inflation the system hits its resonance frequency, leading to strong oscillations in the
amplitude of (F F ) as a function of time. This crucially impacts both the background equation of
motion as well as the generation of scalar and tensor perturbations.

The power spectrum of scalar perturbations can be obtained by solving the linearized inhomoge-
neous equation of motion for the inflaton field taking into account the backreaction and source terms
proportional to FF. In the pioneering works [9,11, 14, 28] this task has been solved in the weak and
very strong backreaction regime. Here we extend these results to arbitrary inflaton gauge field cou-
plings by numerically determining the Greens function including the backreaction term. We report
two important results. Firstly, for a smoothly growing <FF>, we find that the analytical estimate
in [28] significantly overestimates the backreaction compared to our full numerical results. As a result,
the actual power spectrum is significantly enhanced compared to previous estimates. Consequently, a
large primordial black hole (PBH) abundance can be generated, leading to an early PBH dominated
phase. Requiring the transition to radiation domination to occur before the onset of big bang nucle-
osynthesis imposes stringent constraints on the parameter space. Secondly, for an oscillating (F F )
as found in the numerical solution of the background equation of motion, the scalar power spectrum
features prominent peaks which, for suitable parameters, may lead to a PBH population peaked at log-
arithmically equidistant masses, accompanied by a gravitational wave spectrum with similar features.

This would be a smoking gun signature of the resonance phenomenon inherent to axion inflation.



The remainder of this paper is organized as follows. In Sec. 2 we review the mechanism of axion
inflation. Sec. 3 explains the resonance inherent to this coupled system of differential equations
and provides analytical estimates for the relevant time scales. This is numerically confirmed by our
numerical results presented in Sec. 4 for two exemplary values of the axion decay constant. Based on
these results for the background evolution, we compute the power spectrum of scalar fluctuations in
Sec. 5 before concluding in Sec. 6. Details on our numerical procedure as well as on the comparison

with previous works can be found in appendices B and C, respectively.

2 Axion inflation

We consider a pseudo-scalar ® coupled to the field strength tensor F),, of an abelian gauge group

through a shift-symmetric coupling,

L 1 1 1 -
— = —=0,P0!'® - - F, F" — Vg — —PF, F'. 2
/_g 2 = 4 1224 ,® 4 f 1224 ( )
Here V/(®) is a scalar potential explicitly breaking the shift-symmetry of ® and F* = ¢#P7 F, /(2,/—g)
with €123 = 1 is the dual field strength tensor. Working in quasi de-Sitter space we introduce the

time variable

N:/Hﬁ, 3)
where H = a/a denotes the (approximately constant) Hubble parameter. In the separate Universe
picture, the number of e-folds N elapsed in a time interval [t1,%2] between two equal-density hyper
surfaces varies by § N between ‘separate’, locally homogeneous universes, accounting for the inhomo-
geneities in our primordial Universe [29-32]. Expanding?

od
D =Psn—+ = ON =¢+ ¢ (4)
ON |sn—0

we obtain the equation of motion for the homogeneous part

HQ_W<EB>207 (5)

H/
¢" + Fqﬁ’ + 3¢’ +

with / = 9/ON and (...) denoting the average over many universes, thus selecting the globally
homogeneous contribution.?
Turning to the gauge fields, the C'P-odd nature of F| Wﬁ’ # will be most transparent when expanding

in Fourier-modes of the comoving vector potential in the chiral basis,

— =

2 — ~ - T - ~ N .
A = [ (;r)’;; Ao (7 R)en (Ra(R)e™ + A3(r, Bies (Ral (F)e ™| | (6)

2Here we are dropping terms of O(§N?), assuming N < 1. Moreover, throughout this paper, we will neglect the
spatial gradients of the inflaton field. As we will see later, due to the strong enhancement of the scalar power spectrum
in axion inflation, this is a non-trivial limitation of our analysis. To go beyond this and include strong spatial gradients
of the scalar and gauge field into the analysis would require moving beyond the § N-formalism, e.g. along the lines of the

full quantum formalism of [33].
3Here we assume a definite sign for ¢’. In a C'P conserving universe this corresponds to averaging over a finite subset

of Hubble patches.



with the polarization tensors obeying éq(k) - k = 0, é4(k) - é91(k) = 0, and ik x é4(k) = okéy (k)
where k = |k|k = kk, a (a') denoting the annihilation (creation) operators and dr = dt/a denoting
conformal time. In this basis, the equation of motion for the Fourier coefficients A, (7, E) is obtained

as

+ [k* £ 2\ékaH| Ay (T, k)=0 with ¢ = /;;/ >0, (7)

where A = sign(¢’). For a sufficiently large inflaton velocity the effective mass term in the square

d2A:t (T7 E)
dr?

brackets for the helicity mode with o = —\ undergoes a tachyonic instability, leading to an exponential
enhancement. These gauge fields backreact on the inflaton equation of motion. The physical electric

and magnetic fields entering in (5) are obtained as

. 1 dA IO
E=-—--—" B=-VxA
2 dr 2V A (8)
leading to
L A [dk 5 d 2
(EB) = -5 [ TR |AaEB)| (9)
and the energy density
- 12
E? + B? 1 A_ - |2
<+ >: I e (| 4A2EB e p) ) (10)

2 at | an2 dr

where we have considered only the dominant, enhanced helicity mode. In summary, Egs. (5), (7) and

(9), together with the Friedmann equation

SH2M2 =V (¢) + 1H2(¢>’)2 + < (11)

E? + B?
2 b

2
form a closed, integro-differential system of equations describing the gauge field production induced

by the motion of the inflaton, taking into account the backreaction of these gauge fields.

3 Resonant gauge field production

In the limit of quasi de-Sitter space-time, 7 = —1/(aH), and for constant £, Eq. (7) can be solved
exactly. For the enhanced mode, this yields
e7r§/2

e

Here Wy, (%) denotes the Whittaker function and we have imposed Bunch Davies vacuum as an initial

A_\(1, k) = W _ig1/2(2ikT) . (12)

condition for far sub-horizon modes. Inserting this into Egs. (9) and (10) yields

/\6271'5 2rw€

Tuv
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and
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Figure 1: Blue dash: The square of the gauge field mode |A_ (7, k)|2. Red solid: The (EB) integrand k| A_\(r, k).
Both curves are evaluated at 7 = —1, and displayed as a function of e-folds N with log scaling of the vertical axis. The
wave number k = exp(—N) has been expressed in terms of the e-folds N, with N = 0 corresponding to a horizon-sized
mode. Left vertical line: e-fold time of maximal exponential growth of |[A_(r,k)|?. Right vertical line: The (EB)

integrand gets its dominant contribution at about AN later. Here we have set £ = 5.

with z,, =~ 2£ ensuring the cut-off of the UV divergence. The last equality is valid for £ 2 3, smaller
values of ¢ require a more careful regularization scheme [34, 35].

We shall now provide arguments that once £ becomes time-dependent, a second time scale (besides
H~1) appears, characterizing a resonance phenomenon with a frequency in e-fold time of wie® =
21/ AN¢. This resonance drives self-excited oscillations with frequency wji® appearing in (Eé)

Let us start our analysis by looking again at the gauge field Fourier mode equation of motion (7).

Rewriting this into e-fold time

N —atar = L e (L (1-0-L (15)
- e dr? N2 “YaN)
we get
. .k [k .
Al 1— A P o) Ar(®) =0 . 1
L)+ (1= AL + o (206 ) AslB) =0 (16)

In the remainder of this section, we will neglect all terms suppressed by the slow-roll parameter
e = —H'/JH < 1. We see that the mode A_) becomes tachyonic once k/(aH) < 2§ , while it
starts freezing out due to the friction term A’ , taking over once k/(aH) < 1/(2¢). We now look
at the behaviour of the mass term of the growing mode more closely. For constant £, the mass
terms takes its maximally negative value m?, = —¢2 at k/(aH) = £ since the quadratic function
of m%, = k/(aH) (k/(aH) — 2€) has zeroes at k/(aH) = 0 and at k/(aH) = 2¢. Hence, due the
behaviour of the Whittaker function governing the gauge field modes, the major part of the growth
of A_) out of the Bunch-Davies initial conditions happens while k/(aH) ~ &.

However, the integrand of (E§>, due to the 7-derivative and the k?* prefactor, takes its maximum

contribution at approximately k/(aH) = 2/¢ (see also Appendix A). This implies that (EB) is domi-
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Figure 2: Black solid: Numerically computed, and rescaled, response of (Eﬁ) to the change in £ with significant lag
~ AN. Black dash: Almost step function like change of £ modeled as £&(N) = & + % (1 + tanh(pe (N — No))) with the
jump taking place at No = 5 from & = 5 with amplitude A = 1 and steepness pe = 10 (dashed black).

nated by modes whose ‘knowledge’ of the value of £ governing their maximum growth period originates

from about )

e-folds earlier. This is clearly visible in Fig. 1, where we see that the (EB) integrand k:4%|A_ NG
has its peak contribution about ANg after the time when |A_,(7, k)[2 has its maximum exponential
growth (note, that in Fig. 1 we have replaced k by e-folds N using the relationship k£ = exp(—N)).
Using this information, we can ask a simple question — how does (Eﬁ) react if we allow for a
sudden step-like change of £ at a certain moment of time? For explicitness, let us assume that £ = &
changes to & + A > & at N = Ny suddenly. At N = Ny the integral <E§> gets its dominant
contribution from modes A_y(k) with k/(aH) ~ 2/¢ which had their growth happening AN¢ e-folds
earlier. At that time Ny — AN¢ we still had £ = £ and hence
o o270
(EB)n,| ~24-107"H — . (18)
£
Conversely, modes A_(k) with k/(aH) ~ 2/¢ at N = Ny will grow towards their plateau value and
thus dominate <E§) only starting at time N = N + AN¢. These modes experience their growth for
N > Ny when £ > &. Hence, they will approach a plateau governed by £ = £y + A€ and thus
o - e2m(fo+AL)
(EB)No+aNe| = 2.4-107"H [CEYNIL

The transition from the initial plateau to the final plateau happens smoothly, yet clearly the system

> (EB)w,| - (19)

shows ‘lag’: It reacts to a sudden change in £ by changing to its new (Eé} value only with a time lag

of about AN¢. A numerical computation of <E’§> displayed in Fig. 2 clearly confirms this lag.
Assume now that instead of a sudden change, we provide £ with a periodic time dependence

E(N + 27 Jwy) = £(N) with constant frequency wy in e-fold time. Clearly, (EB) will now react with

the same lag and thus oscillate with a phase shift

Ad = wnAN; (20)
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Figure 3: Left: Numerically computed, and rescaled, response of (EB) with significant lag (solid black) for a harmonic
perturbation of ¢ with near-critical frequency wy ~ wj (dashed black). Right: For much larger frequencies the response

averages out to zero. We chose £ = 5 and the oscillation amplitude A¢ = 1.

as long as this phase shift A¢ < 27.* Clearly then, demanding A¢ = 7 as a necessary condition for
resonance, this defines a critical frequency

wy = AﬂNg (21)

We can numerically compute the full <E§) responding to a harmonic perturbation of ¢ around &
with frequency wy. Figure 3 shows this for a frequency near wy,, and for a frequency much larger
than wj,. We see clearly, that at wy ~ w} there is strong response of (E§> with lag. Moreover,
at wy ~ wj the lag corresponds to a significant phase shift, while for much larger frequencies the
response averages out to zero.

Finally, we can numerically determine the lag AN¢ at wy ~ wj; occurring as a function of . This
is shown in Fig. 4 for wy = 0.5 and clearly shows (solid read line) the scaling ANg = In(¢2/2). The
refined estimate derived in App. A is depicted by the dashed red line. We clearly see in Fig. 4 that
especially for larger &, and up to wiggle-like fine structure (which depends on the details of the periodic
function ¢ and is beyond the simple estimates performed here), the numerical data are captured by
our expression for AN¢ reasonably well.

At this point it becomes interesting to turn to our dynamically coupled system, where the &-

parameter is determined by the scalar field equation of motion
. . 1 ==
¢>+3H¢+V7¢—?<EB>:0 . (22)

The driving force of the scalar potential V4 is balanced by the sum of the Hubble friction (second term)
and the gauge-field induced friction (contained in the last term), while the gf) only becomes relevant in
the very last stages of inflation. In our full numerical solution which clearly displays a resonance (see
Sec. 4) we can observe that the oscillating parts of the two friction terms 3H¢ and (EB) (sourced
by the time-dependent part of £) cancel against each other at N < 60 where the backreaction is not
yet very strong, whereas V4, which depends only on ¢ but not on <z5, evolves to good approximation
monotonously. This is clearly visible in Fig. 5 where we plot the different parts of the scalar field

equation of motion evaluated on the numerical solution for 1/f = 25 discussed in detail in Sec. 4.

4To see this from the ‘sudden approximation’ argument before, break up a periodic &(N) into small step-wise changes.
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Figure 4: Data points: The lag AN¢ for the numerically computed response of (Eﬁ) to a harmonic perturbation of &
with near-critical frequency wy = 0.5 ~ wj as a function of £&. Solid red line: our estimate ANg ~ In(¢2/2) in Eq. (17).

Dashed red line: refined estimate derived in App. A.

We now parametrize ¢ as { = £ + A¢(NN) with the long-time average AE(N) = - [ dNAE(N) = 0,
where an over-bar denotes averaging over time while all quantities are implicitly containing an average
over separate universes part of the 0N formalism (unless this average is written explicitly as (...)).
Consequently, we can recast the time dependent part of d) as A¢(N) and get approximately

6H2§ A€ — }A(EE) (AE) ~0 (23)

where (EB) = (EB) + A(EB).
Now we use the properties of the background (EB) given in Eqs. (9),(12) to write

(EB) = —\Igp (24)

where Zgp > 0 is a positive definite function. Assuming the oscillating part A<E§> will not change
the sign of the total <E§>, we can then define the split of (E§> into background and oscillatory part

with a definite phase relative to the sign of <E§> by writing

(EB) = (EB) + A(EB) = -\ (Igp + ALpp) . (25)

This allows us rewrite Eq. (23) as

1 AZgp(Af)

A6+ o ATop(AD) =0 & Af=— o

6f2H? (26)

Moreover, from the values of f and H we see that the factor 1/(6f2H?) rescales AZgp to be dimen-
sionless and have the same magnitude as A€.

For this rescaled AZgp, the observations made above for a periodically varying £ parameter (see
Eq. (21) and Fig. 3) indicate the presence of a resonance if

AZpp(AE(N))

6f2H2 ~ _Aé(N) ~ A{” ) (27)
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Figure 5: The contributions ¢ (black dash), 8,V/H? (black solid), (3 — €)¢’ (red short dash), and (EB)/(fH?) (red
dash-dot) to the scalar field equation of motion for f = 1/25 and V(¢) = m?¢?/2 (see Sec. 4) [in units of Mp]. We
have conveniently expressed the derivatives qb and ¢> in terms of e-fold time derivatives ¢’, ¢”. Note that for N < 60 we
find that ¢ is negligible, while the first long-wave oscillation has ¢’ and (Eé) of opposite phase. Note further, that for
N > 60 the long-wave oscillations are superimposed by faster damped oscillations. For these, ¢” is no longer negligible,

and the phase shift at each step of the chain ¢" — ¢’ — (EB) is about /2.

Here in the last step we have assumed that A¢(N) is an oscillating function with an approximately
constant frequency. Plugging this into the right-hand side of Eq. (26) we find that the equation of

motion for £ reduces to the oscillator equation
AE ~ —AE" . (28)

Next, we observe that for N 2 60 in Fig. 5 there is a secondary pattern of damped oscillations
at higher frequency compared to the long-wave ’base frequency’ oscillations discussed above. For this
pattern the oscillating contribution of é is no longer negligible. Moreover, we observe that the phase
shift at each step of the chain ¢” — ¢/ — (EB) is about m/2. This implies that for this pattern the
corresponding high-frequency (labeled by ‘h.f.") oscillating parts A&(/) and AI](Eth '), split off the full
quantities the same way as we did for the base frequency parts above, satisfy

1

TE ATYS (A =0 (29)

(Aé‘(h-f))’ + 3A§(hf) +

The observed phase relation in Fig. 5 then states that AI](Eth ')(Aﬁ) has a phase shift of 7/2 to the
right compared to AE"f) and of « to the right compared to (A§(h'f'))’. Hence, the figure indicates
that for the high-frequency oscillations

AL (AT (AgmPY ~ ATy (30)

Plugging this relation into Eq. (29) we get the structure of the dampened harmonic oscillator differ-

ential equation
(AZZY" + 3ATEY + Az =0 (31)
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While we cannot determine the frequency of these faster oscillations w(/*) at this time, we consider the
fact that the equation of motion takes the dampened oscillator form to be strong evidence supporting
the existence of these secondary, faster dampened oscillations in the coupled system.

It is due to this line of reasoning that we conclude the presence of resonance occurring in the strong
gauge-field back-reaction regime. Neglecting the resonance phenomenon, £ is typically a monotonically
growing function of N, while the resonance frequency only scales logarithmically with & and thus N.
Hence, the sweep of ¢ effectively scans over possible resonance frequencies. Hence we expect the
increasing value of £ to eventually trigger the resonance behaviour with approximately the predicted
frequency. Some of the ideas presented here have been qualitatively previously presented in Refs. [25—
27]. After formalizing these arguments, we here succeed in quantitatively explaining the observed
resonance frequency. Strictly speaking, the arguments spelled out above form a necessary, but not
sufficient condition to ensure a resonance. However, in our numerical solutions to this coupled system
of differential equations (see next section) we always see this resonance, indicating that this is indeed

a generic feature.

4 Numerical results

We performed a full numerical analysis taking Mp/f = {20,25} and V(¢) = m?¢?/2 with m =
6 x 107% Mp, reproducing the observed amplitude of the scalar power spectrum at CMB scales.” Our
final goal is to find the solution of the system of coupled integro-differential equations (5), (7) and (9).
The first step is to solve the inflaton equation of motion using the estimate of (Eé) given in Eq. (13),
which is obtained by solving the equations of motion of the gauge field modes, A_ (7, k), assuming a
constant inflaton speed, Eq. (12). Then, choosing an appropriate array of k-modes, we solve Eq. (7)
for each mode and we compute the discretized the integral of equation Eq. (9), getting a new estimate
of the backreaction. We reach the final solution by iterating this procedure until we reach the end of
inflation with a self-consistent solution, see App. B for details. The initial conditions for the inflaton
field are chosen at CMB scales in accordance with the vacuum slow-roll solution while the A; modes
satisfy Bunch-Davies vacuum conditions; we stop the time evolution when the system reaches the end
of inflation € ~ 1.

The results of our analysis for 1/f = {20,25} are shown in Fig. 6 where we compare the final
solution for (EB) and ppp = <W) with the analytical estimate of Eqgs. (13) and (14). We also
plot the £ parameter which shows that the oscillatory behaviour of the inflaton speed becomes more
apparent in case of strong backreaction.® We see that the numerical solution including the backreaction
oscillates around the analytical estimate, with an oscillation period of AN¢ ~ 3, in accordance with
our estimate in Sec. 3. For f = 1/25 the value of ¢ temporarily changes sign (at N ~ 62). The reason

for this is the delay in gauge friction term discussed in Sec. 3. As |¢'| drops, the gauge friction drops

5 As expected for the discussion in Sec. 3, the generic features of the results discussed here are not very sensitive to

the precise form of the scalar potential. In particular, we confirm similar results using potential linear in ¢.
At the maxima of these oscillations, the value of ¢ exceeds the threshold & ~ 4.7 bounding the perturbative regime
for approximately constant £ [36,37]. This threshold cannot be immediately applied to a strongly oscillating £ and we

will comment on perturbativity constraints in more detail in Sec. 5.

11
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Figure 6: Top: 1/f = 20. Bottom: 1/f = 25. Left panels show the numerical results of prp and (EB) (solid lines)
compared to their analytical estimate (13), (14) (dashed lines). The vertical lines refer to the end of inflation in absence
of backreaction (black line) and for the full numerical analysis (red line). Right panels show the oscillatory behaviour of
the & parameter (solid black line) compared to its analytical result coming from the solution of the inflaton equation of
motion when the gauge field backreaction is given by (13) (dashed red line). For better visibility, we display only the
last ~ 20 e-folds of inflation.

and the opposite sign of ¢’ (encoded by \) entails the opposite sign for the gauge friction term as one
would expect of a friction term. However, since the gauge friction term is dominated by modes which
are controlled by the value of ¢’ some AN e-folds earlier, the sign change in the gauge friction term
is delayed, allowing ¢’ to temporarily change sign.

Our results are in accordance with those previously found in Refs. [25-27], which reported oscilla-
tory features in the inflaton velocity with a period of 3 — 5 e-folds. All these studies are based on fully
independent codes and numerical methods, and the results observed can be nicely explained with the

semi-analytical arguments presented in Sec. 3.

5 Scalar power spectrum and primordial black holes

5.1 Scalar power spectrum sourced by gauge field configuration

The gauge field population does not only backreact on the dynamics of the homogeneous inflaton field
but also acts as source term for the scalar inhomogeneities sourcing the density perturbations of the

Universe. In the separate universe picture, curvature fluctuations on super-horizon scales are obtained

12
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Ce 2 ON(ty) = N y(ts) 66(ts) . (32)

Here N(t,) denotes the average number of e-folds elapsed between ¢, and the end of inflation, whereas
dN(t) denotes the deviation occurring in a particular patch of the Universe induced by super-horizon

scalar fluctuations. The perturbed version of Eq. (5) reads

0=¢" + <3+>

H/ , , Hl
+ 700 +¢8N<H>6N+(

oH .
>5N+fH3<EB>5N
1 O(E

/! 1_7 -
+6¢" +36¢ fHQEB S ON

5N . (33)

Since we are keeping only fluctuations to first order, all occurrences of H, V and (E§> are here
understood to be evaluated in terms of the homogeneous field ¢. On the contrary, the factor EB in
the third term of the third line includes the inhomogeneities in the gauge fields sourced by d¢. Using
Eq. (5) to replace the terms in the first line, dropping the slow-roll suppressed terms in the second

line and inserting Eq. (32) this simplifies to

N4 O(EB) 1 - 1

Fion 00 = (BB~ EB) = pben. (34)

N[0B(N)] = 060" + 3¢ —

This inhomogeneous linear differential equation can be solved by the Greens function method, see
e.g. [11,28].8

For any linear operator Ly, the Greens function satisfying
Ly G(N,N') = 6(N — N}, (35)
can be convoluted with the source term S(N),
SH(N) = / G(N, N')S(N')dN’, (36)

to obtain a solution of the inhomogeneous equation Ly d¢(N) = S(N). In Eq. (34) we identify S(N) =
Spp/(fH?). Moreover, for any given function (EB)(N) we can determine (at least numerically)
the Greens function of the corresponding linear operator Ly by solving the ordinary differential

equation (35). Since this is a second order differential equation we need to specify two boundary

"This expression relies on the assumption that AN (¢1, ¢2), the time in e-folds required for the inflaton to move from
¢1 to ¢2 does not depend on any further independent parameters, such as e.g. the inflaton velocity. For the attractor
solution, this is justified even taking into account the strong, velocity-dependent friction. In the strongly oscillatory

phase towards the end of inflation we expect corrections due to the break-down of the slow-roll approximation.
8For a comparison with these pioneering works see App. C. In short, we confirm the results found in the weak

backreaction regime but disagree in the strong backreaction regime. We find the backreaction to be weaker than

previously estimated, leading to a significant enhancement of the scalar power spectrum in this regime.
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Figure 7: Scalar power spectrum for 1/f = 20 (left) and 1/f = 25 (right). The resonantly enhanced gauge field

population leads to strong enhancement of the scalar power spectrum at small scales, with peaks reflecting the resonance

structure. The gray and red shaded areas indicate the limitations of the § N formalism, see text for details.

conditions which we take to be G(N, N) =0 and G'(N, N) = 1.7
With this, the two-point function of scalar perturbations exiting the horizon at e-fold N can be

computed as
(¢?) = (6N?) = N2 (6¢%) = N2, / dN' / dN"G(N,N)G(N,N")(S(N")S(N")). (37)

To proceed, let us first make the simplifying assumption that the source, i.e. the variations dgp, are

uncorrelated at different times,

(S(V)S(N") = (S(N)S(N)S(N' ~ N") (38)
= <2 OB (V)N = N") (39)
~ oo (N3N = N), (40)

with 0% = (EB — (EB))? denoting the variance of EB at a given time. For a given set of mode

functions Ag(NN) the variance 0% 5 can be computed explicitly, see e.g. App. A of [14]. The final

expression for the power spectrum then reads

AN, N (N)
PPHA(N)

AZ = (5¢%) ~ N?, / dN’ + {*)vac (41)

where ((%ié? = H/(2w¢') is the usual vacuum contribution.

The result obtained by numerically evaluating the Greens function G(N, N') and the variance ogp

is depicted in Fig. 7. The power spectrum is dramatically enhanced towards the end of inflation and

9For the retarded Green’s function G(N, N') = 0 if N’ > N. In addition we know that G(N, N’) must be a continuous
function since LyG(N, N') does not involve generalized functions beyond § (N —N") functions and in particular it does not
contain derivatives of § functions. Imposing continuity at equal time requires lim G(N,N')= lim G(N,N')=0.
N/'—N_ N'—N4
N'+4e
On the other hand, integrating (35) over an infinitesimal neighbourhood of N = N’ we get / LnG(N,N")dN = 1.
N’'—e¢
G being continuous, dnG must be bounded and we immediately see that if we shrink the integration domain to zero
N'+e N'+e
size the only term which can give a finite contribution is lim LnG(N,N')dN = lim ONG(N,N')YdN =

e—0 N/ —e e—0 N/—e
OnG(N,,N') — OnG(N',N') = OnG(N.,N') = 1.
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inherits the resonant oscillations present in the source term. As highlighted by the gray band, the
power spectrum extends above ¢ ~ 0.3, indicating the breakdown of the perturbative expansion used
in our analysis. Moreover, for f = 1/25, the inflaton speed temporarily changes sign (see Fig. 6),
implying that ¢ is not monotonously increasing. Strictly speaking, this requires to go beyond the
standard 0 N formalism (see footnote 7). In practice, since this only happens for a very short period
of time, we expect the JN formalism (with the inflaton speed regularized to some small value round
N =~ 62) to nevertheless give a good estimate. The corresponding problematic region is highlighted
in red in the right panel of Fig. 7. Due to these caveats, we cannot make a prediction about the
precise amplitude of the scalar power spectrum at small scales. However, we can conclude that power
spectrum reaches values of Ag 2 0.01 in the last e-folds of inflation, exceeding the threshold for
primordial black hole formation (see below).

The very large values for the scalar perturbations at small scales, indicating an inhomogeneous
field configuration with large gradient energy, may trigger a premature end of inflation. This would
relax the bounds from primordial black hole formation and consequently the bound on the coupling
1/f (see below). However, recent findings [38-41] indicate that high-scale inflation is quite robust
against large gradient energies. How much of this stability against large gradients remains on the
~ 2..3 Mp of field range corresponding to the last about 5 e-folds of inflation in a quadratic potential
is an open question which we leave for future work. We hope that our findings will trigger a more
detailed non-perturbative analysis of this last stage of inflation.

Even discarding the peaks arising from the resonant enhancement, the amplitude of the power
spectrum in Fig. 7 at small scales is significantly larger than expected from previous estimates [14,28].
We provide a detailed comparison and discussion in Appendix C. In summary, we conclude that
previous analytical analyses have overestimated the amount backreaction in Eq. (34) and have hence
underestimated the amplitude of the power spectrum in the strong backreaction regime. Consequently,
the amplitude of the scalar power spectrum we report is in particular significantly larger than found
n [25], which accounted for the oscillating inflaton velocity but used the estimate for the power
spectrum derived in [14].

In a next step, let us check the robustness of this estimation by dropping the simplifying assump-

tion (38). Instead, we will allow for unequal time correlations,
(S(N")S(N")) = (S(N')*)g(IN" = N"]), (42)

with g(AN) — 0 for large AN = |N' — N"|. The power spectrum then becomes

(N?) =~ f2 = / dN'og5(N")G(N,N') / dN"g(|N" = N")G(N,N"), (43)
where for simplicity we have neglected the time-dependence of H.
More precisely, the time auto correlation function (S(N')S(N")) satisfies by definition the following
properties
(S(N')S(N")) = (S(N")*) , N'=N"
(44)
[(S(N)S(N)| < SN, N'#N"

15



for normalized auto correlation functions. This implies g(0) =1 and g(AN # 0) < 1.

We can now estimate the rough width and shape of the function g(AN) beyond the delta function
approximation by looking at the result Eqs. (A3) and (A4) from [28]. Massaging the expressions a
little bit, we get for the correlator!'’

H' H' 2r(E'+¢")
P (V7 V)

/ &Pz e (0|6 55(N',0)0p(N", 2)0) =C(k) (45)

o 1
Ctr) = & [ daa® [ da/ T+ 2gaemvFia/ D
0 -1

2

(14 i) [ doler - csta e
0

14+ ¢+ 2qa)

Here, we define p = 2¢/(aH), §= k/|p|, 7 = |plé. and & = 4|p|(v/p' + v/p")2. Here and here only,
for notational brevity the superscripts ()’ and ()” denote the given quantity at time N’ and N,
respectively. We now see, firstly, that the x° factor inside C(x) and the factor 1/(v/p’ + /p")*°
multiplying C'(k) cancel each other. Secondly, we recognize that the correlator is bounded from above
by its value on far super-horizon scales k — 0, and that the correlator depends only polynomially on

a’ and a” in this limit. Hence we find that the correlator at late times scales as

/ Bz e (0|65(N',0)055(N", 2)|0) ~ o e 3IN'FNT) — o mON—3AN (46)
assuming N” > N’ with loss of generality. By comparison, we conclude
g(AN) ~ ¢ 38N (47)
For a functional form g(AN) = exp(—cAN) (and assuming N” > N’ > 0) the integral
1" / 1" 2 —cN’ 2
AN"g(IN' = N") = = (2— V) < 2 (48)
c c

is of O(1) for O(1) values of ¢. Since in our case we have ¢ = 3, the inclusion of unequal time
correlations does not significantly alter our result. This can also be confirmed by a comparison of our

results with previous analysis [11,28] which included this unequal time correlator, see App. C.

5.2 Primordial black hole formation and phenomenology

If the scalar perturbations at a given scale exceed a critical threshold (. ~ 0.5 they collapse into
a primordial black hole upon horizon re-entry [42]. The mass of the corresponding black hole is
determined by the energy contained in a Hubble volume at the time of horizon re-entry,

. A 107%Mm .
Mppi(N) ~ 5 (e N Hipne) ™2 x 3 (e N Hipg)?2 M2 ~ 55 gy <pr> N (49)
1mn

0T hese expressions are based on parametrizing the gauge field mode functions with Whittaker functions, see Eq. (12).
For a strongly varying & parameter this approximation becomes poor, nevertheless we expect the general result of a fast

exponential fall-off of the unequal time correlator to hold also in this case.
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with N counting the number of e-folds from the horizon exit of the respective fluctuation until the
end of inflation, Hj,¢ denoting the Hubble parameter at this time, j = 2 (j = 3) for radiation (matter)
domination after inflation and v ~ 0.4 parametrizes the efficiency of the gravitational collapse [43,44].

Once formed, the PBHs can slowly decay by emitting Hawking radiation. In particular, PBHs with
Mppr < 10" kg decay into thermal radiation before the before the onset of big bang nucleosynthesis
and their abundance can thus be very large [45,46]. On the other hand, PBHs with 10'! kg <
Mppr < 1014 kg have a life-time comparable with the age of the universe and their abundance is
highly constrained by the non-observation of their Hawking radiation. Heavier black holes are stable
and contribute to dark matter, their abundance is constrained by the observed dark matter abundance
as well as by direct searches, see e.g. Refs. [42,47] for an overview.

For a given amplitude of the scalar power spectrum, the probability of forming PBHs depends
on the statistical properties of the scalar fluctuations, since typically PBH formation is a rare event
occurring in the tail of the distribution function. For a gaussian distribution any power spectrum
generating stable black holes with (¢2) > 1072 leads to an overclosure of the universe [48]. For a
positive y2-distribution, as expected for the sourced scalar perturbations in axion inflation, this value
is lowered to (¢2) > 1073 [14]. The amplitude of the power spectrum in Fig. 7 clearly exceeds these
values towards the end of inflation. Thus requiring Mpgy(N) < 1011 kg to avoid these overclosure
bounds restricts the enhancement of the scalar power spectrum to the last ~ 10 e-folds, see Eq. (49).
Here we have set j = 3 since the expected large abundance of PBHs generated right after inflation
will lead to an early matter dominated phase.

Consequently, the power spectrum depicted in Fig. 7 which is only enhanced in the last ~ 5 (9)
e-folds for f = 1/20 (1/25), is (marginally) compatible with bounds from PBH formation. Signifi-
cantly larger values of 1/f will lead to overproduction of stable PBHs, though the precise bound will
depend on the details of the last stages of inflation, see discussion below Eq. (41). On the contrary,
a large abundance of metastable black holes as found for 1/f < 25 entails several interesting phe-
nomenological consequences. Firstly, an early PBH dominated phase, eventually releasing its energy
into thermal Hawking radiation, provides a remarkable reheating mechanism. Any radiation released
during preheating or in the inflaton decay is strongly red-shifted during the PBH dominated era, and
hot big cosmology is re-ignited once the PBHs decay. Among others, this poses interesting challenges
for baryogenesis. Secondly, there are three significant sources of gravitational waves (GWs): (i) GWs
sourced by the gauge field population during inflation [12], (ii) GWs sourced (at second order) from
the large scalar perturbations [49-51] and (iii) GWs sourced as a component of the Hawking radiation
of the decaying PBHs [45,52]. All of these sources result in high frequency (~ MHz and beyond) GWs,
beyond the scope of current experiments but suggesting a potential target for potential future high
frequency experiments. We expect that the characteristic oscillating features of the source <E§> will
also be visible in the GW spectrum. Note that any GWs which are sub-horizon during the PBH dom-
inated phase will be strongly diluted, leading to an interesting interplay between the GW and PBH
spectrum. This applies in particular to GWs generated during preheating right after inflation [23].
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6 Conclusions

Axion inflation is generically accompanied by an explosive gauge field production, triggered by a
tachyonic instability of roughly horizon sized gauge field modes, which is in turn sourced by the
inflaton velocity. The energy budget of this gauge field configuration is drained from the kinetic
motion of the inflation, which can be described as a backreaction of the classical gauge fields on the
homogeneous inflaton equation of motion. In this paper we study the resulting coupled system of
differential equations numerically, pointing out several new aspects which point to a more complex
dynamics than previously anticipated.

The tachyonic instability is most effective on slightly sub-horizon scales, and hence the amplitude
of any gauge field mode is set by the value of the inflaton velocity just before this mode crosses the
horizon. On the other hand, the non-linear backreaction term is dominated by super-horizon gauge
field modes, and hence reacts with a time lag to any change in the inflaton velocity. As the average
speed of the inflaton increases over the course of inflation this system eventually hits a resonance
frequency, where this time-lag corresponds to a phase shift of w. This leads to oscillations with
increasing amplitude and fixed frequency in e-fold time, clearly visible in the inflaton velocity, the
backreaction term and the gauge field energy density. This drastically changes the dynamics of axion
inflation in the strong backreaction regime.

An example of an observable which is significantly impacted by this change in the inflaton dynamics
is the scalar power spectrum. At very early times, when the scales relevant for the CMB exited the
horizon, the backreaction is irrelevant and the spectrum closely resembles the usual spectrum of
vacuum fluctuations. On smaller scales, corresponding to later stages of inflation, the scalar power
spectrum receives an additional contribution sourced by the inhomogeneous part of the gauge field
distribution, leading to an enhancement by many orders of magnitude. In this paper we re-visit the
equation of motion for the scalar perturbations, reproducing results found previously in the weak
backreaction regime but finding a significant larger amplitude for the scalar power spectrum in the
strong backreaction regime. This result holds even when working with a time-averaged backreaction,
i.e. discarding the resonance discussed above. Including the resonance leads to additional oscillatory
features in the power spectrum at small scales. However, our results also indicate that the strong
backreaction regime entails such large scalar perturbations (invoking in particular significant spatial
gradients in the inflaton field) that the perturbative description fails. The formation of (metastable)
primordial black holes seems unavoidable, entailing interesting phenomenological consequences, but
any more quantitative analysis requires a non-perturbative description which is beyond the scope of
the present paper.

In this context, it is interesting to note the recent progress made in simulating the preheating
phase of this model on the lattice [21-23] (see also [53] for related work). The challenges induced
by the growing separation of scales in an expanding Universe limits the amount of e-folds which can
be tracked, but the characteristic time scale ANg ~ In(£2/2) of the resonance seems to be within
reach of such analyses. The preheating phase, and in particular its gravitational wave production,

can impose stringent bounds on the axion to photon coupling, down to 1/f < 10 [23]. However,
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an early PBH dominated phase, triggered by the drastically enhanced scalar power spectrum, would
significantly dilute the energy density in gravitational wave radiation which redshifts faster than the
PBH component. This could re-open the parameter space of larger couplings. We leave a more detailed
study of this question to future work.

The observed resonance phenomenon will not only affect the scalar power spectrum but also
the tensor power spectrum, since it too receives a contribution sourced by the gauge field population.
Moreover, we expect that similar resonance phenomena can occur in other cosmological systems which
feature a tachyonic instability of gauge fields modes driven by a non-vanishing axion velocity. This
includes models of baryogenesis driven by the motion of axion-like particle [34,54] and models of
cosmological relaxation of the electroweak scale utilizing gauge field friction [55-60]. We leave these

questions to future work.
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A Phase shift

In this appendix we derive in a slightly different manner the value of the characteristic time scale ANg¢
that denotes the lag between (EB)(N) and ¢(N), given in Eq. (17).

First, we notice that in the case of constant ¢ we can define a self-similar function A(N) that

captures the growth of the gauge modes for any large enough value of £. If we evaluate the enhanced

2wk

gauge modes A_)(N, k) at the time N +1In 2§ and additionally rescale their amplitude with T cnh ()

(such that they asymptote to unity) their equation of motion in e-folds reads

- - k k -

Therefore, plugging in the constant ¢ solution for the gauge modes given in Eq. (12), we find that

[ e Ck
A = mwf’iﬁ,l/Q <_ZaH§) (51)

is a ‘self-similar’ solution that only depends on N (and on a trivial way on k) as long as the k/4aHE?

correction can be neglected in Eq. (50). Numerically, we find indeed that the {-dependence drops out

for £ > 2. See Figure 8. The original gauge mode A, can then be expressed in terms of A, as
sinh(7¢)

Ap(6,N) = We”f/%uv —n2¢) . (52)
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Figure 8: Evolution of ’Ak‘ (N) evaluated at Ny = 0 (red, purple and orange lines) and support of 2/g.5(Ng) (blue,

orange and green lines) for various values of .

Similarly, using Eq. (9), we define a self-similar function for the integrand of (Eé)

3N

mée . _N—In
3 )5N|W—z'§,1/2 <—2w N 25) 2, (53)

Ip.p(N) = Sinh(r€)

such that the integrand of (EB) (in d1nk) is given by

H*sinh(7€)e™

Ip.g(N —In2¢ — N . 54

Ipp(k,§,N) =

The self-similar integrand (53) indeed becomes independent of £, but only for larger values for £ 2 4.
This is because of the additional e3V that shifts the peak almost 3 e-foldings to sub-horizon scales.
We find that Ig.p peaks at N, ~ —1.38 ~ In(1/4) with amplitude I, ~ 0.57 and has most of its
support +1.5 e-foldings around it. See Figure 8. The integrand therefore peaks approximately at the

wavenumber that crosses the horizon at Npeax = N — In§/2.

Second, when £ is time-dependent, the gauge mode function Aj grows to a plateau value with
some effective &. If £ is slowly varying in time, we expect & to track £ adiabatically with some time

delay. Indeed, we find that a good fit is given by
Certf(Ni) = §(Ni)  with Ny = Ny, —log(§(Nx)/a), (55)

where N, is implicitly defined and a &~ 1.2 — 2.0. This refines the argument given in Sec. 3 that the
value of £ at k/aH ~ £ determines the growth of Aj. If we deviate from adiabatic tracking, however,
the effective & averages out to some degree. This makes sense, as the growth of the gauge modes will

start to feel a range of values of &.

At this point we make an ansatz: the integrand of <E§) is given by Ip.p(k,&es(Ng), N). This

indeed seems to be a good approximation for slowly varying &, see Figure 9, where again we choose
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Figure 9: Comparison of the integrand of (EB) (discrete points) with I.5(Nk, &er(Ni ), N) (solid lines) for an oscillating
& =5+ cos(0.1N) evaluated at various times N.

a = 2.0. The above considerations allow us to find a semi-analytical estimate for AN¢. Let us focus

on the harmonic

E(N) =&+ Acos(weN) . (56)
The first maximum of &g reflecting the maximum of ¢ at N, = 0 will be at
0= Nmax —In((+A)/a) — Npax=In(({+A)/a) . (57)

Meanwhile, the integrand of (EB)(N) peaks at N, = N — In(&es(Np)/2) and will take the maximal
value at N = ANg when N, = Nyax, hence

Nmax = ANe —In (€ + A)/2)  —  ANe=In((£+ A)*/2q) . (58)
We find that the best fit is given for a ~ 1.4 and is shown in Figure 4 together with the original
estimate ANg = In(£2/2) that was argued for in the main text.
B Details on the numerics

In order to obtain our numerical results we use an iterative procedure whose starting point is given

by the analytical estimate of the mode function Ay assuming constant inflaton speed ¢'(N), Eq. (12):

— — H4 8 _
(EB) (o) = 22117r2 Tfe%s fog zle "dz, (59)
2 2 H4
(Pes)0) = (B4 ) 0) = g9 €™, (60)
where Hy is given by the Hubble parameter in absence of any backreaction, HZ = 3‘_/&;),2. Denoting
2

the j-th order iteration quantities with the subscript j, our first step is to find the solution of the
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following differential equation for a given <E§> (j—1) obtained in the previous iteration:

1 e
o+ B = ew)dy + 7 (Vatou + $(EB) ) =0, oy
J
where Vidn) + (o)
() + (Pes)i-1) 1 2
iy = =2 ¢(i3 = ) = 590 * gz, Pealii-- (62)
J

Once we get the solution of this equation, ¢;)(/V), we plug the derived quantities H;)(N), €;)(N)

and &(;)(N) inside the gauge mode equations

Al s+ (=) A 4+ o (ﬁm + 25(3’)(N)) Ap,+=0. (63)

Then, choosing an array of k-modes with an exponential spacing, we estimate the discretized version

of <pEB>(j) and <E§>(])

M
1 'y -
(i) = oot 2 Ak (Kla?HE) A7 + KI|AT P — k) 0 (V = Ny (64)
=1

(EB)

T in2a 32‘“ kik —\A‘,ﬂ 0 (N —Ni) , (65)

where o is the polarization which experiences the tachyonic behavior and the third term in Eq. (64)
accounts for the subtraction of the Bunch-Davies contributions. With N; = miny {2aHE — k; < 0}
the Heaviside 6 function is introduced to take into account only those modes that have already become
tachyonic.

The array of k-modes is defined as k, = kmeZﬁ’;f Ai where p=2...M, ki = k;, is the lowest
momentum taken into account and A; = {0.1,0.02}. The value we choose for A; depends on the
oscillatory behavior of the solution: the stronger the backreaction, the thinner the momentum grid.
Given this choice, we can write down the integration step as dk = kdlIn k. The weight related to the

contribution of a single mode to the integral is evaluated using the trapezoidal rule, i.e. dlnk, =
1 5 log ( p+1) =A, and dlnk; = %log (Z—f) AL dlnky =3 5 log (J;‘:) = %.

Once we have evaluated the integrals (64) and (65) in this way we are able to define next iteration
quantities €41y, H(j11) and the new approximated equation of motion that the inflaton field needs
to satisfy. Iterating this procedure allows us to find better approximations of the real solution of the
system. We stop the calculations when there is no appreciable difference between the consecutive
iterations. We do not prove here that this procedure always converges at a reasonable rate. But if
convergence is reached (as is the case in our explicit numerical examples), this procedure ensures a
self-consistent solution of the integro-differential system (5), (7) and (9).

During the algorithm we check that the contributions coming from the non-tachyonic polarizations

is completely negligible.
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C Scalar power spectrum: comparison with earlier work

The scalar power spectrum generated during axion inflation has been previously estimated in Refs. [9,
11,14, 28] based on the analytical estimate for <E_§> given in Eq. (13). In this appendix we briefly
review these derivations and their limitations. Of particular interest to us are Refs. [11,28] which are
based on the Greens function method. Generalizing this approach leads to the results for the power
spectrum reported in the main text.

We start from the equation of motion for the scalar perturbations, Eq. (34),
N 4 8( > 1

5¢”+35¢’—fH2 o 00 = Fydes

(66)

- —

Ref. [11] focuses on the regime of weak or mild backreaction (wb) where the 0(EB)/IN term can be

neglected,'!

LY BO(N)] = 86" +366 = <. (67)
Following the steps in Eq. (34) to (41) of the main text yields
G?,(N,N")o%5(N')
2\ (wb EB
(ON?Z) () ~ / AN’ IR (68)
(wb).

with Gyp(N, N') denoting the Greens function of the linear operator L)y,

Ref. [28] focuses on the opposite limit of strong backreaction. In this case, the the backreaction
term in Eq. (66) can be approximated as

N, O(EB) 1 8(EB)_, 1 ( L

, ~ ~ s (27(EB)) 60/ = vV 69

T oN P om0 = gy \PTEB) )00 2fH2 90¢ - (69)

In the first step, we have Taylor expanded (Eé) in terms of £ instead of N. This is valid if <E]§) can

be expressed as a function of £ only and if £ is strictly monotonic, implying that the evolution of £
can serve as a well-defined ‘clock’ during inflation. As long as the fluctuations are small, N, 6§ < 1,
both descriptions are then equivalent. In the full system studied in the main text where £ becomes an
oscillating function, this procedure can not be applied. The second step relies on the explicit form of
<E§) in Eq. (13) with the additional assumption of H being approximately constant. The final step
uses the background equation of motion in the strong backreaction regime where the qB—term can be

neglected.'? Based on this, Eq. (66) can be expressed as

LEY[5p(N)] = 8¢ + 3¢ — 7 H2 72 Vio0¢ ~ FH? 208 (70)
and correspondingly
G%(N,N")o%5(N'
(GN2)(D) ~ / an' Gl e H2)< ]\][5,?( ) (71)

with Gg,(N, N’) denoting the Greens function of the linear operator Lg\s]b).

'We note that Eq. [11] includes the slow-roll suppressed mass term for d¢ and (working in Fourier space) the unequal
time correlations in (§gp(N)égs(N')). However, as the very good agreement in Fig. 10 shows, these do not significantly

change the result.
2Tn our numerical evolution of this system of 1/f = 35 we find all three terms of the background eom to be of similar

size towards the end of inflation. This approximation thus induces an O(5) error in the Greens function, which is squared

in the power spectrum and essentially accounts for the discrepancy between the black and dashed orange curve.
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Figure 10: Scalar power spectrum sourced by Eq. (13) for 1/f = 35. The black curve is our full result, the dashed blue
and orange curves implement the weak and strong backreaction approximation of Refs. [11] and [28], respectively. The
corresponding dotted curves indicate the very good agreement with the final expressions for the power spectrum derived

in these references. In this appendix we use the convention that inflation ends at N = 0.

Fig. 10 compares our formalism (black curve) with the approximations performed in Ref. [11] (blue
curves) and Ref. [28] (orange curve). In all cases, for the purpose of the comparison with previous
results, we assume in this appendix (E§> to be given by Eq. (13) and correspondingly 0% ~ <E§>
(see e.g. Ref. [14]). The black solid curve indicates our result based on (41), i.e. including the gauge
field backreaction in the d¢ equation of motion, with the gray dashed curve displaying for reference
the vacuum contribution. The dashed blue curve (essentially coinciding with the black curve) is the
result obtain based on the linear operator (67) in the weak backreaction regime, the dashed orange
curve is correspondingly based on the linear operator (70) in the strong backreaction regime. The
dotted blue and orange curves are the results derived in Refs. [11] and [28] for the weak and strong
backreaction regime, respectively, demonstrating our ability to reproduce these results when using the
same approximations. Finally, in the gray shaded region ¢ > 0.3, indicating that we cannot trust the
perturbative analysis underlying our computations.

The excellent agreement between our full result (black) and the weak backreaction approximation
(blue) indicates that the backreaction term in the d¢ equation of motion is essentially irrelevant for
the parameters discussed here. This conclusion is in contradiction to the conclusion drawn in [14,28],
which would indicate that backreaction dominates roughly above the dotted orange horizontal line in
Fig. 10, consequently suppressing the resulting power spectrum. We can track this difference down to
the approximations performed in Eq. (69), in particular in the last step thereof. We conclude that the
sourced scalar power spectrum is two to three orders of magnitude larger than previously estimated.
Nevertheless, our procedure also entails approximations which need to be scrutinized, most notably
the omission of the gradients V® and the dropping the unequal time contribution of the dgp two-
point correlator. Given the importance of this result for the production of primordial black holes, this
clearly calls for further investigation.

Finally, Ref. [14] presents a simplified derivation of the results obtained in Refs. [11,28]. In the
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strong backreaction regime this relies on the same approximations as [28], hence it is not surprising

that Ref. [14] also finds a strong suppression of the power spectrum in the strong backreaction regime.
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