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Abstract

We describe an implementation of a subtraction scheme in the nonrelativistic-QCD treatment of heavy-
quarkonium production at next-to-leading-order in the strong-coupling constant, covering S- and P-wave
bound states. It is based on the dipole subtraction in the massless version by Catani and Seymour and its ex-
tension to massive quarks by Phaf and Weinzierl. Important additions include the treatment of heavy-quark
bound states, in particular due to the more complicated infrared-divergence structure in the case of P-wave
states.
© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In next-to-leading-order (NLO) perturbative calculations in quantum field theory, the phase
space integrations of real corrections generally produce infrared (IR) divergences, which have to
be regularized. The standard choice for this is dimensional regularization, where the integrations
are done in D = 4 — 2¢ space-time dimensions, so that the IR divergences show up as poles in €,
ready to be canceled by other contributions. The problem is that the squared matrix elements
are, apart from the simplest examples, so complicated that they have to be integrated numeri-
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cally, in four dimensions. To combine both ingredients, the analytic singularity cancellation in
D dimensions and the numerical phase space integration in four dimensions, two basic types of
calculational schemes have been devised: slicing schemes and subtraction schemes.

In phase space slicing schemes, the real-correction phase space is split into two parts, with the
separation lines enclosing the IR-singular regions at close distances. Since, in the vicinity of the
IR divergences, both the squared matrix elements and the phase space factorize into simple ex-
pressions, the analytic integration in D dimensions is feasible, while the part outside the enclosed
region is free from singularities, ready for numerical integration. Both contributions depend on
the specific choice of phase space cut, but the sum of both contributions is independent of it.
Most calculations of inclusive heavy-quarkonium production and decay within the factorization
formalism [1] of nonrelativistic QCD (NRQCD) [2] have been implemented with a two-cutoff
phase space slicing scheme as outlined in Ref. [3]. In particular, this includes our previous calcu-
lations [4]. There are, however, two principal disadvantages of the phase space slicing scheme:
First, one cannot avoid a residual numerical dependence of the result on the slicing parameters
and, second, the numerical integration over the finite real-correction phase space part has to be
done to very high precision because there is a strong cancellation between the two phase space
parts.

On the other hand, in subtraction schemes, certain simple subtraction terms with the same
divergences as the real corrections are subtracted from the latter, enabling a numerical integra-
tion. The subtraction terms are then separately integrated analytically in D dimensions, and the
results are added back. To our knowledge, the only NLO calculations of inclusive quarkonium
production so far performed in this way are those of Ref. [5] in the color singlet model, based
on Catani-Seymour dipole subtraction for massless quarks [6]. Since only color singlet S-wave
states were involved, the subtraction terms of Ref. [6] were sufficient.

In this paper, we describe an implementation of a subtraction scheme for inclusive quarko-
nium hadroproduction within NRQCD, which can handle all intermediate S- and P-wave color
singlet and color octet states. In addition to the massless Catani-Seymour scheme [6], our imple-
mentation is built upon its extension to massive particles by Phaf and Weinzierl [7]. However,
we have to take special care of the structures of the amplitudes when projected onto heavy-quark
bound states. In particular, new kinds of subtraction terms have to be introduced in the case of
P-wave state production.

The outline of this paper is as follows: In section 2, we describe the structure of the appearing
amplitudes projected onto the different Fock states and their soft and collinear limits. The diver-
gence cancellation is explained in section 3. The subtraction scheme used is in detail presented in
section 4. Details about the implementation of phase space cuts as well as numerical tests of our
extended dipole subtraction approach follow in section 5. Section 6 contains a brief summary. In
Appendix A, we collect the expressions through order O(€?) for the integrated Catani-Seymour
and Phaf-Weinzierl dipoles needed in our study, in a form that already includes mass factorization
counterterms.

2. Cross sections and their limits
2.1. Cross sections in NRQCD factorization

In the framework of QCD and NRQCD factorization, the cross section for the inclusive
hadroproduction of heavy quarkonium H is given by
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do(AB — H + X)
= Y % [ s fogatua) o) O 1n1)d @b —> QOTal + ), )
a,b,X n
with the partonic cross sections
1 1
5 dPS
Neot () Npoi (1) 2(p1 + p2)
y Fyym(X)
Ncol (a)npol (@)ncol (b)npol (b)

dé(ab— QQ[n]+ X) =

llab — QO[n]+ X)|>. (2

Here, a and b are the colliding QCD partons with four-momenta p; and p>. f;/4(x4) is the par-
ton distribution function (PDF) to find parton a with a longitudinal-momentum fraction x, inside
the colliding hadron A. X collectively denotes the partons that are produced besides the quarko-
nium H, and Fgyy, (X) are its quantum mechanical symmetry factors for identical particles in the
final state. Q is bottom for bottomonium production and charm for a charmonium production. n
is the Q@ Fock state, for our purposes 35 1, 1So, Ip,, or 3p 7 in a color singlet or color octet state.
The color state is marked by upper indices 1 or 8 in square brackets, like for example in the color
octet 3P1[8] state. Ncol(n) = 1 if n is a color singlet state and Cf‘ — 1 =28 if it is a color octet
state, and Npo is the D-dimensional number of polarization degrees of freedom of state n. We
recall that Cr =4/3 and C4 = 3 are color factors of the QCD gauge group SU(3). In making the
Ncor and Npop factors explicit, we follow Ref. [9]. (OH[n]) is the corresponding nonperturbative
NRQCD long-distance matrix element (LDME). n¢o1(a) and npoi(a) are the number of colors and
the D-dimensional number of polarizations of parton a. dPS is the Lorentz-invariant phase space
element. As a convention used throughout this paper, the bra vector is a matrix element, and in
squaring the matrix element a summation of the degrees of freedom of all external particles is
always understood implicitly. This convention is adopted from Catani, Seymour [6], Phaf, and
Weinzierl [7], who do, however, include the n.q factors in the amplitude vectors, albeit not the
npol factors. In our choice of normalization, all averaging factors are explicit. Another thing to
note is that the summation of external degrees of freedom includes the spin and orbital-angular-
momentum quantum numbers mg and m; of the 0 0ln] state, even if the polarization vectors
stand outside the amplitude vectors. Hereby, in the case of an =3 P[Jl/g] state, this summation is
always restricted to the subspace with definite J.

In our study, we are interested in observables where quarkonium H has nonvanishing trans-
verse momentum pr. Therefore, the partonic Born cross sections and their virtual corrections
already correspond to 2 — 2 processes kinematically, namely

g+g— Q0Inl+g, 3)

g+q— Q0Inl+gq, O]

q+g— 00Inl+q, (5)

q+q— Q0Inl+g, (6)
while, for the real corrections, we are led to consider the 2 — 3 kinematics processes

g+g— 00Inl+ge/qq, ©)

g+q— 00Inl+qg, ®)

q+g— 00Inl+qg. )
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q+q— Q0Inl+gg/99/d'q, (10)
q+q— 00Inl+qq, (11)
q+q — 00Inl+qq’, (12)

where g is a gluon and ¢ a light quark or antiquark (specifically u, d, s, &, d, 5 for charmonium
and, additionally, ¢ and ¢ for bottomonium), g its antiparticle, and ¢’ another light quark or
antiquark different from ¢ and g. As already stated above, the four-momenta of the incoming
partons are pj and py. The four-momenta of the outgoing QCD partons are p3 and, for the real
corrections, also p4. The four-momenta of the heavy quark and antiquark that form the Q Q[n]
state are parameterized by % + ¢ and % — g, so that pg is the four-momentum of the Q' Q[n]
state and 2g the relative four-momentum of the two constituent heavy quarks. We assume that
the mass of the Q@[n] state is twice the heavy-quark mass m, pé = 4m2Q, while we take the
other partons to be massless.

The amplitudes |[ab — Q Q[n] + X) are evaluated from the usual QCD amplitudes with am-
putated Q and Q spinors |.A) as

1/8
1155/%) =Tr[C1ys T | A)] lg=o. (13)
1/8
125117 = €q(my)Tr[Crys TS 14)] g0, (14)
8 a
Py = €p(mn) 5T [C1ya Tlol )] =0, (15)
1/8 d
PP = €alms)ep(mn) 5o Tr[Cys TI1LA) g (16)
where C| = JEIC and Cg = +/2T, are color projectors with e being the color index of the c¢
A
color octet state. Iy and I1{ are the spin projectors [9],
1
Iy = @—q—mQ Y5 @—I—q—l—mQ , a7
8m3 2 2
Y 0
1
« = @—q—mQ e @+q+mQ . (18)
3\ 2 2
8mQ

2.2. Soft limits

Let us consider a generic Born amplitude,

Di
Q* ..... — |Born). (19)

Then, the expression for the scattering amplitude with an additional gluon j with momentum p
attached to the line of an outgoing parton i is in the limit of p; being soft given by the eikonal
approximation,
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pi+prj p;
2 T2 et (p
“ < b — SwTi|Born)_ (20)
Pi-Dj
-
Pj

pj soft

Here, g; is the QCD gauge coupling, and T; acts on |A) by inserting at the appropriate place T,
if parton i is an outgoing quark or incoming antiquark, —7 if parton i is an incoming antiquark
or outgoing quark, and i f, if parton i is a gluon.

Let us now consider a generic real-correction amplitude in the limit where a certain gluon j
with momentum p; is soft,

=|p; soft). 21

pj soft

Since this implies the sum of all those diagrams where gluon j is in turn attached to all the other
external-particle lines of the corresponding Born diagrams, application of Eq. (20) yields

(B +4q) € (p)) (B —q)-€*(p)) 4 pi-€*(pj)
|pj soft) = g, T, + T + ———"T,; | |Born).
! Y( (B+q)-p; ° B—q)-p; ° ,; pi-pj [Born)

i#]
(22)

For definiteness, we evaluate these soft limits using the axial gauge, po - €(p;) = 0, so that the
gluon polarization sum takes the form

PoxPjp + PjaP0g PiPjaPif

Map(p)) =Y €a(p)es(pj) = —8up + : (23)
R %1: OB o DPo - Dj (po- pj)?
Applying the projectors and squaring the matrix elements then yields
1/8 1/8
1S, pj softy 12 = s1(55 /™ p), 24)
1/8 1/8
1PSEY®, i softy |2 = 51C8H/Y: ), (25)
1/8 1/8 1/8 1/8 1/8
1P pysoftyl? = 1P py) + SRS p ) 83y ), (26)
1/8 8 1/8 1/8 1/8
IPPYYE), psof 12 = 51 GRS p iy + SR 35TV p oy 4 53CsE py, @)
with
11 (p)) pia prg
Si(n:pp) =gy ——L(n, Born|T; T¢|n, Born), (28)
' ‘=) PiPjPk-Dj
i k#j
4
n* (p) pi
Sa(n.m; pj) =4g2 Yy —— ¢4 (my) (n, Bor|T; (T, — Tz)|m, Born), (29)
= Pi PjPo-Dj
i#]
, » %))
S3(m; pj) = 4g2 ———1= €k (my)ep(my) (m, Born|(Te — Tz)(Te — Tz)|m, Born). (30)

(po-pj)?
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Defining To = —T| — Ty — T3 = T, 4+ Tz, we can write

4 4
Pi - Pk 2po - pk
Si(n; pj) = gSZZ(n, Born| | — Z — 2 T - —— T TeTx
k=1 isy P Pj Pk Dj PkPjDPoDPj
k#j i#]

P

WTOT}( |n, Born)
P

L5 Pi - P P}
2 i i
=g E E — + (n, Born|T; Ty |n, Born)
. ( P Dj Pk Pj (Pi'Pj)2> l

i=0 k=0
i#j k#i, ]
4 4 2
2pi - pk )28
2 1 i
’ ; g (Pi pj (pi+p)-pi  (pi-pj)?
i#] k#i, ]
X (n, Born|T;Tg|n, Born), 31
4 B . 2. B
—p; Po-DiP; PoP;
Sa(n.m; pj) =4g; Y : + v .Y
= \pi-pjpo-pj pi-Pjpo-pj)* (po-pj)
i#]
xeg(my){n, Born|T; (T, — Tz)|m, Born), (32)
B 22 P
g popip
S3(m; pj) =4g; | — 5~ L
(po- pj) (po-pj)
xeé (mp)eg(m;)(m, Bomn|(T. — Tz) (T — Te)|m, Born). (33)

The S, and S3 terms, which only appear in squared amplitudes of P-wave states, are specific for
our study.

2.3. Collinear limits
Let us first consider the limit where an incoming parton with momentum p; is collinear to

the outgoing parton with momentum p;. In this limit the divergent contributions stem from the
diagrams with i — (ij) + j splitting,

(34)

If we define p to be the transverse momentum of p(; ;) in the rest frame of the incoming partons,
then we can define the fraction x of the longitudinal momentum of i taken away by (ij) as

Pij) =xpi + O(pL), (35)
pj=0—=x)pi+0(pL), (36)
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_Pi
1—x

2pi-pj= +0(p3). (37)

Then, the squared matrix element factorizes in the collinear limit as

”2 _ Neol (i) gs2

Born|P; i) (x, B
reat (e (@) x(py - py) (O Prn (v, p1)IBom)

llp; ini. coll. p;)

{8”/ if i is a quark or antiquark 7 (38)

€, (p)ev(pi) ifiisagluon
where the indices s and s” or u and v are the spin or polarization indices of particle i,

and [A’,-)(,- j)(x) are the spin-dependent D-dimensional Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) [10] splitting functions, which, up to order O(¢), are given by

N 1+ x2
Pyq(x, p1) =685 Cr - —e(l—x)), (39
. 14+ (1—x)?
qu(x, p1) =08 CF (f —€xX |, (40)
“ 1 pﬂpv
Poy(x.pr) == | —g"" +4x(1 —x)=== |, (41)
2 pi
« v X 1—x Pﬁpi
Peg(x,p1) =2Ca | —¢ +— )20 —ex(I—x)—=). (42)
1—x X i
Here, (ij) and j are labeled g if the corresponding particle is a quark or antiquark and g if itis a
gluon. We insert unity noticing that T;j) = — Z4k:0 T} and so obtain
ki, j
; 2
I1p; ini. coll. p | = —ea@_____—8
”col((l]))npol((lj)) x(pi pj)
4
. TipnTr
X Z (Born| P; ;) (x, p1) (”2) |Born)
k=0 @j)
ki, j
83:/ ?f l ?s a quark or antiquark ’ @3)
eﬂ(pi)ev(pi) if i is a gluon

where we note that T%l. = Cr if (ij) is a quark or antiquark, and Cy4 if (ij) is a gluon.
If the two outgoing partons 3 and 4 are collinear, the dominant contributions stem from dia-
grams where there is a (34) — 3 + 4 splitting,

(44)

If we define p, to be the transverse momentum of p3 in the rest frame of the incoming partons,
then we can define the fraction z of the longitudinal momentum of (34) taken away by 3 as
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P states
S states
Real corr.: Collinear divergences Soft terms S, Soft terms S, Soft terms S,
overlap
PDF redefinition Virtual corrections LDME renormaliz.

Fig. 1. Overview of the IR-singularity structure and its cancellations.

p3=zpaa) + O(p1), (45)
pa=1—=2)paay+O(pL), (46)
2
—pP1 3

2p3-pa=—--—+0 . 47
P3-P4= S (r1) 47)

The squared matrix element then factorizes as

2 g 5

|| p3 final coll. py) || = —=— (Born| P34y 3(z, pL)|Born)
P3 - P4
@ < T34 Tk
=——2— %" (Born|P@4)3(z, p1) ,([‘2) |Born), (48)
pP3-p4 T, (34)
k3,4

where the indices s and s’ or u and v within 13(34)’3 are the open spin or Lorentz indices of
particle (34) in the Born amplitude.

3. Cancellation of IR divergences

The IR divergences associated with the soft and collinear limits discussed in sections 2.2
and 2.3 are to a large extent canceled by contributions of the virtual corrections, as shown in
Fig. 1. A part of the initial-state collinear divergences is, however, absorbed in the PDFs, while
the S3 contributions to the soft divergences are canceled by LDME renormalization contributions.
These two additional ingredients are described in this section.

3.1. PDF redefinition and PDF evolution

As for the initial-state collinear divergences of ani — (ij) + j splitting, a part of it is absorbed
by an MS redefinition of the PDF f{;;y,4(y), which then becomes dependent on the factorization
scale u r,

1

2 2 €

- . g [4mu; —y 1 [dx X . y

f(l])/A(yal’Lf):f(lj)/A(y)_@<M_§€e E) c 7Pi,(ij)(x)fl/A (;), (49)
y
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where p, is the renormalization scale and P i j)(x) is one of the regularized DGLAP splitting
functions,

1+x2 3
P;q(x)ch((l_ )++§8(1—x)>, (50)
N2
+<x)=@#, 51)
=5 (2 a-?), (52)
P+(x):2CA< x —i—l_x—i-x(l—x))—}—( CA——>5(1—x) (53)
88 (1—x)4 X 6 3

with n ; being the number of active quark flavors, for us 3 for charmonium production and 4 for
bottomonium production. Next, we solve Eq. (49) for f{;j),4(y). Using these f(;;),4(y) functions
in the general formula (1), a mass factorization counterterm,

démpc(a+b+ QQ0[n] + X) = Z/de

i 6B (i) + b — QQlnl + X)
(7))

g2 (4mp? — 1
+ > | dxP} . (x)d6Bom(a + (ij) > QQln]+ X) ) =, (54)
@ 872 M%v €
()]

arises, where parton (ij) carries the fraction x of the splitting parton’s momentum. In Fig. 1, this
contribution is indicated as the box labeled PDF redefinition. The DGLAP equations governing
the evolution of the scale-dependent PDFs follow seamlessly after differentiating Eq. (49) with
respect to i 7.

3.2. LDME renormalization and LDME evolution

In a similar fashion, we have to treat the contributions from the LDME renormalization.
A NLO calculation of the 3§ %8] LDME using NRQCD Feynman rules and an expansion in %

after the loop integration yields that it is related to the 3PJ[1] and 3 P}g] LDME:s via

2 1 1
O nio = O PSP o + 5 (_ ) _>
37 mg Euy €R

C2
xz[ O P + Yorpp ]>] (55)

This bare operator is both ultraviolet and IR divergent. We remove the ultraviolet singularity by
introducing an MS-renormalized LDME,

37‘[2m2 2 uv

2 famp2 \ 1
O PSP = 0P s o - —F ( - *e‘”) —
0\ Ma ¢

Y| S50ty + S oy (56)
—~ | 2Ca ! 4Cy o
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which depends on the NRQCD factorization scale wa. Solving Egs. (55) and (56) for
(OH [3S %8]])Lo and using this in the general formula (1), we obtain the contribution

= f dxadxp fasa(Xa) for8(xp)d6 (ab — QOS]+ X)

a,b,X
2—2

doy 558] op.ren.

drp? N\ 1[ C
8 ( ”é‘re—n) Ez[ch (©f P ity
J

3n2mQ A
C2
T Caztionpp 811>] 57

Similarly, we obtain

A0 11 oy ren. = 3 / dxadxp fusa(Xa) fo)8(xp)dS (ab — QO S + X)
b,
pats
g 47”'Lr L\ ! H{3 pl8]
s ) =Y o PP, (58)
3n my /LA €5
do, s = > | dxadxp faja(xa) foy8(xp)d (@b — QO[' S + X)
'S([J]op.ren. alXp Ja/A\Xa) Jb/B\Xb 0
b,
pats
2 2 € 2
85 47Tl,Lr —yE 1 H C H (8]
x - 0 + AT oH ] pl
372m, ( u e 2CA( ['p) 4Ch ( P
(59
do = > | dxadxp faja(xa) fo 8 (x)d (@b — QO['S§11 + X)
1501 op.ren. adxp fasa(xa) fo/B(Xp
b,
pa
gf 47TMr - 61 Hl pl8]
S ve ) —(©H P, (60)
3 my [,LA €

These contributions cancel the S3 contributions of the soft divergences and are labeled LDME
renormalization in Fig. 1. However, we transform them further to cast them into a form that will
be more useful for our purposes. Noticing that

(25+1 8]|(T —T= )(T TE)|2S+1LF]8])

C2
c Ca %y st LBy 4 8CaCpl PR, (61)
1
CILN T = Ty (e = TP HLYY = IS L P, (62)
A

we can rewrite Egs. (57) and (58) as
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da35{1]+35{8] op.ren.

2 famp? ‘1
85 ( My e—)/E) c Z fdxadxb Jaja(xa) foy8(xp) 5

N 12712sz na e (p1+ p2)?
2—2

y Feym(X)
Neol(@)pol (@) ol (D) pol (b)
<3 [(335”, Born|(T, — Tz)(T. — T[>St Born)
7 NeotC S Npot (511
N (s, Bom|(T, — T2)(T, — T2)*SI*, Born)
Neot CS1™) Npat CS1)

Recalling our convention regarding the summation of the polarization degrees of freedom, we ob-
serve that Npoi(S1) = —€}; (mg)e” (my) and NpoiC Py) = € (my)€;s (mg )€™ (my)e” (my), so that
we can write

d E E E /d dxp faa(xa) fo/B(xp) <OH[3P}C]]>
03 4[] 3 ¢[8] = XadXp Ja/A\Xa) Jb/BXb
Sy 428" op.ren. az,bé(gzl,s ~ Neol 3 PJ[C])Npo] @ PJ[C])
—

dPS,

(OH[3 Pj[l]])

(ofp? P}gln} : (63)

1 Fsym(X)

x 5 dPS; I,
2(p1 + p2) Ncol (a)npol (@)ncol (b)npol (b)

I P! op.ren.)

(64)
with

2 2 €
4 1
I3PY), op.ren | = — ( me%) g <")

12n2m2Q na €
* 3 ¢lel N _ 3 cled
xe,(mp)eg(my) (S|, Born| (T, — Tz)(Te — Te)|° S|, Born). (65)

From the terms in Egs. (59) and (60), we obtain a corresponding expression,

dor i1 1 as) Z Z /dx dxp Fura(xa) oy (xp) (OH[lPl[C]])
1 1 = a a/A\Xa /B
So S op-ren. a,b,X c=1,8 Nco](l PI[C])Npol(lpl[C])

2—2

1 F, X X
x 5 dPS) sym(X) ' P, op.ren.)||?,
2(p1 + p2) ncol(a)npol(a)ncol(b)npol(b)
(66)

with

12n2m2Q na €

e (mp)eg(mp) (' Si, Born| (T, — Tz)(T, — T)|' S\, Born).  (67)

2 2 ¢
4 1
|||1P1[C],0p.ren.)||2 =& (—Mf e_yE) g“f <——)

Finally, we derive the formula for the running of the LDME (Of[3 S{S]])(“A) with @, . Dif-
ferentiating Eq. (56) with respect to 5, we obtain a renormalization group equation, with the
solution
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(OH [3 SF]])(#A) — (OH [3 S?]])(MA,O)

16 (1 os(uao) | P
_1 5 ; )
3m? (/30 n ) + ﬂz( (na) —« (MA,O))>
J 2CA I 4CA J ’

through NLO in o5 = 4 . Here, By = CA — —nf and B = 34CA —2Cpny — —CAnf The
evolution equations for (OF 3 S%l ])(“A), (of[! S([)S]])(MA), and (OF[! S([)I]D(“A) may be obtained
similarly and read

(OH[3S]UJ]>(MA) = (o [3S1[1]]>(MA.0)

16 (1 aluan) | B
—1 >
i <ﬁo ")

x Y (0" PP, (69)
J

ﬁz( c(tn) — s (ua o)))

(OH[ls([)S]D(#A) — (OH[IS([)S]D(MA,O)

16 (1 a0 A
Bo as (i) 4

ﬁz( c(tn) — s (ua 0)))

Hitpl] Ci—4 hopis)
|:2C (O°1' P ) + T ((9 CPoD s (70)
16 (1  as(uao) Bi
1 . _
* 3m3, (/30 RN +4 ,32( s(iea) sl O))>
x (OH ' pI¥ly). 71

4. Dipole subtraction for quarkonium production
4.1. General setup

In a preliminary version, not yet taking into account kinematic cuts, we write the partonic
NLO corrections as

/do_/dPS real /dPS d&virtual+d&MFC+d&op.ren.
dPS; g dPS,

=/dPS3 dbreal _ dGsubtr
dPS3 dPS;

dbyiral + domrc + d6 d
+fdPSz( Ovirtual OMFC Oop. ren. +[dx]fdPSd1pole O’subtr) (72)

dPS; dPS

Here, dPS; is the two-particle phase space element, and dPSj3 is the three-particle phase
space element, which factorizes in some way, as either dPS3; = dPS»dPSgipole or dPS3 =
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Table 1

List of occurring V' terms with given momentum assignments; of where their definitions and analytic expressions upon
integration over the dipole phase spaces may be found in the Catani-Seymour (CS) [6] and Phaf-Weinzierl (PW) [7]
papers and here; and of momentum mappings, according to the naming scheme of section 4.3, to be applied to the
numerical integrations of the respective dipole terms over dPS3.

Pi Pk Definition and integration Applied mapping
VzlJmkSI Pl ot py Po PW, section 6.1 MapPWé(p;, p;)
V,';"k 51 p1 ot pa p1or pa CS, section 5.6 (n = p3 + p4) MapCS(p;)
Vl;qm ;51 P or pa p3 Or py CS, section 5.3 MapCS(p;)
Vlé“ S 20 p1or py PW, section 6.2 MapPWé(py, p;)
Vlé“ Sy 70 P30Or pa PW, section 5.2 MapPW5.2(p;)
Vléﬂ Si p3or pa 1o PW, section 5.1 MapPW5.1(p;)
sznkSI P3 Or pa p1 or py CS, section 5.2 MapCS(pi)
Vs, .ij p1or pa Here, Eq. (75) and section 4.5.1 MapPWé(p;, p;)
Vs,.ij D3 01 py4 Here, Eq. (75) and section 4.5.2 MapPW5.2(p ;)
Vs, j Here, Eq. (76) and section 4.5.3 MapPW5.2(p;)

dPSydx dPSipole, Where dPSgipole are certain dipole phase space elements and dx matches its
counterpart within déypc as defined in Eq. (54). The subtraction terms dégpy are defined in
terms of some kinematic variables in the parameterization of dPSgjpole and certain 2 — 2 kine-
matics momenta {p;} appearing in dPS,, which are in turn in some way mapped onto the 2 — 3
kinematics momenta { p;}. The idea is that d Ggypy matches d6yey) in all singular limits. Therefore,
the first bracket on the right-hand side of Eq. (72) is free of divergences and can be integrated
numerically in four dimensions. On the other hand, dGgpy is simple enough that it can be analyt-
ically integrated in D dimensions over dPSgipole. The IR poles of dogipole then become explicit
as e ! and €2 poles and cancel the singularities of doviral + domEC + d8op. ren., SO that the
second bracket on the right-hand side of Eq. (72) is also finite and can be integrated numerically
over dPS; or dPS,dx in four dimensions, too. So the task is to construct appropriate expressions
for dogypyr and dPSgjpole With the corresponding momentum mappings.

4.2. Subtraction term

From Egs. (31), (43), and (48), we observe that the sum of all softly and collinearly divergent
terms can be brought into a form that can be approximated in all singular limits by the subtraction
term

dSgbi(a+b— Q0[n]+X) 1 1
dPS;3 Neot (1) Npoi (n) 2(p1 + p2)?
Fsym(X)
ncol (a)npol (a)ncol(b)npol(b)

llabn, subtr)||>,  (73)

with

|| |abn, subtr) >
4 4 .
—ZZ Z ol () ! 1(n Born| mi’Sl —T(”)Tk|n Born)
- j.k
D3 iml k=0 neol ((i7)) 2pi - T(U)
ki, j
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4 3 4 1
TijT Loife=1,2
+Y 3N 5 (n, Born|Vfln 5 —(”2) “1n,Bom) { % |
Pl e AN %) 1 ifk#1,2
i#1,2,j k#i,j
4 4
ZZ §.1;€8 (1) (n, Born| Ty (T — Tz)|m (n), Born)
j=3i=1
i#]
+ZVS“ € (mp)eg(mp){m(n), Born|(T, — Te)(Te — Tg)|m(n), Born). (74)

In the respective limits, the initial-state collinear singularities are reproduced by the first line,
the final-state collinear singularities by the second line, the S soft divergences by the corre-
sponding soft limits of the first and second lines together, and the S and S5 soft divergences in
the case of P-wave states by the last two lines. In the regions away from the soft and collinear
limits, there are no additional singularities. We call each of the terms in the sums a dipole. In
the Born amplitudes, particles i and j are replaced by one particle (ij), which is a gluon, a light
quark or the Q Q[n] state depending on the collinear or soft limits to be approximated. Where
there is no divergent collinear or soft limit to be approximated, the contribution is just zero. We
note that, in the soft limits, particles i and (ij) are the same and that, in the soft and final-state
collinear limits, x = 1. We further define m(3 L1/8] )= %Sll/g] nd m (1 [1/8] )= S L1/8] . Table 1
lists where to find the explicit expressions for le ST and Vlijmks1 in the Catanl—Seymour [6] and
Phaf-Weinzierl [ 7] papers. The factors in Eq. (74) are adjusted so that Vlnl 51 equals V,j] or Vi/k
and Vﬁn .51

ka spectator and the indices s and s’ or 1 and v within V;; x are the spin or polarization indices

equals V;; . or Vl]; in their notations. The particle (ij) is called an emitter, the particle

of particle (ij) in the Born amplitude. The Vf . and V ﬁ . terms, which are new, are given by

B R 2 B8
$2:00 77\ piepipo-pj o pi-pi(po- P (po-p)d)’
2 a. B
ves _ggr (87 POPP; (76)
$3.j = 85 2 g
(po- pj) (po- pj)

so as to approximate Eqs. (32) and (33). A pictorial summary of all dipole terms appearing in
our study is given in Fig. 2.

4.3. Momentum mappings

The subtraction term ddgyp in Eq. (73) is defined in terms of 2 — 3 kinematics variables, but
the squared Born amplitudes contained therein describe 2 — 2 processes. Therefore, we need to
map the 2 — 2 kinematics momenta {p;} of the squared Born matrix elements in Eq. (74) to the
momenta {p;} of the 2 — 3 kinematics processes. This means that we need relations of the kind

p1 = p1(p1, p2, po, P3, P4) p2 = p2(p1, P2, Po, P3, P4),
Po = po(p1, P2, po, P3, P4) P3 = p3(p1, p2, o, P3, P4), (77)
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which fulfill certain conditions, at least ﬁ% = 15% = ﬁ% =0, ﬁ(z) = pg and p| + p2 = po + p3.
For dipoles that are to describe a limit where the outgoing momentum p3 or py is soft, or where
p3 and p4 are collinear, we also need p; — p1, p» = p2, po —> po, and p3 — p3 + p4 in
those limits. For dipoles which are to describe an initial-state collinear limit where the final-state
momentum p; is collinear to the initial-state momentum p,, we need p, —> Xpa, Pb —> Db,
po—> poand p3 — p3+ ps— (1 —x)ps, where x = (n - p, —n - p;)/(n - ps), n is an arbitrary
vector, and pj, is the momentum of the incoming parton that is not splitting. Since we cannot
fulfill all conditions at the same time, we need different mappings for different dipoles. The four
kinds of momentum mappings we use in our study are the following.

For all dipoles that do not involve the quarkonium momentum pg, we use the mapping that
follows from Catani-Seymour chapters 5.2 and 5.3, and also 5.6 with n = p3 4 p4. With p, being
an initial-state momentum, this mapping implies that

Y= D3 Pa+ P4 Pa— D3 P4
P3-Patpa-pa
It satisfies the conditions for all the limits p3 or ps4 soft, p3 collinear to ps4, and p, collinear to
either p3 or p4, and we refer to this mapping as MapCS( p,).
For those dipoles that involve the quarkonium momentum py, an initial-state momentum p,
and a massless final-state momentum p r, we use the mapping

Da = XPa, p3=p3+ps— (1 —x)pa, (78)

__PfPat+Po-Pa—PpPo-Pf
Pf - Pa~+ Do Pa
of Phaf-Weinzierl chapters 6.1 and 6.2. It satisfies the conditions for the limits p ¢ soft and p ¢
collinear to pg,, and we refer to it as MapPW6(py, pf).
If we have a dipole term involving the quarkonium momentum pg plus two final-state mo-
menta py and pg, being p3 and p4 or vice versa, but we are only concerned with the limit p s
soft, we use the mapping of Phaf-Weinzierl chapter 5.2, namely

Pa = XPas po=po+psr—10—=x)pa, x

(79)

ﬁ3— ! p ﬁO—pO pPr P y= 077
l—y & ’ l—y & Pf'Pg"‘PO'Pf P()'pg7
(80)

which we call MapPW5.2(p ).

The case involving the final-state momenta po, pr, and pg, but with pg being the spectator,
is more complicated, since here, in addition to the condition for p s soft, also those for p, soft
and for p ¢ and p, collinear need to be fulfilled. The momentum mapping appropriate here is the
one of Phaf-Weinzierl chapter 5.1,

p3=apyr+bpg + cpo, po=0—-a)ps+ (1 —=>b)p,+ (1 —c)po, (81)
with

a=—<1—M—L~<2y(1—M)—ﬁo((l—u)yz—i-(] —u+u2)y+u—2u2)>>,
N Yo

1
b:—(u+ < (—2yu—120((1—2u—u2)y+l—3u+2u2)>>,
N Yilo

- Yoo (2 (=) — — )
T u—1 =y =g+ 4 —my \ T T A )
N=u’+1-uw’+1—-u)y, (82)
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where

s PrApet P’ =Py 2PrPet2p0-pe
(Pf+ pg+po0)? (pf+pg+po)*— P} 3
2
_ prepe(po-pr )
Py pPo(pf-Ppg+ pPo-Dg)

We refer to this mapping as MapPW5.1(p ).

We note that the dipole terms in the Catani-Seymour and Phaf-Weinzierl papers were con-
structed such that the spin correlation terms of the splitting gluons vanish when contracted with
the splitting gluon’s tilde momentum. This property is used in the analytic integrations as a sim-
plification, but it assumes that the momentum mapping of the corresponding chapter is used.
A momentum mapping alternative to Eq. (81) is given, for example, in Eq. (5.9) of Ref. [8],
which has the advantage of being symmetric in py and p,. But that mapping does not fulfill the
contraction property of the dipole terms in Phaf-Weinzierl chapter 5.1, which we use.

4.4. Phase space factorization

The phase space factorization dPS3 = dPS>[dx]dPSgipole, With dPSgipole depending only on
the external momenta involved in the respective dipole terms, is crucial to facilitate their analytic
integrations over dPSgjpole. In the case of dipoles for final-state particles only, we have dPS3 =
dPS»dPSgipole, and, in the case of dipoles involving an initial-state parton with momentum p,,
the factorization is dPS3 = dPS>dx dPSgipote, where x fulfills p, = xp,. The dipole factorization
and the analytic integration can be found in the respective papers where the dipoles are given. The
result of the analytic integration then only depends on the momenta {p;} and x. For the reader’s
convenience, we copy here the phase space parameterization of Phaf-Weinzierl chapters 5 and 6,
only slightly adjusting the notation, since they will be the basis for our analytic integration of the
VS‘;U and V_gfj terms in sections 4.5.1-4.5.3.

The phase space parameterization used in Phaf-Weinzierl chapter 5, involving the quarkonium
momentum po and two final-state momenta p ¢ and p, being p3 and py4 or vice versa, is

dPS3(p1 + p2 — po+ p3 + pa) =dPSa(p1 + p2 — po + p3)dPSdipole, (84)
with
(47-[)6_2 1 1
dPSgipole = m”—f *g*k/du(l — )72 (1 — digu)e ! 2 /dvv—f(l —v)7¢,
0

0
(85)
where 19, u, and v are those of Eq. (83) and § = (po + $3)2, which here equals (po + p3 + pa)?,
so that iig = (§ — 4m2Q) /5.
The phase space parameterization used in Phaf-Weinzierl chapter 6, involving the quarkonium

momentum pyg, an initial-state momentum p, being p; or p; and a final-state momentum p ¢
being p3 or ps, is

dPS3(p1 + p2 = po + p3 + pa) =dPSa2(p1 + p2 — po + pP3)dx dPSgipoles (86)
with
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1

dPSipole = ﬁ’f—fi(—%)‘ex“m — )71 = ) ! / dww (1 —w)™¢, (87)
0
where x is that of Eq. (79),
2
_papr(po-pr+ ) - (po+ps—pa)? (88)
~ po-Pf(Pa-Pft+ PO Pa) Xa_(poerf—pa)z—pO’

and 1/~/a = (po — pa)* — 4m2Q, which here is equal to (po + py — Pa)? — pg, such that x, =
({b’a +4m2Q)/¢a

4.5. Integration of dipoles over dipole phase space

4.5.1. Integration of Vs, ;; terms: initial-state case

To solve the dipole phase space integral of V;; i given in Eq. (75) for an initial-state parton
i, we use in the following the momentum mapping in Eq. (79) and the parameterization of the
dipole phase space in Eq. (87) with p, = p; and ps = p; in both equations. Since the integration
result can only depend on the momenta p; and pg, we start by decomposing

[ dpSapacl s = il + 2. (89)

Although the component proportional to ﬁg will vanish upon contraction with eg(m;) in Eq. (74),
we still have to consider it here, since the integral itself does have this component. We determine
C1 by multiplying Eq. (89) with p;g and pog and solving the resulting system of linear equations
and so obtain

= dg; | Po-pi (Pg)* Pi-pPj _ P§Po-PiBi-Dj
po-bi| po-pjpi-pj  Po-Pi(po-pj)d  Po-pipi-pi(po-pj)?

_P(z)ﬁO'Pj Po-Pi Po-Pj } (90)

(po-pj)*  pi-pi(po-pj)?

Next, we apply the mapping in Eq. (79), express all appearing scalar products in terms of ¥/;, X,
x, 1 —x, w,and I — x;x, and so obtain

C = 16g2 |:wx C 2x(1— Xix) N l6m2Qx2(1 — XiXx) l6m2wa2 64m4Qx3w :|
1 — xix .

L R (Y A e R I (e
o1

We now use the expression in Eq. (87) for the dipole phase space in Eq. (89), perform the w
integration, and expand the result in € using

2(1 —x)" 172 = —15(1 —x)+ <L) + O(e). (92)
€ 1—x "

The result through terms of order O(€Y) is then
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2 4 ¢ 1 4m>
/dPSdipoleVS’i(;;l)_ ‘is 5(1—x) “’ e ) (= —2-m—=2
T I/fz mg € T

2x(1 — X)) (2 —x — xix) 1 3(1 —x)
* (1 — xix)? <1 —x) +2(1—)ZiX)2]
+ (po term). 93)

4.5.2. Integration of Vs, ;; terms: final-state case

To solve the dipole phase space integral of Vé i given in Eq. (75) for a final-state parton i, we
use in the following the momentum mapping in Eq. (80) and the parameterization of the dipole
phase space in Eq. (85) with py = p; and p, = p; in both equations. The integration result can
then only depend on the momenta p3 and pg, and we decompose

fi ~ ~
f dPSaipote VI = C3 + Cap}. (94)

Although the component proportional to ﬁg will vanish upon contraction with €g(m;) in Eq. (74),
we still have to consider it here, since the integral itself does have this component. We determine
C3 by multiplying Eq. (94) in turn with p3g and pog and solving the resulting system of linear
equations and so obtain

C3= — — —
Sio(po- pj)®  Siopi-pj(po-pj)*  Siopo-pj pi-pj

ng[z(pg)zﬁg-pj 219%133'Pjp0~17i+ 2p3 p3 - pi
)

5 ; 2 50 L. e B
Po - i _PoPo-pj Po-Pi Po-Dj :| (95)

po-pjpi-pj  (po-pp)?  pi-pj(po-pj)?
Next, we apply the mapping in Eq. (80), express all appearing scalar products in terms of §, i,

u,1 —u,v,and 1 — ugu, and so obtain

Cs =

16g2v 0wt 64my,  16my (1 —u) ~ 16m7 (1 — itou)
(1 — diou)(1 — u)252iig
2(1 —agu)(1 — u):|

ﬁov

222 i <2
S MO SuQ SMO'U

(96)

Using the expression in Eq. (85) for the dipole phase space in Eq. (94), we can now do the inte-
grations by identifying hypergeometric functions, which we then expand in € using the program
package HypExp [11]. Our result through order (’)(60) is

2 2 ¢ 4m? 64m )
) g [4mu; g1 1 ey 1
dPS = — —F € VE - — Tln —_— +3 + ln
/ dipole Vg, ; 725l ( sz ) P3 |:6 iio 3 > s5ﬁé
+ (po term). 97)

4.5.3. Integration of Vs, j terms and incorporation of LDME renormalization counterterms

To solve the dipole phase space integral of Vg op 5,0 We again use the momentum mapping
in Eq. (80) and the parameterization of the dipole phase space in Eq. (85) with py = p; and
Pg = pi. Since the integration result can only depend on the momenta p3 and po, we decompose
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/dPSdlpolcVS - =Csg" + Cepg p pg +C71py P po + Cs(pg p p3 + p3 po) (93)

Although the components proportional to pj and ﬁg will vanish upon contraction with
€x(my)e g(m;) in Eq. (74), we still have to consider them here, since the integral itself does have
these components. We determine Cs and Cg by multiplying Eq. (98) with gug, P3a P38> Poa P0B>
and poy p3p and solving the resulting system of linear equations and so obtain

4g? 2p3)* (B3~ P))* 2P Po- Pj B3 D;
Cs= —— | —— g == —(po-p)? (99)
(po-pj) (1 —e)s=ug (1 —€)suog
16g2p3 [ (6—4e)(p3)*(p3-p))*  (6—4e)pd po-pj p3-pj (Po-pj)?
Co= 108510 (_ Py) (P3-pj pypo-pjpP3-Pj  (Po-pj)
(po- pj)* (1 — e)§4i (1 - o533 a; )

(100)

Next, we apply the mapping in Eq. (80) and express all appearing scalar products in terms of §,
ug, u, 1 —u, v,and 1 — igu and so obtain

Ce— 16g3 2p8v B 2[7(2)1)2 p_§+ (1 —uw)ug B 1—e€
T U-oU-wiid | T—aws®  (1—au)? \ 5 FE 2 |

(101)
. 6452 p2v? 6—4e)pd (1—igu p 1—u
6= (1 — digu)2(1 — u)? (1—-e)s 12(2)1) 512(2) 7|
1 —iiou)>  2(1 —iigu)(1 —
( zuozu) n ( u(ju)( u) a _u)z]' (102)
Uy upv

Using the expression in Eq. (85) for the dipole phase space in Eq. (98), we can now do the
integrations by identifying hypergeometric functions, which we then expand in € using HypExp
[11]. Our result through order O(€Y) is

¢ 2 6 -
/a’PS yob 8752 Me—m o 1+ 2 4myp n 16my — 21n(2i)
dipole V. 83,7 12712sz sz e 3 Siio 531/13 o

283 ~q ~/S 4m2
+mp3 16mQ —5? —8szln— + (po terms).
0

(103)

Let us now consider this result together with Egs. (64)—(67) and (73). For each partonic 2 — 3
subprocess a + b — cc[n] + X, there is one (are two) contributions of V f; j if X contains one
(two) outgoing gluons and n is a P-wave state. The divergence of each of these contributions
equals —|||n, 0p.ren.)||2 with the same partons a and b. Noticing that Fgy(X) in the dipole
subtraction term is 1 (%) if there is one (are two) outgoing gluon(s), but always 1 in the LDME
renormalization contribution, we observe that the divergence in Eq. (103) is exactly canceled
by the contributions from LDME renormalization. Thus, in our implementation, it is simplest to
include the effects of the LDME renormalization by just using instead of Eq. (103) the expression
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2 2 4m? l6m6 21 2% m2
(/dPSdipoleVéxﬁ) s e i s LU
) +op.ren. 127‘[2mQ 3 sug s3u0 uo K

28] o 4
+mp3 l6mQ — S — Sszln— s (104)
0

which is then finite.

4.5.4. Integration of VS] i ond VS] terms and incorporation of mass factorization
counterterm

There is one subtlety related to the dipole terms of Vii in the initial-state collinear limits
pi — xp;. In the second bracket of Eq. (72), there is then an apparent mismatch because dGgypir
involves parton { with momentum p;, while d6yira and dovec involve initial-state parton (i)
with momentum xp; instead. Thus, special care has to be exercised regarding the differing color
and polarization averaging and flux factors. In order to facilitate the singularity cancellation, it
is, therefore, convenient to rewrite the contribution of the Vlfj.},’(ml terms in dGgypy When appearing
in the second bracket of Eq. (72) as

S1 ini

1
Neot () Npol(n) 2x(p1 + p2)?

d6gbe(a+b— Q0[n]+ X; VS' M) = —dPSydx

Fsym (X)nco1 (()npor (i) (n. Born |V1n1 51 LT 1. Born).

ncol(a)npol (a)ncol(b)npol(b)ncol((U))npol((l])) T%ij)
(105)
with the terms
ini npol((ij)) 1 s
pinisi / dPSipole — V‘“‘ L 106
ij.k dipole Mol ) sz ij.k ( )
analytically calculated in the Catani-Seymour and Phaf-Weinzierl papers.
Now we consider Eq. (105) together with Eq. (54). Using again the trick 3% _, T,S%)Tk =—1
k#i,j G

and noticing that the effect of double contributions due to j = 3, 4 is balanced by the symmetry
factor Fgym(X) = % for two gluons in the final state, we observe that we can incorporate the
effect of the mass factorization counterterm completely by using the expressions

2 2 €
. I, g 4T s 1
V;m,Sl) —ymS g S (TR v ) Zpto (), 107
( ik ) e = Viik ¥ g2 '“2f ¢ € i) @) 1o
instead of Eq. (106). For the reader’s convenience, we collect the expressions for (V.ir.li’sl)
ik ) L MFC
and those for
- 1
Vt'f.lir,llf1 = / dPSdipole 5 ———— 20 p; VlIJmkSI (108)

in Appendix A.
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5. Implementation and numerical tests
5.1. Implementation of phase space cuts
The master formula (72) describes a total cross section. The observables we aim to calculate

are, however, cross sections with specific kinematic cuts, for example, on the transverse momen-
tum pr or the rapidity y of the quarkonium. To this end, we define

4m2 =G +1) a7
pr=—g 4w}, = St , (109)
S
2 (ﬁ% +4sz)
with
S=pi+p)%  T=Go—p0d. S=(pa+ps)’ pr=%ps. (110)

where p4 and pp are the momenta of the incoming hadrons. For all momentum mappings, we
then have pr — pr and y — y in all singular limits. We can thus refine Eq. (72) to include
the kinematic constraints. For example, the cross section with a phase space cut pr > pr min is
calculated as

dé. btr ~
dé = dPS real P . N sul 9 . )
/ o= / |:dPS (pr pT,mm) dPS; (pr pT,mln)

T / dPS, d6yiral + domrc + d5op.ren.
dPS,

O(pr — PT,min)

(111)

do.
Hdx10(PT — PT.min) / dPSgipole ‘“b“]

dPS

In the first line of Eq. (111), we integrate over the complete three-particle phase space and imple-
ment the 6 functions explicitly. The 8 functions then cut out different regions of the three-particle
phase space, depending on the momentum mappings used in each dipole term. This worsens the
convergence of the numerical Monte-Carlo integration, but the 6 functions coincide close to all
singular regions, so that the cancellations of the divergent terms take place. We note that the
strong-coupling constant in our implementation is usually evaluated at a renormalization scale
that is chosen to depend on kinematic variables of the produced quarkonium, e.g., o ( p%). We
then have to substitute o ( 13%) in dgypy. As for the contributions in the third line of Eq. (111),
the analytic integration of the subtraction term over the dipole phase space dPSgipole is not af-
fected by the additionally imposed phase space cuts, since pr only depends on the momenta
{pi}.

Equation (111) allows for the evaluation of binned cross section distributions, e.g., in pr
and/or y, which can be directly compared with experimental data. Refining the binning of such
histograms yields approximations to smooth cross section distributions. To evaluate the latter
exactly, however, one needs to replace the 6 functions in Eq. (111) by § functions, which renders
the implementation of the cancellation of divergences quite nontrivial. We leave the elaboration
of this for future work.

5.2. Numerical tests

We now numerically verify the implementation of the individual unintegrated dipole terms.
The subtraction term must match all the real-correction squared matrix elements in the respective
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Table 2
Numerical test of the dipole terms for the partonic subprocesses gg — cel?s [18]] + gg (999), dg — cc’s [18]] +dg

(dgd), gd — cE[3S[18]] +dg (gdd), and dd — 4‘5[33[]8]] + gg (dDg). The coding is as in Fig. 2.

State: 3518 real corr. dipoles real corr. dipoles
ggg 1,2,3 coll: 2.0041E+08 2.0041E+08 gdd 1,2,3 coll: 1.0428E+06 1.0423E+06
ggg 4,5,6 coll: 1.7072E+06 1.7071E+06 gdd 7,8,9 coll: 2.1892E+06 2.1888E+06
ggg 13,14,15 coll: 1.6866E+11 1.6866E+11 gdd 10,11,12 coll: 2.1572E+05 2.1561E+05
ggg 16,17,18 coll: 1.6879E+07 1.6883E+07 gdd 13,14,15 coll: 2.1516E+09 2.1516E+09
ggg 19,20,21 coll: 1.6429E+10 1.6429E+10 gdd 16,17,18 coll: 3.1073E+09 3.1073E+09
ggg 22,23,24 coll: 1.6866E+11 1.6866E+11 gdd 19,20,21 coll: 6.3923E+08 6.3922E+08
ggg 25,26,27 coll: 1.6866E+11 1.6866E+11 gdd p4 soft: 1.4382E+11 1.4382E+11
ggg 28,29,30 coll: 1.6429E+10 1.6429E+10 dbg 1,2,3 coll: 4.3257E+06 4.3257E+06
ggg p3 soft: 1.2357E+12 1.2357E+12 dbg 4,5,6 coll: 4.1623E+04 4.1624E+04
ggg p4 soft: 1.2357E+12 1.2357E+12 dbg 13,14,15 coll: 8.5966E+08 8.5966E+08
dgd 1,2,3 coll: 2.9102E+05 2.9110E+05 dbg 16,17,18 coll: 8.5894E+04 8.5885E+04
dgd 7,8,9 coll: 3.1100E+05 3.1092E+05 dbg 19,20,21 coll: 1.7684E+08 1.7684E+08
dgd 10,11,12 coll: 6.3894E+04 6.3923E+04 dDg 22,23,24 coll: 8.5966E+08 8.5966E+08
dgd 13,14,15 coll: 2.1869E+10 2.1869E+10 dbDg 25,26,27 coll: 8.5966E+08 8.5966E+08
dgd 16,17,18 coll: 2.1516E+09 2.1516E+09 dbg 28,29,30 coll: 1.7684E+08 1.7684E+08
dgd 19,20,21 coll: 2.1516E+09 2.1516E+09 dDg p3 soft: 9.3760E+09 9.3759E+09
dgd p4 soft: 1.6118E+10 1.6119E+10 dDg p4 soft: 9.3760E+09 9.3759E+09

Table 3

Numerical test of the dipole terms for the partonic subprocesses gg — cE[3 Pg]; 1P[18]] + gg (gg2cCgg), dg —
PPy 1P 4 dg (@g2ccag), gd — celPPY 1P 4 dg (ga2ccag), and dd — cePPYT PN 4 g
(dD2cCgg) in the limits where p3 and p4 are soft. The contributions of the dipoles involving VS, v$2 and V53
are shown separately.

State: 3P21 real corr. dipoles soft S1 soft S2 soft S3

gg2cCgg p3 soft: 4.2128E+10 4.2130E+10 3.7994E+10 -1.5081E+09 5.6437E+09
gg2cCgg p4d soft: 4.2128E+10 4.2130E+10 3.7994E+10 -1.5081E+09 5.6437E+09
dg2cCdg p4 soft: 1.8035E+08 1.8039E+08 4.1168E+07 -2.2504E+07 1.6173E+08
gd2cCdg p4 soft: 5.5345E+09 5.5347E+09 4.9728E+09 -3.0023E+08 8.6211E+08
dD2cCgg p3 soft: 8.9238E+07 8.9252E+07 1.6245E+07 8.2038E+06 6.4803E+07
dD2cCgg p4 soft: 8.9234E+07 8.9252E+07 1.6245E+07 8.2038E+06 6.4803E+07
State: 1P18 real corr. dipoles soft S1 soft S2 soft S3

gg2cCgg p3 soft: 1.1062E+11 1.1062E+11 1.1374E+11 -1.1212E+10 8.0929E+09
gg2cCgg p4d soft: 1.1062E+11 1.1062E+11 1.1374E+11 -1.1212E+10 8.0929E+09
dg2cCdg p4 soft: 3.6100E+08 3.6101E+08 3.5567E+08 -2.1288E+07 2.6633E+07
gd2cCdg p4 soft: 1.4423E+10 1.4424E+10 1.4588E+10 -1.2053E+09 1.0405E+09
dD2cCgg p3 soft: 1.1020E+08 1.1020E+08 1.0914E+08 -6.5828E+06 7.6456E+06
dD2cCgg p4 soft: 1.1018E+08 1.1020E+08 1.0914E+08 -6.5828E+06 7.6456E+06

limits. Three dipoles are always needed to reproduce a collinear limit, many dipoles to reproduce
a soft limit. As an illustration, we generate certain phase space points close to the singularities
and evaluate there both the real-correction squared matrix elements and the corresponding dipole
terms. Our results are presented in Tables 2 and 3. From there we observe that the squared matrix
elements of the real corrections are indeed nicely matched by the corresponding subtraction terms
constructed as described above for all the partonic subprocesses, Fock states, and kinematic limits
considered.

To obtain meaningful numerical checks of the implementation of the integrated dipole terms,
also beyond self-consistency, it is indispensable to compare with results obtained using phase
space slicing. This is even more so the case for checks of the implementation of dipole subtrac-
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tion in calculations of physical observables of quarkonium production. Extensive such tests have
successfully been performed, for all our integrated dipole terms and several phenomenological
applications. Presenting them in detail would require to explain the anatomy of the implementa-
tion of phase space slicing in NLO NRQCD calculations, which reaches beyond the scope of this
paper. We will report on such comparisons in a separate communication [12], in which we will
also quantitatively describe how dipole subtraction outperforms phase space slicing with respect
to numerical precision and computing time.

6. Summary

We devised an implementation of a subtraction scheme appropriate for studies of inclusive
quarkonium production at NLO in the NRQCD factorization approach, based on the dipole sub-
traction scheme of Refs. [6,7]. We needed to take special care of the specific structures of the
bound-state amplitudes and to include additional subtraction terms in the case of P-wave states.
Our implementation passes all intrinsic tests and yields results consistent with our previous phase
space slicing implementation, which it outruns both in terms of accuracy and speed.
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Appendix A. Summary of integrated Catani-Seymour and Phaf-Weinzierl dipoles

In this appendix, we collect the expressions through order O(€”) for the integrated Catani-
Seymour and Phaf-Weinzierl dipoles that we need in our study. The mass factorization countert-
erms are directly included here according to our definitions in Egs. (107) and (108). g;, ¢;, and
g; stand for a gluon, light quark, and antiquark with momentum p;, and we further introduce
& = (p3 — pi)*. Note that our expressions for V;?fﬁ'orz imply that n = p3 4+ p4 as in Catani-
Seymour chapter 5.6, in line with Table 1. The expressions for the integrated Vg, ;; and Vg, ;
terms, including the operator renormalization counterterms in the latter case, can be found in

Egs. (93), (97), and (104).
2
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