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A key challenge in attosecond science is the temporal characterization

of attosecond pulses. Current characterization methods, based on nonlinear

light-matter interactions, are limited in terms of stability and waveform com-

plexity. Here we experimentally demonstrate a conceptually new linear and

all-optical pulse characterization method, inspired by double blind hologra-

phy. Holography is realized by measuring the XUV spectra of two unknown

attosecond signals and of their interference. Assuming a finite pulse dura-

tion constraint, we reconstruct the missing spectral phases and characterize

the unknown signals in both isolated pulse and double pulse scenarios. This

method can be implemented in a wide range of experimental realizations, en-

abling the study of complex electron dynamics via a single-shot and linear

measurement.

Isolated attosecond pulses are unique tools for studying the natural time scale

of electronic processes within matter. A fundamental building block in attosecond

time-resolved spectroscopy is the ability to precisely characterize their temporal

shape. These pulses encode valuable structural and dynamical information, com-

bining attosecond timing accuracy with Ångstrom spatial precision. This informa-
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tion is of key importance for understanding the evolution of electronic wavefunc-

tions in atoms [1], molecules [2, 3, 4, 5, 6] and solids [7]. Studying such phenom-

ena requires the development of a complete and robust characterization method for

attosecond pulses, posing one of the primary challenges in this field.

Clearly, the short duration of attosecond pulses, well below the temporal reso-

lution of detector electronics, does not allow for direct characterization in the time

domain. Therefore, their measurement is performed in the spectral domain, lead-

ing to the loss of spectral phase information. One approach to recover the lost

spectral information is to measure the interference of different frequency compo-

nents. However, as such an interference cannot be obtained via linear measure-

ments, it requires nonlinear light-matter interaction. Commonly used methods,

FROG-CRAB (frequency resolved optical gating for complete reconstruction of

attosecond bursts) [8, 9] and RABBITT (Reconstruction of attosecond beating by

interference of two-photon transitions) [1, 10] involve a nonlinear interaction of the

attosecond pulse with the near infrared (NIR) fundamental field. Interferometric

autocorrelation can be achieved via the use of an XUV-XUV nonlinear interaction

[11, 12]. Finally, the measurement can rely on the intrinsic nonlinearity of the

production process itself [13, 14]. Yet, all these time-resolved nonlinear measure-

ments require repetitive measurements at various delays between multiple fields,

and are sensitive to noise. Due to the limitations of available techniques, some

state-of-the-art attosecond sources, such as X-ray FEL, are difficult to adequately

characterize.

In this work we experimentally demonstrate a conceptually different approach

to directly measure and characterize XUV attosecond pulses. In contrast with com-

monly used femtosecond and attosecond characterization methods, our method

is based on a linear measurement of the XUV spectrum, obviating the need to

mix different XUV frequencies. This approach, termed double blind holography

(DBH), relies on two key components. The first component is perhaps the most

fundamental property of attosecond pulses – a finite temporal duration, also known

as a “compact support” (CS) in the time domain. The second component is a spec-

tral measurement of XUV signals from two independent coherent sources as well as

their interference, defining a double blind temporal hologram. Figure 1(a) depicts

how such “temporal hologram” can be obtained, where each arm of the interferom-

eter represents an independent attosecond source, while the spectral measurement

acts as a beam combiner which resolves their interference. Temporal holograms

can be realized in a range of experimental systems – from polarization measure-

ments [15] to two sources [16] and even multi-orbital contributions [3]. In our

work we implement this scheme using attosecond pulses generated in a mixture of

two gases. We further demonstrate the ability to perform a single-shot realization

of DBH via the interference between two time delayed pulses.
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Linear phase retrieval schemes have been extensively used in the spatial do-

main for the retrieval of objects from their diffraction pattern, as in x-ray lensless

imaging or electron diffraction, where the retrieved object is two-dimensional. In-

deed, for 2D objects having a finite support, a densely sampled diffraction pattern

is sufficient for the reconstruction of phase information [17, 18, 19, 20, 21]. In

contrast, the problem of reconstructing an ultrashort temporal 1D signal from its

measured spectrum is ill posed, having multiple valid solutions [22, 23]. Hologra-

phy, another common phase measurement scheme, relies on an a known reference

signal. In holography, interference with a known signal maps the missing phase

into intensity modulation of the measured signal. Yet, the generation of a well-

characterized reference for attosecond temporal holography is extremely difficult.

Double blind holography is a scheme which combines a compact support constraint

together with holography using an unknown reference, so as to overcome both their

individual limitations. This concept has been applied in the spatial domain to re-

trieve the diffraction phase in coherent diffractive (lensless) imaging scenarios in

the visible [24] and X-ray regimes [25]. Here, we apply this scheme in the tempo-

ral domain and demonstrate its ability to perform a linear reconstruction of isolated

attosecond pulses.

In the following, we briefly describe the essence of the method. For a detailed

theoretical study of this method, its advantages and limitations, see [26, 27]. Con-

sider two discretized XUV spectra, each of length N . Their spectral phases define

a set of 2N unknowns, XA
n = eiφ

A
n and XB

n = eiφ
B
n with n = 0, 1, . . . , N − 1.

A compact support (CS) constraint in the time domain requires that the Fourier

transform of the pulse spectrum vanishes outside of the support. This constraint

introduces a set of 2(N − T ) linearly independent equations (eqs. (3)-(4) in the

Methods section), where T is the width of the CS. Measuring the spectral inter-

ference of the two pulses allows for direct reconstruction of their spectral phase

difference, φB
n − φA

n , forming an additional set of N linear equations (eqs. (1)-

(2) in the Methods section). Overall these three measurements provide us with an

excess of linear equations which removes the degeneracy associated with the 1D

classical phase retrieval problem, allowing its direct reconstruction [26]. Impor-

tantly, this method does not require a-priori knowledge of the correct CS. Instead,

we scan over potential CS widths and apply the DBH algorithm for each assumed

CS. In each iteration we calculate an error score (see Method Section, eq. (7)),

which quantifies the residual energy outside of the assumed CS. The estimated CS

is the global minimum of this error score. Realistically, the spectral measurements

are accompanied by additive noise. Furthermore, the temporal signals may have

decaying tails that leak out of the CS. Investigation of the quality of reconstruction

in the presence of noise and for exponentially decaying signals can be found in

[27].
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We experimentally realized DBH of attosecond pulses using the following sys-

tem. A sub-4 fs, 1-mJ, 800-nm, carrier-envelope phase (CEP) stabilized pulse was

focused into a gas cell. The pressure in the cell was regulated by a leak valve under

varying backing pressures: 3 bars N2 and 1 bar Argon (Ar) separately, and their

mixture. The generated XUV and the NIR beams pass through a 100-nm-thick

aluminum filter which filters out all wavelengths corresponding to energies below

15 eV (ω ∼ 2.3 × 1016 rad/s). The XUV spectrum is measured by an XUV spec-

trometer, with a spectral threshold accepting energies above 20 eV (ω ∼ 3× 1016

rad/s). Figure 2(a) shows the three XUV spectra associated with the two attosec-

ond pulses and their interference. The structural difference between the ground

state of Ar and N2 leads to the generation of two significantly different attosecond

XUV pulses. The similar ionization potentials of the two gases, IAr
p = 15.8 eV,

IN2

p = 15.6 eV, give rise to a broad spectral overlap region over which the relative

phase can be extracted. Using low gas density ensures that propagation effects are

negligible and that the mixture spectrum indeed represents a coherent addition of

the pure gas cases.

Given the three measured spectra and the extracted phase difference, we next

apply the DBH algorithm for CS values in the range 0 − 1.35 fs. We identify a

global minimum in the error score curve at T ∼ 640 as, corresponding to the es-

timated CS (fig. 2(b)). Figures 2(c-d) present the retrieved spectral phases (solid

orange) obtained by DBH at the estimated CS, along with the original spectra for

both Ar and N2 (solid blue). The spectral phases exhibit pronounced group delay

dispersion, GDDAr = 8 × 10−33s2 and GDDN2
= 7 × 10−33s2, and also some

higher order terms. The gray area represents the uncertainty of the reconstruction

procedure. We estimate this area by choosing CS values shifted from the minimum

by ±80 as (one temporal resolution step). Naturally, the uncertainty grows at re-

gions of low signal. We note that any spectral phase-only filter applied to both of

the pulses will not affect the measured spectra. Such ambiguity cannot be resolved

by the DBH approach [26].

We validate our reconstructions by comparing the retrieved pulses with a FROG-

CRAB characterization. Maintaining the same experimental conditions, we focus

the unknown XUV pulses together with a NIR beam into a second Neon target

where we perform the FROG-CRAB measurement. Here, the strong NIR field

serves as a temporal gate for XUV photo-ionized electrons, mapping their pulse

properties into their electron momenta. Experimentally, we scan the delay between

the NIR and XUV fields and measure the photoelectron spectrum using an electron

time-of-flight (TOF) detector (for details see supplementary). Figures 2(c-d) com-

pare the photo-electron spectrum in both gases as measured by the TOF spectrom-

eter (dashed blue) and shifted by Ip. The XUV and photo-electron spectra do not
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Figure 2: Gas mixture single pulse DBH. (a) XUV spectra from three different

gases: Ar, N2 and their mixture. Frequencies below 3× 1016 rad/s are not detected

in our spectrometer. (b) The error score curve and the estimated CS, found at

global minimum of the curve. The normalized XUV spectral intensity (solid blue)

together with the DBH retrieved spectral phase (solid orange) at the evaluated CS

for Ar (c) and N2 (d). The gray area marks the possible uncertainty in the spectral

phase due to inaccurate choice of the CS. The normalized photo-electron spectrum

(dashed blue) and the FROG-CRAB retrieved phase (dashed orange) are plotted

for comparison.
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match perfectly mainly due to the TOF response function. Both the Neon ioniza-

tion dipole and the fact that low energy electrons are not effectively collected cause

a deviation at low energies (frequencies). At low electron kinetic energies standard

FROG-CRAB algorithms fail to accurately reconstruct the attosecond pulse. To

overcome this problem we combined quick and noise-robust ePIE reconstruction

[28] with VTGPA [29] (see supplementary for details). The FROG-CRAB spec-

tral phase reconstruction (dashed orange), obtained after 2000 iteration of the ePIE

code and refined by 100 iterations of the VTGPA code, is in close agreement with

the DBH result. Deviations appear only at very high frequencies where both sig-

nals are relatively weak and at low frequencies where the TOF spectrometer count

is low. The FROG-CRAB measurement averages multiple attosecond pulse real-

izations, that unfortunately are not all identical and differ due to intensity and CEP

fluctuations of the NIR field. In contrast, the linear nature of DBH allows for a

faster characterization and enables post-selection of spectra obtained under similar

experimental conditions (see supplementary for more information).

Double blind holography of attosecond pulses is not limited to the gas mixture

realization. Next, we take an important step forward, demonstrating the ability to

perform DBH using a single-shot measurement. Single-shot DBH has been first

demonstrated in the spatial domain [25]. The diffraction of two (or more) finite ob-

jects which are separated by more than twice their size allows the extraction of their

individual spectra and relative spectral phase directly from the auto-correlation

(AC) signal. In this case the two well separated objects serve as unknown ref-

erences to one another, representing the two arms of the hologram, fig. 1(b). In

this paper we demonstrate the temporal analog of this scheme by considering two

finite pulses which are delayed by more than twice their individual CS size.

Single-shot DBH is demonstrated by tuning the CEP of the driving pulse in

order to generate two attosecond pulses, separated by half the optical period of the

fundamental field. Figure 3(a) shows the intensity spectrum measured in Ar gas,

showing deep spectral modulations. The modulation period corresponds to a delay

between the two pulses of 1.35 fs, exceeding the expected CS of each individual

pulse, thus satisfying the basic requirement for single shot reconstruction. Figure

3(b) describes the AC signal, with a main peak and strong side bands arising from

the single-object autocorrelations and cross-correlations, respectively. By applying

a Fourier transform on the separate peaks we are able to retrieve the individual

spectra of the two interfering pulses and their relative phase (see Supplementary).

As in the single pulse case, we search for the optimal CS width and identify

a clear minimum at T = 490 as, fig. 3(c). The retrieved spectral amplitudes

and spectral phase, associated with each attosecond pulse, are presented in fig.

3(e-f). The difference in pulse intensities is attributed to envelope and saturation

effects. The expected spectral phase chirp appears clearly in both pulses, where
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the gray sleeves indicate a spectral phase error arising from ±70 as choices of the

CS. The stronger pulse has GDD comparable to the single pulse case, GDDA =
6×10−33s2, whereas for the weaker pulse we find a higher value, GDDB = 1.1×
10−32s2. This effect is dominated by the NIR pulse envelope and can be explained

in the electron trajectory picture. Electron trajectories launched at the first half-

cycle are driven by a strong returning force whereas trajectories launched at the

second half cycle are influenced by a weaker returning force, and exhibit higher

dispersion in arrival times. We have approximated this effect using a classical

trajectory simulation at our experimental conditions and found that the expected

GDDs are 8 × 10−33s2 for the stronger pulse, and 1.3 × 10−32s2 for the weaker

pulse, in good agreement with the reconstructed values. Better accuracy can be

achieved by taking into account the effects of tunneling and compression in the Al

filter.

In conclusion, we have introduced a conceptually new approach to address a

key challenge in ultrafast measurements – phase retrieval for ultra-short tempo-

ral signals – demonstrating a direct and linear reconstruction of attosecond pulses.

Double blind holography can be realized in a wide range of experimental schemes,

from polarization measurement to transient gratings or multiple orbitals HHG. In

order to demonstrate the versatility of DBH, we have applied this method in two

different scenarios: gas mixture and spectral interference of delayed pulses. In

contrast to current time-domain nonlinear approaches, our approach is essentially

a single-shot measurement. This removes the primary limitations in the character-

ization of a range of novel ultrafast sources as X-ray FEL attosecond pulses or at-

tosecond plasma mirrors. Looking forward, temporal double blind holography can

be implemented to characterize such sources and allow instant attosecond pulse

diagnostics. Using this new tool to study complex electron dynamics may give rise

to a new class of time-resolved experiments, where attosecond-scale phenomena

can be observed using a linear, single-shot measurement.

Methods Let An = |An|e
iφA

n =
∑N−1

t=0
ate

2πitn/N and Bn = |Bn|e
iφB

n =
∑N−1

t=0
bte

2πitn/N be the discrete Fourier transforms (dft) associated with the two

ultrashort signals {at, bt}
N−1

t=0
respectively. In a DBH, the spectral intensity of

the two signals, |An|
2, |Bn|

2, and the spectral intensity of their coherent sum,

|An +Bn|
2 = |

∑N−1

t=0
(at + bt)e

2πitn/N |2, are measured. The goal is to character-

ize the temporal signals {at, bt}
N−1

t=0
, or equivalently, recover the missing spectral

phase vectors XA
n = eiφ

A
n and XB

n = eiφ
B
n , both of length N .

The relative spectral phases φB
n −φA

n are extracted from the intensity measure-
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Figure 3: Single shot double pulse DBH. By setting the CEP phase to ∼ π/2
we generate two consecutive attosecond pulses in Ar. The two pulses interfere

in the spectral domain producing spectral fringes (a). The autocorrelation signal

(absolute value) shows the main lobe and two side-peaks, separated by 1.35 fs

(half period of the driving field) (b). The main lobe corresponds to the sum of

single-pulse autocorrelations, and the side-peaks correspond to cross-correlations.

We “cut-out” the different peaks according to the dashed windows and extract the

individual pulse spectra and spectral phase difference. (c) The error score curve and

the estimated CS, found at global minimum of the curve. Phase retrieval results:

(d-e) The normalized XUV spectral intensity (solid blue) together with the DBH

retrieved spectral phase (solid orange) at the evaluated CS for the two individual

pulses. The gray area marks the possible uncertainty in the spectral phase due to

inaccurate choice of the CS.
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ments according to:

φB
n − φA

n = arccos

(

|An +Bn|
2 − |An|

2 − |Bn|
2

2|AnBn|

)

(1)

In general, there exists a sign ambiguity associated with the inverse cosine branches

[30]. However, in our specific setting such a zero crossing does not occur. Eq. (1)

can be formulated as a set of N linear equations for the unknown phase vectors

XA
n , X

B
n as follows:

|An||Bn|X
A
n = AnB

∗
nX

B
n (2)

The CS constraint of width T constitutes a second set of 2N − 2T linear equa-

tions for the unknown phase vectors, XA
n , X

B
n , as follows:

1

N

N−1
∑

n=0

|An|X
A
n e

2πitn/N = 0 for t 6∈ CS (3)

1

N

N−1
∑

n=0

|Bn|X
B
n e2πitn/N = 0 for t 6∈ CS (4)

We solve these linear equations for each CS value in a range of feasible CS sizes,

returning the suggested solutions X̂A
n , X̂

B
n . These solutions correspond to the fol-

lowing temporal signals,

ât =
1

N

N−1
∑

n=0

|An|
X̂A

n

|X̂A
n |

e2πitn/N (5)

b̂t =
1

N

N−1
∑

n=0

|Bn|
X̂B

n

|X̂B
n |

e2πitn/N (6)

For each CS guess we calculate an error score. This score expresses the nor-

malized amount of energy leaking out of a suggested CS:

Err(T ) =

∑

t>T |ât|
2

∑

t |ât|
2

+

∑

t>T |b̂t|
2

∑

t |b̂t|
2

(7)

The estimated CS and the output solution of DBH are those corresponding to the

global minimum in this error score.

The above procedure is slightly modified for the two delayed pulses. The in-

verse Fourier transform of the spectral interference of two pulses delayed by τ is

IFT [|An + e2πiτn/NBn|
2] = at ⋆ at + bt ⋆ bt + at ⋆ bt+τ + bt+τ ⋆ at (8)
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where ⋆ is the cross-correlation operator. When at, bt are temporally separated, the

different terms in the AC can be used to deduce |An|
2 + |Bn|

2, e−2πiτn/NAnB
∗
n

and e2πiτn/NA∗
nBn. The problem of recovering |An|, |Bn| and AnB

∗
n is equivalent

to the sign ambiguity mentioned above.

Data Availability Experimental data and computer code used in this paper are

available from the corresponding author upon reasonable request.
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