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Abstract

We describe an implementation of a subtraction scheme in the nonrelativistic-QCD treatment of heavy-

quarkonium production at next-to-leading-order in the strong-coupling constant, covering S- and P -wave 

bound states. It is based on the dipole subtraction in the massless version by Catani and Seymour and its ex-

tension to massive quarks by Phaf and Weinzierl. Important additions include the treatment of heavy-quark 

bound states, in particular due to the more complicated infrared-divergence structure in the case of P -wave 

states.

 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In next-to-leading-order (NLO) perturbative calculations in quantum field theory, the phase 

space integrations of real corrections generally produce infrared (IR) divergences, which have to 

be regularized. The standard choice for this is dimensional regularization, where the integrations 

are done in D = 4 − 2ǫ space-time dimensions, so that the IR divergences show up as poles in ǫ, 

ready to be canceled by other contributions. The problem is that the squared matrix elements 

are, apart from the simplest examples, so complicated that they have to be integrated numeri-
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cally, in four dimensions. To combine both ingredients, the analytic singularity cancellation in 

D dimensions and the numerical phase space integration in four dimensions, two basic types of 

calculational schemes have been devised: slicing schemes and subtraction schemes.

In phase space slicing schemes, the real-correction phase space is split into two parts, with the 

separation lines enclosing the IR-singular regions at close distances. Since, in the vicinity of the 

IR divergences, both the squared matrix elements and the phase space factorize into simple ex-

pressions, the analytic integration in D dimensions is feasible, while the part outside the enclosed 

region is free from singularities, ready for numerical integration. Both contributions depend on 

the specific choice of phase space cut, but the sum of both contributions is independent of it. 

Most calculations of inclusive heavy-quarkonium production and decay within the factorization 

formalism [1] of nonrelativistic QCD (NRQCD) [2] have been implemented with a two-cutoff 

phase space slicing scheme as outlined in Ref. [3]. In particular, this includes our previous calcu-

lations [4]. There are, however, two principal disadvantages of the phase space slicing scheme: 

First, one cannot avoid a residual numerical dependence of the result on the slicing parameters 

and, second, the numerical integration over the finite real-correction phase space part has to be 

done to very high precision because there is a strong cancellation between the two phase space 

parts.

On the other hand, in subtraction schemes, certain simple subtraction terms with the same 

divergences as the real corrections are subtracted from the latter, enabling a numerical integra-

tion. The subtraction terms are then separately integrated analytically in D dimensions, and the 

results are added back. To our knowledge, the only NLO calculations of inclusive quarkonium 

production so far performed in this way are those of Ref. [5] in the color singlet model, based 

on Catani-Seymour dipole subtraction for massless quarks [6]. Since only color singlet S-wave 

states were involved, the subtraction terms of Ref. [6] were sufficient.

In this paper, we describe an implementation of a subtraction scheme for inclusive quarko-

nium hadroproduction within NRQCD, which can handle all intermediate S- and P -wave color 

singlet and color octet states. In addition to the massless Catani-Seymour scheme [6], our imple-

mentation is built upon its extension to massive particles by Phaf and Weinzierl [7]. However, 

we have to take special care of the structures of the amplitudes when projected onto heavy-quark 

bound states. In particular, new kinds of subtraction terms have to be introduced in the case of 

P -wave state production.

The outline of this paper is as follows: In section 2, we describe the structure of the appearing 

amplitudes projected onto the different Fock states and their soft and collinear limits. The diver-

gence cancellation is explained in section 3. The subtraction scheme used is in detail presented in 

section 4. Details about the implementation of phase space cuts as well as numerical tests of our 

extended dipole subtraction approach follow in section 5. Section 6 contains a brief summary. In 

Appendix A, we collect the expressions through order O(ǫ0) for the integrated Catani-Seymour 

and Phaf-Weinzierl dipoles needed in our study, in a form that already includes mass factorization 

counterterms.

2. Cross sections and their limits

2.1. Cross sections in NRQCD factorization

In the framework of QCD and NRQCD factorization, the cross section for the inclusive 

hadroproduction of heavy quarkonium H is given by
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dσ(AB → H + X)

=
∑

a,b,X

∑

n

∫

dxadxb fa/A(xa)fb/B(xb)〈OH [n]〉dσ̂ (ab → QQ[n] + X), (1)

with the partonic cross sections

dσ̂ (ab → QQ[n] + X) = 1

Ncol(n)Npol(n)

1

2(p1 + p2)2
dPS

× Fsym(X)

ncol(a)npol(a)ncol(b)npol(b)
‖|ab → QQ[n] + X〉‖2. (2)

Here, a and b are the colliding QCD partons with four-momenta p1 and p2. fa/A(xa) is the par-

ton distribution function (PDF) to find parton a with a longitudinal-momentum fraction xa inside 

the colliding hadron A. X collectively denotes the partons that are produced besides the quarko-

nium H , and Fsym(X) are its quantum mechanical symmetry factors for identical particles in the 

final state. Q is bottom for bottomonium production and charm for a charmonium production. n

is the QQ Fock state, for our purposes 3S1, 1S0, 1P1, or 3PJ in a color singlet or color octet state. 

The color state is marked by upper indices 1 or 8 in square brackets, like for example in the color 

octet 3P
[8]
1 state. Ncol(n) = 1 if n is a color singlet state and C2

A − 1 = 8 if it is a color octet 

state, and Npol is the D-dimensional number of polarization degrees of freedom of state n. We 

recall that CF = 4/3 and CA = 3 are color factors of the QCD gauge group SU(3). In making the 

Ncol and Npol factors explicit, we follow Ref. [9]. 〈OH [n]〉 is the corresponding nonperturbative 

NRQCD long-distance matrix element (LDME). ncol(a) and npol(a) are the number of colors and 

the D-dimensional number of polarizations of parton a. dPS is the Lorentz-invariant phase space 

element. As a convention used throughout this paper, the bra vector is a matrix element, and in 

squaring the matrix element a summation of the degrees of freedom of all external particles is 

always understood implicitly. This convention is adopted from Catani, Seymour [6], Phaf, and 

Weinzierl [7], who do, however, include the ncol factors in the amplitude vectors, albeit not the 

npol factors. In our choice of normalization, all averaging factors are explicit. Another thing to 

note is that the summation of external degrees of freedom includes the spin and orbital-angular-

momentum quantum numbers ms and ml of the QQ[n] state, even if the polarization vectors 

stand outside the amplitude vectors. Hereby, in the case of a n = 3P
[1/8]
J state, this summation is 

always restricted to the subspace with definite J .

In our study, we are interested in observables where quarkonium H has nonvanishing trans-

verse momentum pT . Therefore, the partonic Born cross sections and their virtual corrections 

already correspond to 2 → 2 processes kinematically, namely

g + g → QQ[n] + g, (3)

g + q → QQ[n] + q, (4)

q + g → QQ[n] + q, (5)

q + q → QQ[n] + g, (6)

while, for the real corrections, we are led to consider the 2 → 3 kinematics processes

g + g → QQ[n] + gg/qq, (7)

g + q → QQ[n] + qg, (8)

q + g → QQ[n] + qg, (9)
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q + q → QQ[n] + gg/qq/q ′q ′, (10)

q + q → QQ[n] + qq, (11)

q + q ′ → QQ[n] + qq ′, (12)

where g is a gluon and q a light quark or antiquark (specifically u, d , s, u, d , s for charmonium 

and, additionally, c and c for bottomonium), q its antiparticle, and q ′ another light quark or 

antiquark different from q and q . As already stated above, the four-momenta of the incoming 

partons are p1 and p2. The four-momenta of the outgoing QCD partons are p3 and, for the real 

corrections, also p4. The four-momenta of the heavy quark and antiquark that form the QQ[n]
state are parameterized by 

p0

2
+ q and 

p0

2
− q , so that p0 is the four-momentum of the QQ[n]

state and 2q the relative four-momentum of the two constituent heavy quarks. We assume that 

the mass of the QQ[n] state is twice the heavy-quark mass mQ, p2
0 = 4m2

Q, while we take the 

other partons to be massless.

The amplitudes |ab → QQ[n] + X〉 are evaluated from the usual QCD amplitudes with am-

putated Q and Q spinors |A〉 as

|1S[1/8]
0 〉 = Tr

[

C1/8 �0 |A〉
]

|q=0, (13)

|3S[1/8]
1 〉 = ǫα(ms)Tr

[

C1/8 �α
1 |A〉

]

|q=0, (14)

|1P [1/8]
1 〉 = ǫβ(ml)

∂

∂qβ

Tr
[

C1/8 �0|A〉
]

|q=0, (15)

|3P [1/8]
J 〉 = ǫα(ms)ǫβ(ml)

∂

∂qβ

Tr
[

C1/8 �α
1 |A〉

]

|q=0, (16)

where C1 = 1√
2CA

and C8 =
√

2Te are color projectors with e being the color index of the cc

color octet state. �0 and �α
1 are the spin projectors [9],

�0 = 1
√

8m3
Q

(

/p0

2
− /q − mQ

)

γ5

(

/p0

2
+ /q + mQ

)

, (17)

�α
1 = 1

√

8m3
Q

(

/p0

2
− /q − mQ

)

γ α

(

/p0

2
+ /q + mQ

)

. (18)

2.2. Soft limits

Let us consider a generic Born amplitude,

pi→ = |Born〉. (19)

Then, the expression for the scattering amplitude with an additional gluon j with momentum pj

attached to the line of an outgoing parton i is in the limit of pj being soft given by the eikonal 

approximation,
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pi + pj→
pi→

pj
→

c

a b

∣

∣

∣

∣

∣

∣

∣

∣

pj soft

= gs

pi · ǫ∗(pj )

pi · pj

Ti |Born〉. (20)

Here, gs is the QCD gauge coupling, and Ti acts on |A〉 by inserting at the appropriate place Tc

if parton i is an outgoing quark or incoming antiquark, −Tc if parton i is an incoming antiquark 

or outgoing quark, and ifabc if parton i is a gluon.

Let us now consider a generic real-correction amplitude in the limit where a certain gluon j

with momentum pj is soft,

→pj

Real

c

c

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

pj soft

= |pj soft〉. (21)

Since this implies the sum of all those diagrams where gluon j is in turn attached to all the other 

external-particle lines of the corresponding Born diagrams, application of Eq. (20) yields

|pj soft〉 = gs

(

(p0

2
+ q

)

· ǫ∗(pj )
(p0

2
+ q

)

· pj

Tc +
(p0

2
− q

)

· ǫ∗(pj )
(p0

2
− q

)

· pj

Tc +
4
∑

i=1
i 	=j

pi · ǫ∗(pj )

pi · pj

Ti

)

∣

∣Born
〉

.

(22)

For definiteness, we evaluate these soft limits using the axial gauge, p0 · ǫ(pj ) = 0, so that the 

gluon polarization sum takes the form

�αβ(pj ) ≡
∑

pol

ǫα(pj )ǫ
∗
β(pj ) = −gαβ + p0αpjβ + pjαp0β

p0 · pj

−
p2

0pjαpjβ

(p0 · pj )2
. (23)

Applying the projectors and squaring the matrix elements then yields

‖|1S[1/8]
0 ,pj soft〉‖2 = S1(

1S
[1/8]
0 ;pj ), (24)

‖|3S[1/8]
1 ,pj soft〉‖2 = S1(

3S
[1/8]
1 ;pj ), (25)

‖|1P [1/8]
1 ,pj soft〉‖2 = S1(

1P
[1/8]
1 ;pj ) + S2(

1P
[1/8]
1 ,1S

[1/8]
0 ;pj ) + S3(

1S
[1/8]
0 ;pj ), (26)

‖|3P [1/8]
J ,pj soft〉‖2 = S1(

3P
[1/8]
J ;pj ) + S2(

3P
[1/8]
J ,3S

[1/8]
1 ;pj ) + S3(

3S
[1/8]
1 ;pj ), (27)

with

S1(n;pj ) = g2
s

4
∑

i,k=1
i,k 	=j

�αβ(pj )piαpkβ

pi · pj pk · pj

〈n, Born|TiTk|n, Born〉, (28)

S2(n,m;pj ) = 4g2
s

4
∑

i=1
i 	=j

�αβ(pj )piα

pi · pj p0 · pj

ǫβ(ml)〈n,Born|Ti(Tc − Tc)|m,Born〉, (29)

S3(m;pj ) = 4g2
s

�αβ(pj )

(p0 · pj )2
ǫ∗
α(ml)ǫβ(ml)〈m,Born|(Tc − Tc)(Tc − Tc)|m,Born〉. (30)
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Defining T0 ≡ −T1 − T2 − T3 = Tc + Tc , we can write

S1(n;pj ) = g2
s

4
∑

k=1
k 	=j

〈n,Born|









−
4
∑

i=1
i 	=j

pi · pk

pi · pj pk · pj

TiTk − 2p0 · pk

pk · pj p0 · pj

T0Tk

+
p2

0

(p0 · pj )2
T0Tk









|n,Born〉

= g2
s

4
∑

i=0
i 	=j

4
∑

k=0
k 	=i,j

(

− pi · pk

pi · pj pk · pj

+
p2

i

(pi · pj )2

)

〈n,Born|TiTk|n,Born〉

= −g2
s

4
∑

i=0
i 	=j

4
∑

k=0
k 	=i,j

(

2pi · pk

pi · pj (pi + pk) · pj

−
p2

i

(pi · pj )2

)

× 〈n,Born|TiTk|n,Born〉, (31)

S2(n,m;pj ) = 4g2
s

4
∑

i=1
i 	=j

(

−p
β
i

pi · pj p0 · pj

+
p0 · pi p

β
j

pi · pj (p0 · pj )2
−

p2
0p

β
j

(p0 · pj )3

)

×ǫβ(ml)〈n,Born|Ti(Tc − Tc)|m,Born〉, (32)

S3(m;pj ) = 4g2
s

(

− gαβ

(p0 · pj )2
−

p2
0p

α
j p

β
j

(p0 · pj )4

)

×ǫ∗
α(ml)ǫβ(ml)〈m,Born|(Tc − Tc)(Tc − Tc)|m,Born〉. (33)

The S2 and S3 terms, which only appear in squared amplitudes of P -wave states, are specific for 

our study.

2.3. Collinear limits

Let us first consider the limit where an incoming parton with momentum pi is collinear to 

the outgoing parton with momentum pj . In this limit the divergent contributions stem from the 

diagrams with i → (ij) + j splitting,

Born

→pj

pi→ pij→ . (34)

If we define p⊥ to be the transverse momentum of p(ij) in the rest frame of the incoming partons, 

then we can define the fraction x of the longitudinal momentum of i taken away by (ij) as

p(ij) = xpi +O(p⊥), (35)

pj = (1 − x)pi +O(p⊥), (36)
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2pi · pj = −p2
⊥

1 − x
+O(p3

⊥). (37)

Then, the squared matrix element factorizes in the collinear limit as

‖|pj ini. coll. pi〉‖2 = ncol(i)

ncol((ij))npol((ij))

g2
s

x(pi · pj )
〈Born|P̂i,(ij)(x,p⊥)|Born〉

×
{

δss′ if i is a quark or antiquark

ǫ∗
µ(pi)ǫν(pi) if i is a gluon

, (38)

where the indices s and s′ or µ and ν are the spin or polarization indices of particle i, 

and P̂i,(ij)(x) are the spin-dependent D-dimensional Dokshitzer-Gribov-Lipatov-Altarelli-Parisi 

(DGLAP) [10] splitting functions, which, up to order O(ǫ), are given by

P̂qq(x,p⊥) = δss′CF

(

1 + x2

1 − x
− ǫ(1 − x)

)

, (39)

P̂qg(x,p⊥) = δss′CF

(

1 + (1 − x)2

x
− ǫx

)

, (40)

P̂gq(x,p⊥) = 1

2

(

−gµν + 4x(1 − x)
p

µ
⊥pν

⊥
p2

⊥

)

, (41)

P̂gg(x,p⊥) = 2CA

(

−gµν

(

x

1 − x
+ 1 − x

x

)

− 2(1 − ǫ)x(1 − x)
p

µ
⊥pν

⊥
p2

⊥

)

. (42)

Here, (ij) and j are labeled q if the corresponding particle is a quark or antiquark and g if it is a 

gluon. We insert unity noticing that T(ij) = − 
∑4

k=0
k 	=i,j

Tk and so obtain

‖|pj ini. coll. pi〉‖2 = ncol(i)

ncol((ij))npol((ij))

−g2
s

x(pi · pj )

×
4
∑

k=0
k 	=i,j

〈Born|P̂i,(ij)(x,p⊥)
T(ij)Tk

T2
(ij)

|Born〉

×
{

δss′ if i is a quark or antiquark

ǫ∗
µ(pi)ǫν(pi) if i is a gluon

, (43)

where we note that T2
(ij) = CF if (ij) is a quark or antiquark, and CA if (ij) is a gluon.

If the two outgoing partons 3 and 4 are collinear, the dominant contributions stem from dia-

grams where there is a (34) → 3 + 4 splitting,

Born

→p4

→p3

p34
→

. (44)

If we define p⊥ to be the transverse momentum of p3 in the rest frame of the incoming partons, 

then we can define the fraction z of the longitudinal momentum of (34) taken away by 3 as
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Fig. 1. Overview of the IR-singularity structure and its cancellations.

p3 = zp(34) +O(p⊥), (45)

p4 = (1 − z)p(34) +O(p⊥), (46)

2p3 · p4 = −p2
⊥

z(1 − z)
+O(p3

⊥). (47)

The squared matrix element then factorizes as

‖|p3 final coll. p4〉‖2 = g2
s

p3 · p4
〈Born|P̂(34),3(z,p⊥)|Born〉

= − g2
s

p3 · p4

4
∑

k=0
k 	=3,4

〈Born|P̂(34),3(z,p⊥)
T(34)Tk

T2
(34)

|Born〉, (48)

where the indices s and s′ or µ and ν within P̂(34),3 are the open spin or Lorentz indices of 

particle (34) in the Born amplitude.

3. Cancellation of IR divergences

The IR divergences associated with the soft and collinear limits discussed in sections 2.2

and 2.3 are to a large extent canceled by contributions of the virtual corrections, as shown in 

Fig. 1. A part of the initial-state collinear divergences is, however, absorbed in the PDFs, while 

the S3 contributions to the soft divergences are canceled by LDME renormalization contributions. 

These two additional ingredients are described in this section.

3.1. PDF redefinition and PDF evolution

As for the initial-state collinear divergences of an i → (ij) +j splitting, a part of it is absorbed 

by an MS redefinition of the PDF f(ij)/A(y), which then becomes dependent on the factorization 

scale µf ,

f(ij)/A(y,µf ) ≡ f(ij)/A(y) − g2
s

8π2

(

4πµ2
r

µ2
f

e−γE

)ǫ
1

ǫ

1
∫

y

dx

x
P +

i,(ij)(x)fi/A

(y

x

)

, (49)
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where µr is the renormalization scale and P +
i,(ij)(x) is one of the regularized DGLAP splitting 

functions,

P +
qq(x) = CF

(

1 + x2

(1 − x)+
+ 3

2
δ(1 − x)

)

, (50)

P +
qg(x) = CF

1 + (1 − x)2

x
, (51)

P +
gq(x) = 1

2

(

x2 + (1 − x)2
)

, (52)

P +
gg(x) = 2CA

(

x

(1 − x)+
+ 1 − x

x
+ x(1 − x)

)

+
(

11

6
CA − nf

3

)

δ(1 − x), (53)

with nf being the number of active quark flavors, for us 3 for charmonium production and 4 for 

bottomonium production. Next, we solve Eq. (49) for f(ij)/A(y). Using these f(ij)/A(y) functions 

in the general formula (1), a mass factorization counterterm,

dσ̂MFC(a + b + QQ[n] + X) =





∑

(ij)

∫

dxP +
a,(ij)(x)dσ̂Born((ij) + b → QQ[n] + X)

+
∑

(ij)

∫

dxP +
b,(ij)(x)dσ̂Born(a + (ij) → QQ[n] + X)





g2
s

8π2

(

4πµ2
r

µ2
f

e−γE

)ǫ
1

ǫ
, (54)

arises, where parton (ij) carries the fraction x of the splitting parton’s momentum. In Fig. 1, this 

contribution is indicated as the box labeled PDF redefinition. The DGLAP equations governing 

the evolution of the scale-dependent PDFs follow seamlessly after differentiating Eq. (49) with 

respect to µf .

3.2. LDME renormalization and LDME evolution

In a similar fashion, we have to treat the contributions from the LDME renormalization. 

A NLO calculation of the 3S
[8]
1 LDME using NRQCD Feynman rules and an expansion in 

1
mQ

after the loop integration yields that it is related to the 3P
[1]
J and 3P

[8]
J LDMEs via

〈OH [3S
[8]
1 ]〉NLO = 〈OH [3S

[8]
1 ]〉LO + g2

s

3π2m2
Q

(

1

ǫUV

− 1

ǫIR

)

×
∑

J

[

CF

2CA

〈OH [3P
[1]
J ]〉 +

C2
A − 4

4CA

〈OH [3P
[8]
J ]〉

]

. (55)

This bare operator is both ultraviolet and IR divergent. We remove the ultraviolet singularity by 

introducing an MS-renormalized LDME,

〈OH [3S
[8]
1 ]〉(µ�) ≡ 〈OH [3S

[8]
1 ]〉NLO − g2

s

3π2m2
Q

(

4πµ2
r

µ2
�

e−γE

)ǫ
1

ǫUV

×
∑

J

[

CF

2CA

〈OH [3P
[1]
J ]〉 +

C2
A − 4

4CA

〈OH [3P
[8]
J ]〉

]

, (56)
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which depends on the NRQCD factorization scale µ�. Solving Eqs. (55) and (56) for 

〈OH [3S
[8]
1 ]〉LO and using this in the general formula (1), we obtain the contribution

dσ3S
[8]
1 op.ren.

=
∑

a,b,X
2→2

∫

dxadxbfa/A(xa)fb/B(xb)dσ̂ (ab → QQ[3S
[8]
1 ] + X)

× g2
s

3π2m2
Q

(

4πµ2
r

µ2
�

e−γE

)ǫ
1

ǫ

∑

J

[

CF

2CA

〈OH [3P
[1]
J ]〉

+
C2

A − 4

4CA

〈OH [3P
[8]
J ]〉

]

. (57)

Similarly, we obtain

dσ3S
[1]
1 op.ren.

=
∑

a,b,X
2→2

∫

dxadxbfa/A(xa)fb/B(xb)dσ̂ (ab → QQ[3S
[1]
1 ] + X)

× g2
s

3π2m2
Q

(

4πµ2
r

µ2
�

e−γE

)ǫ
1

ǫ

∑

J

〈OH [3P
[8]
J ]〉, (58)

dσ1S
[8]
0 op.ren.

=
∑

a,b,X
2→2

∫

dxadxbfa/A(xa)fb/B(xb)dσ̂ (ab → QQ[1S
[8]
0 ] + X)

× g2
s

3π2m2
Q

(

4πµ2
r

µ2
�

e−γE

)ǫ
1

ǫ

[

CF

2CA

〈OH [1P
[1]
1 ]〉 + C2

A − 4

4CA

〈OH [1P
[8]
1 ]〉

]

,

(59)

dσ1S
[1]
0 op.ren.

=
∑

a,b,X
2→2

∫

dxadxbfa/A(xa)fb/B(xb)dσ̂ (ab → QQ[1S
[1]
0 ] + X)

× g2
s

3π2m2
Q

(

4πµ2
r

µ2
�

e−γE

)ǫ
1

ǫ
〈OH [1P

[8]
1 ]〉. (60)

These contributions cancel the S3 contributions of the soft divergences and are labeled LDME 

renormalization in Fig. 1. However, we transform them further to cast them into a form that will 

be more useful for our purposes. Noticing that

〈2S+1L
[8]
J |(Tc − Tc)(Tc − Tc)|2S+1L

[8]
J 〉

=
C2

A − 4

CA

‖|2S+1L
[8]
J 〉‖2 + 8CACF ‖|2S+1L

[1]
J 〉‖2, (61)

〈2S+1L
[1]
J |(Tc − Tc)(Tc − Tc)|2S+1L

[1]
J 〉 = 1

C2
A

‖|2S+1L
[8]
J 〉‖2, (62)

we can rewrite Eqs. (57) and (58) as
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dσ3S
[1]
1 +3S

[8]
1 op.ren.

= g2
s

12π2m2
Q

(

4πµ2
r

µ2
�

e−γE

)ǫ
1

ǫ

∑

a,b,X
2→2

∫

dxadxb fa/A(xa)fb/B(xb)
1

2(p1 + p2)2

× Fsym(X)

ncol(a)npol(a)ncol(b)npol(b)
dPS2

×
∑

J

[

〈3S
[1]
1 ,Born|(Tc − Tc)(Tc − Tc)|3S[1]

1 ,Born〉
Ncol(3S

[1]
1 )Npol(3S

[1]
1 )

〈OH [3P
[1]
J ]〉

+
〈3S

[8]
1 ,Born|(Tc − Tc)(Tc − Tc)|3S[8]

1 ,Born〉
Ncol(3S

[8]
1 )Npol(3S

[8]
1 )

〈OH [3P
[8]
J ]〉

]

. (63)

Recalling our convention regarding the summation of the polarization degrees of freedom, we ob-

serve that Npol(
3S1) = −ǫ∗

µ(ms)ǫ
µ(ms) and Npol(

3PJ ) = ǫ∗
µ(ml)ǫ

∗
ν (ms)ǫ

µ(ml)ǫ
ν(ms), so that 

we can write

dσ3S
[1]
1 +3S

[8]
1 op.ren.

=
∑

a,b,X
2→2

∑

c=1,8

∑

J

∫

dxadxb fa/A(xa)fb/B(xb)
〈OH [3P

[c]
J ]〉

Ncol(3P
[c]
J )Npol(3P

[c]
J )

× 1

2(p1 + p2)2
dPS2

Fsym(X)

ncol(a)npol(a)ncol(b)npol(b)
‖|3P [c]

J , op.ren.〉‖2,

(64)

with

‖|3P [c]
J ,op.ren.〉‖2 = g2

s

12π2m2
Q

(

4πµ2
r

µ2
�

e−γE

)ǫ

gαβ

(

−1

ǫ

)

×ǫ∗
α(ml)ǫβ(ml)〈3S

[c]
1 ,Born|(Tc − Tc)(Tc − Tc)|3S[c]

1 ,Born〉. (65)

From the terms in Eqs. (59) and (60), we obtain a corresponding expression,

dσ1S
[1]
0 +1S

[8]
0 op.ren.

=
∑

a,b,X
2→2

∑

c=1,8

∫

dxadxb fa/A(xa)fb/B(xb)
〈OH [1P

[c]
1 ]〉

Ncol(1P
[c]
1 )Npol(1P

[c]
1 )

× 1

2(p1 + p2)2
dPS2

Fsym(X)

ncol(a)npol(a)ncol(b)npol(b)
‖|1P [c]

1 , op.ren.〉‖2,

(66)

with

‖|1P [c]
1 ,op.ren.〉‖2 = g2

s

12π2m2
Q

(

4πµ2
r

µ2
�

e−γE

)ǫ

gαβ

(

−1

ǫ

)

×ǫ∗
α(ml)ǫβ(ml)〈1S

[c]
0 ,Born|(Tc − Tc)(Tc − Tc)|1S[c]

0 ,Born〉. (67)

Finally, we derive the formula for the running of the LDME 〈OH [3S
[8]
1 ]〉(µ�) with µ�. Dif-

ferentiating Eq. (56) with respect to µ�, we obtain a renormalization group equation, with the 

solution
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〈OH [3S
[8]
1 ]〉(µ�) = 〈OH [3S

[8]
1 ]〉(µ�,0)

+ 16

3m2
Q

(

1

β0
ln

αs(µ�,0)

αs(µ�)
+ β1

4πβ2
0

(αs(µ�) − αs(µ�,0))

)

×
∑

J

[

CF

2CA

〈OH [3P
[1]
J ]〉 +

C2
A − 4

4CA

〈OH [3P
[8]
J ]〉

]

, (68)

through NLO in αs = g2
s

4π
. Here, β0 = 11

3
CA − 2

3
nf and β1 = 34

3
C2

A − 2CF nf − 10
3

CAnf . The 

evolution equations for 〈OH [3S
[1]
1 ]〉(µ�), 〈OH [1S

[8]
0 ]〉(µ�), and 〈OH [1S

[1]
0 ]〉(µ�) may be obtained 

similarly and read

〈OH [3S
[1]
1 ]〉(µ�) = 〈OH [3S

[1]
1 ]〉(µ�,0)

+ 16

3m2
Q

(

1

β0
ln

αs(µ�,0)

αs(µ�)
+ β1

4πβ2
0

(αs(µ�) − αs(µ�,0))

)

×
∑

J

〈OH [3P
[8]
J ]〉, (69)

〈OH [1S
[8]
0 ]〉(µ�) = 〈OH [1S

[8]
0 ]〉(µ�,0)

+ 16

3m2
Q

(

1

β0
ln

αs(µ�,0)

αs(µ�)
+ β1

4πβ2
0

(αs(µ�) − αs(µ�,0))

)

×
[

CF

2CA

〈OH [1P
[1]
1 ]〉 +

C2
A − 4

4CA

〈OH [1P
[8]
1 ]〉

]

, (70)

〈OH [1S
[1]
0 ]〉(µ�) = 〈OH [1S

[1]
0 ]〉(µ�,0)

+ 16

3m2
Q

(

1

β0
ln

αs(µ�,0)

αs(µ�)
+ β1

4πβ2
0

(αs(µ�) − αs(µ�,0))

)

× 〈OH [1P
[8]
1 ]〉. (71)

4. Dipole subtraction for quarkonium production

4.1. General setup

In a preliminary version, not yet taking into account kinematic cuts, we write the partonic 

NLO corrections as
∫

dσ̂ =
∫

dPS3
dσ̂real

dPS3
+
∫

dPS2

dσ̂virtual + dσ̂MFC + dσ̂op. ren.

dPS2

=
∫

dPS3

(

dσ̂real

dPS3
− dσ̂subtr

dPS3

)

+
∫

dPS2

(

dσ̂virtual + dσ̂MFC + dσ̂op. ren.

dPS2
+ [dx]

∫

dPSdipole
dσ̂subtr

dPS3

)

. (72)

Here, dPS2 is the two-particle phase space element, and dPS3 is the three-particle phase 

space element, which factorizes in some way, as either dPS3 = dPS2dPSdipole or dPS3 =
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Table 1

List of occurring V terms with given momentum assignments; of where their definitions and analytic expressions upon 

integration over the dipole phase spaces may be found in the Catani-Seymour (CS) [6] and Phaf-Weinzierl (PW) [7]

papers and here; and of momentum mappings, according to the naming scheme of section 4.3, to be applied to the 

numerical integrations of the respective dipole terms over dPS3.

pi pk Definition and integration Applied mapping

V
ini,S1
ij,k

p1 or p2 p0 PW, section 6.1 MapPW6(pi ,pj )

V
ini,S1
ij,k

p1 or p2 p1 or p2 CS, section 5.6 (n = p3 + p4) MapCS(pi )

V
ini,S1
ij,k

p1 or p2 p3 or p4 CS, section 5.3 MapCS(pi )

V
fin,S1
ij,k

p0 p1 or p2 PW, section 6.2 MapPW6(pk,pj )

V
fin,S1
ij,k

p0 p3 or p4 PW, section 5.2 MapPW5.2(pj )

V
fin,S1
ij,k

p3 or p4 p0 PW, section 5.1 MapPW5.1(pi )

V
fin,S1
ij,k

p3 or p4 p1 or p2 CS, section 5.2 MapCS(pk)

VS2,ij p1 or p2 Here, Eq. (75) and section 4.5.1 MapPW6(pi ,pj )

VS2,ij p3 or p4 Here, Eq. (75) and section 4.5.2 MapPW5.2(pj )

VS3,j Here, Eq. (76) and section 4.5.3 MapPW5.2(pj )

dPS2dx dPSdipole, where dPSdipole are certain dipole phase space elements and dx matches its 

counterpart within dσ̂MFC as defined in Eq. (54). The subtraction terms dσ̂subtr are defined in 

terms of some kinematic variables in the parameterization of dPSdipole and certain 2 → 2 kine-

matics momenta {p̃i} appearing in dPS2, which are in turn in some way mapped onto the 2 → 3

kinematics momenta {pi}. The idea is that dσ̂subtr matches dσ̂real in all singular limits. Therefore, 

the first bracket on the right-hand side of Eq. (72) is free of divergences and can be integrated 

numerically in four dimensions. On the other hand, dσ̂subtr is simple enough that it can be analyt-

ically integrated in D dimensions over dPSdipole. The IR poles of dσdipole then become explicit 

as ǫ−1 and ǫ−2 poles and cancel the singularities of dσvirtual + dσ̂MFC + dσ̂op. ren., so that the 

second bracket on the right-hand side of Eq. (72) is also finite and can be integrated numerically 

over dPS2 or dPS2dx in four dimensions, too. So the task is to construct appropriate expressions 

for dσsubtr and dPSdipole with the corresponding momentum mappings.

4.2. Subtraction term

From Eqs. (31), (43), and (48), we observe that the sum of all softly and collinearly divergent 

terms can be brought into a form that can be approximated in all singular limits by the subtraction 

term

dσ̂subtr(a + b → QQ[n] + X)

dPS3
= 1

Ncol(n)Npol(n)

1

2(p1 + p2)2

× Fsym(X)

ncol(a)npol(a)ncol(b)npol(b)
‖|abn, subtr〉‖2, (73)

with

‖|abn, subtr〉‖2

=
4
∑

j=3

2
∑

i=1

4
∑

k=0
k 	=i,j

ncol(i)

ncol((ij))

−1

2pi · pj

1

x
〈n,Born|V ini,S1

ij,k

T(ij)Tk

T2
(ij)

|n,Born〉
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+
4
∑

j=3

3
∑

i=0
i 	=1,2,j

4
∑

k=0
k 	=i,j

−1

2pi · pj

〈n,Born|V fin,S1

ij,k

T(ij)Tk

T2
(ij)

|n,Born〉
{

1
x

ifk = 1,2

1 if k 	= 1,2

+
4
∑

j=3

4
∑

i=1
i 	=j

V
β
S2,ij

ǫβ(ml)〈n,Born|T(ij)(Tc − Tc)|m(n),Born〉

+
4
∑

j=3

V
αβ
S3,j

ǫ∗
α(ml)ǫβ(ml)〈m(n),Born|(Tc − Tc)(Tc − Tc)|m(n),Born〉. (74)

In the respective limits, the initial-state collinear singularities are reproduced by the first line, 

the final-state collinear singularities by the second line, the S1 soft divergences by the corre-

sponding soft limits of the first and second lines together, and the S2 and S3 soft divergences in 

the case of P -wave states by the last two lines. In the regions away from the soft and collinear 

limits, there are no additional singularities. We call each of the terms in the sums a dipole. In 

the Born amplitudes, particles i and j are replaced by one particle (ij), which is a gluon, a light 

quark or the QQ[n] state depending on the collinear or soft limits to be approximated. Where 

there is no divergent collinear or soft limit to be approximated, the contribution is just zero. We 

note that, in the soft limits, particles i and (ij) are the same and that, in the soft and final-state 

collinear limits, x = 1. We further define m(3P
[1/8]
J ) = 3S

[1/8]
1 and m(1P

[1/8]
1 ) = 1S

[1/8]
0 . Table 1

lists where to find the explicit expressions for V
ini,S1

ij,k and V
fin,S1

ij,k in the Catani-Seymour [6] and 

Phaf-Weinzierl [7] papers. The factors in Eq. (74) are adjusted so that V
ini,S1

ij,k equals V
ij
k or V ij,k

and V
fin,S1

ij,k equals Vij,k or V k
ij in their notations. The particle (ij) is called an emitter, the particle 

k a spectator, and the indices s and s′ or µ and ν within Vij,k are the spin or polarization indices 

of particle (ij) in the Born amplitude. The V
β
S2,ij

and V
αβ
S3,j

terms, which are new, are given by

V
β
S2,ij

= 4g2
s

(

−
p

β
i

pi · pj p0 · pj

+
p0 · pip

β
j

pi · pj (p0 · pj )2
−

p2
0p

β
j

(p0 · pj )3

)

, (75)

V
αβ
S3,j

= 4g2
s

(

− gαβ

(p0 · pj )2
−

p2
0p

α
j p

β
j

(p0 · pj )4

)

, (76)

so as to approximate Eqs. (32) and (33). A pictorial summary of all dipole terms appearing in 

our study is given in Fig. 2.

4.3. Momentum mappings

The subtraction term dσ̂subtr in Eq. (73) is defined in terms of 2 → 3 kinematics variables, but 

the squared Born amplitudes contained therein describe 2 → 2 processes. Therefore, we need to 

map the 2 → 2 kinematics momenta {p̃i} of the squared Born matrix elements in Eq. (74) to the 

momenta {pi} of the 2 → 3 kinematics processes. This means that we need relations of the kind

p̃1 = p̃1(p1,p2,p0,p3,p4) p̃2 = p̃2(p1,p2,p0,p3,p4),

p̃0 = p̃0(p1,p2,p0,p3,p4) p̃3 = p̃3(p1,p2,p0,p3,p4), (77)
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which fulfill certain conditions, at least p̃2
1 = p̃2

2 = p̃2
3 = 0, p̃2

0 = p2
0 and p̃1 + p̃2 = p̃0 + p̃3. 

For dipoles that are to describe a limit where the outgoing momentum p3 or p4 is soft, or where 

p3 and p4 are collinear, we also need p̃1 → p1, p̃2 → p2, p̃0 → p0, and p̃3 → p3 + p4 in 

those limits. For dipoles which are to describe an initial-state collinear limit where the final-state 

momentum pj is collinear to the initial-state momentum pa , we need p̃a → xpa , p̃b → pb , 

p̃0 → p0 and p̃3 → p3 + p4 − (1 − x)pa , where x = (n · pa − n · pj )/(n · pa), n is an arbitrary 

vector, and pb is the momentum of the incoming parton that is not splitting. Since we cannot 

fulfill all conditions at the same time, we need different mappings for different dipoles. The four 

kinds of momentum mappings we use in our study are the following.

For all dipoles that do not involve the quarkonium momentum p0, we use the mapping that 

follows from Catani-Seymour chapters 5.2 and 5.3, and also 5.6 with n = p3 +p4. With pa being 

an initial-state momentum, this mapping implies that

p̃a = xpa, p̃3 = p3 + p4 − (1 − x)pa, x = p3 · pa + p4 · pa − p3 · p4

p3 · pa + p4 · pa

. (78)

It satisfies the conditions for all the limits p3 or p4 soft, p3 collinear to p4, and pa collinear to 

either p3 or p4, and we refer to this mapping as MapCS(pa).

For those dipoles that involve the quarkonium momentum p0, an initial-state momentum pa

and a massless final-state momentum pf , we use the mapping

p̃a = xpa, p̃0 = p0 + pf − (1 − x)pa, x = pf · pa + p0 · pa − p0 · pf

pf · pa + p0 · pa

(79)

of Phaf-Weinzierl chapters 6.1 and 6.2. It satisfies the conditions for the limits pf soft and pf

collinear to pa , and we refer to it as MapPW6(pa, pf ).

If we have a dipole term involving the quarkonium momentum p0 plus two final-state mo-

menta pf and pg , being p3 and p4 or vice versa, but we are only concerned with the limit pf

soft, we use the mapping of Phaf-Weinzierl chapter 5.2, namely

p̃3 = 1

1 − y
pg, p̃0 = p0 + pf − y

1 − y
pg, y = p0 · pf

pf · pg + p0 · pf + p0 · pg

,

(80)

which we call MapPW5.2(pf ).

The case involving the final-state momenta p0, pf , and pg , but with p0 being the spectator, 

is more complicated, since here, in addition to the condition for pf soft, also those for pg soft 

and for pf and pg collinear need to be fulfilled. The momentum mapping appropriate here is the 

one of Phaf-Weinzierl chapter 5.1,

p̃3 = apf + bpg + cp0, p̃0 = (1 − a)pf + (1 − b)pg + (1 − c)p0, (81)

with

a = 1

N

(

1 − u − c

yũ0

(

2y(1 − u) − ũ0((1 − u)y2 + (1 − u + u2)y + u − 2u2)
)

)

,

b = 1

N

(

u + c

yũ0

(

−2yu − ũ0((1 − 2u − u2)y + 1 − 3u + 2u2)
)

)

,

c = yũ0

(2u − 1 − y(1 − u))2ũ0 + 4u(1 − u)y

(

2u(1 − u) − N√
1 − v

)

,

N = u2 + (1 − u)2 + (1 − u)y, (82)
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where

ũ0 =
(pf + pg + p0)

2 − p2
0

(pf + pg + p0)2
, u = 2pf · pg + 2p0 · pg

(pf + pg + p0)2 − p2
0

,

v =
pf · pg(p0 · pf + p2

0

2
)

pf · p0(pf · pg + p0 · pg)
.

(83)

We refer to this mapping as MapPW5.1(pf ).

We note that the dipole terms in the Catani-Seymour and Phaf-Weinzierl papers were con-

structed such that the spin correlation terms of the splitting gluons vanish when contracted with 

the splitting gluon’s tilde momentum. This property is used in the analytic integrations as a sim-

plification, but it assumes that the momentum mapping of the corresponding chapter is used. 

A momentum mapping alternative to Eq. (81) is given, for example, in Eq. (5.9) of Ref. [8], 

which has the advantage of being symmetric in pf and pg . But that mapping does not fulfill the 

contraction property of the dipole terms in Phaf-Weinzierl chapter 5.1, which we use.

4.4. Phase space factorization

The phase space factorization dPS3 = dPS2[dx]dPSdipole, with dPSdipole depending only on 

the external momenta involved in the respective dipole terms, is crucial to facilitate their analytic 

integrations over dPSdipole. In the case of dipoles for final-state particles only, we have dPS3 =
dPS2dPSdipole, and, in the case of dipoles involving an initial-state parton with momentum pa, 

the factorization is dPS3 = dPS2dx dPSdipole, where x fulfills p̃a = xpa . The dipole factorization 

and the analytic integration can be found in the respective papers where the dipoles are given. The 

result of the analytic integration then only depends on the momenta {p̃i} and x. For the reader’s 

convenience, we copy here the phase space parameterization of Phaf-Weinzierl chapters 5 and 6, 

only slightly adjusting the notation, since they will be the basis for our analytic integration of the 

V
β
S2,ij

and V
αβ
S3,j

terms in sections 4.5.1–4.5.3.

The phase space parameterization used in Phaf-Weinzierl chapter 5, involving the quarkonium 

momentum p0 and two final-state momenta pf and pg being p3 and p4 or vice versa, is

dPS3(p1 + p2 → p0 + p3 + p4) = dPS2(p̃1 + p̃2 → p̃0 + p̃3)dPSdipole, (84)

with

dPSdipole = (4π)ǫ−2

Ŵ(1 − ǫ)
s̃1−ǫ ũ2−2ǫ

0

1
∫

0

du(1 − u)1−2ǫ(1 − ũ0u)ǫ−1u1−2ǫ

1
∫

0

dvv−ǫ(1 − v)−ǫ,

(85)

where ũ0, u, and v are those of Eq. (83) and s̃ = (p̃0 + p̃3)
2, which here equals (p0 +p3 +p4)

2, 

so that ũ0 = (s̃ − 4m2
Q)/s̃.

The phase space parameterization used in Phaf-Weinzierl chapter 6, involving the quarkonium 

momentum p0, an initial-state momentum pa being p1 or p2 and a final-state momentum pf

being p3 or p4, is

dPS3(p1 + p2 → p0 + p3 + p4) = dPS2(p̃1 + p̃2 → p̃0 + p̃3)dx dPSdipole, (86)

with
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dPSdipole = (4π)ǫ−2

Ŵ(1 − ǫ)
(−ψ̃a)

1−ǫxǫ−1(1 − x)1−2ǫ(1 − χ̃ax)ǫ−1

1
∫

0

dww−ǫ(1 − w)−ǫ, (87)

where x is that of Eq. (79),

w =
pa · pf (p0 · pf + p2

0

2
)

p0 · pf (pa · pf + p0 · pa)
, χ̃a = (p0 + pf − pa)

2

(p0 + pf − pa)2 − p2
0

, (88)

and ψ̃a = (p̃0 − p̃a)
2 − 4m2

Q, which here is equal to (p0 + pf − pa)
2 − p2

0 , such that χ̃a =
(ψ̃a + 4m2

Q)/ψ̃a .

4.5. Integration of dipoles over dipole phase space

4.5.1. Integration of VS2,ij terms: initial-state case

To solve the dipole phase space integral of V
β
S2,ij

given in Eq. (75) for an initial-state parton 

i, we use in the following the momentum mapping in Eq. (79) and the parameterization of the 

dipole phase space in Eq. (87) with pa = pi and pf = pj in both equations. Since the integration 

result can only depend on the momenta p̃i and p̃0, we start by decomposing

∫

dPSdipoleV
β (ini)
S2,ij

= C1p̃
β
i + C2p̃

β
0 . (89)

Although the component proportional to p̃
β
0 will vanish upon contraction with ǫβ(ml) in Eq. (74), 

we still have to consider it here, since the integral itself does have this component. We determine 

C1 by multiplying Eq. (89) with p̃iβ and p̃0β and solving the resulting system of linear equations 

and so obtain

C1 = 4g2
s

p̃0 · p̃i

[

− p̃0 · pi

p0 · pj pi · pj

+
(p2

0)
2 p̃i · pj

p̃0 · p̃i(p0 · pj )3
−

p2
0 p0 · pi p̃i · pj

p̃0 · p̃i pi · pj (p0 · pj )2

−
p2

0 p̃0 · pj

(p0 · pj )3
+ p0 · pi p̃0 · pj

pi · pj (p0 · pj )2

]

. (90)

Next, we apply the mapping in Eq. (79), express all appearing scalar products in terms of ψ̃i , χ̃i , 

x, 1 − x, w, and 1 − χ̃ix, and so obtain

C1 = 16g2
s

1 − χ̃ix

[

wx

ψ̃2
i

− 2x(1 − χ̃ix)

ψ̃2
i (1 − x)

+
16m2

Qx2(1 − χ̃ix)

ψ̃3
i (1 − x)2

−
16m2

Qwx2

ψ̃3
i (1 − x)

+
64m4

Qx3w

ψ̃4
i (1 − x)2

]

.

(91)

We now use the expression in Eq. (87) for the dipole phase space in Eq. (89), perform the w

integration, and expand the result in ǫ using

2(1 − x)−1−2ǫ = −1

ǫ
δ(1 − x) +

(

2

1 − x

)

+
+O(ǫ). (92)

The result through terms of order O(ǫ0) is then
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∫

dPSdipoleV
β (ini)
S2,ij

= g2
s

π2ψ̃i

p̃
β
i

[

δ(1 − x)

(

4πµ2
r

m2
Q

e−γE

)ǫ (

−1

ǫ
− 2 − ln

4m2
Q

ψ̃2
i

)

+2x(1 − χ̃i)(2 − x − χ̃ix)

(1 − χ̃ix)2

(

1

1 − x

)

+
+ 3(1 − x)

2(1 − χ̃ix)2

]

+ (p̃0 term). (93)

4.5.2. Integration of VS2,ij terms: final-state case

To solve the dipole phase space integral of V
β
S2,ij

given in Eq. (75) for a final-state parton i, we 

use in the following the momentum mapping in Eq. (80) and the parameterization of the dipole 

phase space in Eq. (85) with pf = pj and pg = pi in both equations. The integration result can 

then only depend on the momenta p̃3 and p̃0, and we decompose

∫

dPSdipoleV
β (fin)
S2,ij

= C3p̃
β
3 + C4p̃

β
0 . (94)

Although the component proportional to p̃
β
0 will vanish upon contraction with ǫβ(ml) in Eq. (74), 

we still have to consider it here, since the integral itself does have this component. We determine 

C3 by multiplying Eq. (94) in turn with p̃3β and p̃0β and solving the resulting system of linear 

equations and so obtain

C3 = 8g2
s

s̃ũ0

[

2(p2
0)

2 p̃3 · pj

s̃ũ0(p0 · pj )3
−

2p2
0 p̃3 · pj p0 · pi

s̃ũ0pi · pj (p0 · pj )2
+

2p2
0 p̃3 · pi

s̃ũ0p0 · pj pi · pj

− p̃0 · pi

p0 · pj pi · pj

−
p2

0 p̃0 · pj

(p0 · pj )3
+ p0 · pi p̃0 · pj

pi · pj (p0 · pj )2

]

. (95)

Next, we apply the mapping in Eq. (80), express all appearing scalar products in terms of s̃, ũ0, 

u, 1 − u, v, and 1 − ũ0u, and so obtain

C3 = 16g2
s v

(1 − ũ0u)(1 − u)2s̃2ũ0

[

(1 − u)2 +
64m4

Q

s̃2ũ2
0

+
16m2

Q(1 − u)

s̃ũ0
−

16m2
Q(1 − ũ0u)

s̃ũ2
0v

−2(1 − ũ0u)(1 − u)

ũ0v

]

. (96)

Using the expression in Eq. (85) for the dipole phase space in Eq. (94), we can now do the inte-

grations by identifying hypergeometric functions, which we then expand in ǫ using the program 

package HypExp [11]. Our result through order O(ǫ0) is

∫

dPSdipoleV
β (fin)
S2,ij

= g2
s

π2s̃ũ0

(

4πµ2
r

m2
Q

e−γE

)ǫ

p̃
β
3

[

1

ǫ
− 1

ũ0
ln

4m2
Q

s̃
+ 3 + 1

2
ln

64m10
Q

s̃5ũ4
0

]

+ (p̃0 term). (97)

4.5.3. Integration of VS3,j terms and incorporation of LDME renormalization counterterms

To solve the dipole phase space integral of V
αβ
S3,j

, we again use the momentum mapping 

in Eq. (80) and the parameterization of the dipole phase space in Eq. (85) with pf = pj and 

pg = pi . Since the integration result can only depend on the momenta p̃3 and p̃0, we decompose
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∫

dPSdipoleV
αβ
S3,j

= C5g
αβ + C6p̃

α
3 p̃

β
3 + C7p̃

α
0 p̃

β
0 + C8(p̃

α
0 p̃

β
3 + p̃α

3 p̃
β
0 ). (98)

Although the components proportional to p̃α
0 and p̃

β

0 will vanish upon contraction with 

ǫ∗
α(ml)ǫβ(ml) in Eq. (74), we still have to consider them here, since the integral itself does have 

these components. We determine C5 and C6 by multiplying Eq. (98) with gαβ , p̃3αp̃3β , p̃0αp̃0β , 

and p̃0αp̃3β and solving the resulting system of linear equations and so obtain

C5 = 4g2
s

(p0 · pj )4

(

−
2(p2

0)
2(p̃3 · pj )

2

(1 − ǫ)s̃2ũ2
0

+
2p2

0 p̃0 · pj p̃3 · pj

(1 − ǫ)s̃ũ0
− (p0 · pj )

2

)

, (99)

C6 =
16g2

s p
2
0

(p0 · pj )4

(

−
(6 − 4ǫ)(p2

0)
2(p̃3 · pj )

2

(1 − ǫ)s̃4ũ4
0

+
(6 − 4ǫ)p2

0 p̃0 · pj p̃3 · pj

(1 − ǫ)s̃3ũ3
0

− (p̃0 · pj )
2

s̃2ũ2
0

)

.

(100)

Next, we apply the mapping in Eq. (80) and express all appearing scalar products in terms of s̃, 

ũ0, u, 1 − u, v, and 1 − ũ0u and so obtain

C5 = 16g2
s

(1 − ǫ)(1 − u)2ũ2
0

[

2p2
0v

(1 − ũ0u)s̃3
−

2p2
0v

2

(1 − ũ0u)2

(

p2
0

s̃4
+ (1 − u)ũ0

s̃3

)

− 1 − ǫ

s̃2

]

,

(101)

C6 =
64g2

s p
2
0v

2

(1 − ũ0u)2(1 − u)2s̃4ũ2
0

[

(6 − 4ǫ)p2
0

(1 − ǫ)s̃

(

1 − ũ0u

ũ2
0v

−
p2

0

s̃ũ2
0

− 1 − u

ũ0

)

− (1 − ũ0u)2

ũ2
0v

2
+ 2(1 − ũ0u)(1 − u)

ũ0v
− (1 − u)2

]

. (102)

Using the expression in Eq. (85) for the dipole phase space in Eq. (98), we can now do the 

integrations by identifying hypergeometric functions, which we then expand in ǫ using HypExp

[11]. Our result through order O(ǫ0) is

∫

dPSdipoleV
αβ
S3,j

= g2
s

12π2m2
Q

(

4πµ2
r

m2
Q

e−γE

)ǫ

gαβ

[

1

ǫ
+ 2

3
−

4m2
Q

s̃ũ0
ln

16m6
Q

s̃3ũ2
0

− 2 ln(2ũ0)

ũ0

]

+ 2g2
s

3π2s̃4ũ3
0

p̃α
3 p̃

β

3

(

16m4
Q − s̃2 − 8m2

Qs̃ ln
4m2

Q

s̃

)

+ (p̃0 terms).

(103)

Let us now consider this result together with Eqs. (64)–(67) and (73). For each partonic 2 → 3

subprocess a + b → cc[n] + X, there is one (are two) contributions of V
αβ
S3,j

if X contains one 

(two) outgoing gluons and n is a P -wave state. The divergence of each of these contributions 

equals −‖|n, op.ren.〉‖2 with the same partons a and b. Noticing that Fsym(X) in the dipole 

subtraction term is 1 ( 1
2

) if there is one (are two) outgoing gluon(s), but always 1 in the LDME 

renormalization contribution, we observe that the divergence in Eq. (103) is exactly canceled 

by the contributions from LDME renormalization. Thus, in our implementation, it is simplest to 

include the effects of the LDME renormalization by just using instead of Eq. (103) the expression
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(∫

dPSdipoleV
αβ
S3,j

)

+op.ren.

= g2
s

12π2m2
Q

gαβ

(

2

3
−

4m2
Q

s̃ũ0
ln

16m6
Q

s̃3ũ2
0

− 2 ln(2ũ0)

ũ0
− ln

m2
Q

µ2
�

)

+ 2g2
s

3π2s̃4ũ3
0

p̃α
3 p̃

β

3

(

16m4
Q − s̃2 − 8m2

Qs̃ ln
4m2

Q

s̃

)

, (104)

which is then finite.

4.5.4. Integration of V
S1,ini
ij,k and V

S1,fin
ij,k terms and incorporation of mass factorization 

counterterm

There is one subtlety related to the dipole terms of V
S1,ini
ij,k in the initial-state collinear limits 

p̃i → xpi . In the second bracket of Eq. (72), there is then an apparent mismatch because dσ̂subtr

involves parton i with momentum pi , while dσ̂virtual and dσ̂MFC involve initial-state parton (ij)

with momentum xpi instead. Thus, special care has to be exercised regarding the differing color 

and polarization averaging and flux factors. In order to facilitate the singularity cancellation, it 

is, therefore, convenient to rewrite the contribution of the V
S1,ini
ij,k terms in dσ̂subtr when appearing 

in the second bracket of Eq. (72) as

dσ̂subtr(a + b → QQ[n] + X;V S1,ini
ij,k ) = −dPS2dx

1

Ncol(n)Npol(n)

1

2x(p1 + p2)2

× Fsym(X)ncol(i)npol(i)

ncol(a)npol(a)ncol(b)npol(b)ncol((ij))npol((ij))
〈n,Born|V ini,S1

ij,k

T(ij)Tk

T2
(ij)

|n,Born〉,

(105)

with the terms

V
ini,S1

ij,k =
∫

dPSdipole

npol((ij))

npol(i)

1

2pi · pj

V
ini,S1

ij,k , (106)

analytically calculated in the Catani-Seymour and Phaf-Weinzierl papers.

Now we consider Eq. (105) together with Eq. (54). Using again the trick 
∑4

k=0
k 	=i,j

T(ij)Tk

T2
(ij)

= −1

and noticing that the effect of double contributions due to j = 3, 4 is balanced by the symmetry 

factor Fsym(X) = 1
2

for two gluons in the final state, we observe that we can incorporate the 

effect of the mass factorization counterterm completely by using the expressions

(

V
ini,S1

ij,k

)

+MFC
= V

ini,S1

ij,k + g2
s

8π2

(

4πµ2
r

µ2
f

e−γE

)ǫ
1

ǫ
P +

i,(ij)(x), (107)

instead of Eq. (106). For the reader’s convenience, we collect the expressions for 
(

V
ini,S1

ij,k

)

+MFC
and those for

V
fin,S1

ij,k =
∫

dPSdipole
1

2pi · pj

V
fin,S1

ij,k (108)

in Appendix A.
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5. Implementation and numerical tests

5.1. Implementation of phase space cuts

The master formula (72) describes a total cross section. The observables we aim to calculate 

are, however, cross sections with specific kinematic cuts, for example, on the transverse momen-

tum pT or the rapidity y of the quarkonium. To this end, we define

p̃2
T =

(4m2
Q − t̃ )(s̃ + t̃ )

s̃
− 4m2

Q, ỹ = ln
s̃ + t̃

x̃2

√

S
(

p̃2
T + 4m2

Q

)

, (109)

with

s̃ = (p̃1 + p̃2)
2, t̃ = (p̃0 − p̃1)

2, S = (pA + pB)2, p̃2 = x̃2pB , (110)

where pA and pB are the momenta of the incoming hadrons. For all momentum mappings, we 

then have p̃T → pT and ỹ → y in all singular limits. We can thus refine Eq. (72) to include 

the kinematic constraints. For example, the cross section with a phase space cut pT > pT ,min is 

calculated as
∫

dσ̂ =
∫

dPS3

[

dσ̂real

dPS3
θ(pT − pT ,min) − dσ̂subtr

dPS3
θ(p̃T − pT ,min)

]

+
∫

dPS2

[

dσ̂virtual + dσ̂MFC + dσ̂op. ren.

dPS2
θ(pT − pT ,min)

+[dx]θ(p̃T − pT ,min)

∫

dPSdipole
dσ̂subtr

dPS3

]

. (111)

In the first line of Eq. (111), we integrate over the complete three-particle phase space and imple-

ment the θ functions explicitly. The θ functions then cut out different regions of the three-particle 

phase space, depending on the momentum mappings used in each dipole term. This worsens the 

convergence of the numerical Monte-Carlo integration, but the θ functions coincide close to all 

singular regions, so that the cancellations of the divergent terms take place. We note that the 

strong-coupling constant in our implementation is usually evaluated at a renormalization scale 

that is chosen to depend on kinematic variables of the produced quarkonium, e.g., αs(p
2
T ). We 

then have to substitute αs(p̃
2
T ) in dσ̂subtr. As for the contributions in the third line of Eq. (111), 

the analytic integration of the subtraction term over the dipole phase space dPSdipole is not af-

fected by the additionally imposed phase space cuts, since p̃T only depends on the momenta 

{p̃i}.
Equation (111) allows for the evaluation of binned cross section distributions, e.g., in pT

and/or y, which can be directly compared with experimental data. Refining the binning of such 

histograms yields approximations to smooth cross section distributions. To evaluate the latter 

exactly, however, one needs to replace the θ functions in Eq. (111) by δ functions, which renders 

the implementation of the cancellation of divergences quite nontrivial. We leave the elaboration 

of this for future work.

5.2. Numerical tests

We now numerically verify the implementation of the individual unintegrated dipole terms. 

The subtraction term must match all the real-correction squared matrix elements in the respective 
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Table 2

Numerical test of the dipole terms for the partonic subprocesses gg → cc[3S
[8]
1 ] + gg (ggg), dg → cc[3S

[8]
1 ] + dg

(dgd), gd → cc[3S
[8]
1 ] + dg (gdd), and dd → cc[3S

[8]
1 ] + gg (dDg). The coding is as in Fig. 2.

State: 3S18 real corr. dipoles real corr. dipoles

ggg 1,2,3 coll: 2.0041E+08 2.0041E+08 gdd 1,2,3 coll: 1.0428E+06 1.0423E+06

ggg 4,5,6 coll: 1.7072E+06 1.7071E+06 gdd 7,8,9 coll: 2.1892E+06 2.1888E+06

ggg 13,14,15 coll: 1.6866E+11 1.6866E+11 gdd 10,11,12 coll: 2.1572E+05 2.1561E+05

ggg 16,17,18 coll: 1.6879E+07 1.6883E+07 gdd 13,14,15 coll: 2.1516E+09 2.1516E+09

ggg 19,20,21 coll: 1.6429E+10 1.6429E+10 gdd 16,17,18 coll: 3.1073E+09 3.1073E+09

ggg 22,23,24 coll: 1.6866E+11 1.6866E+11 gdd 19,20,21 coll: 6.3923E+08 6.3922E+08

ggg 25,26,27 coll: 1.6866E+11 1.6866E+11 gdd p4 soft: 1.4382E+11 1.4382E+11

ggg 28,29,30 coll: 1.6429E+10 1.6429E+10 dDg 1,2,3 coll: 4.3257E+06 4.3257E+06

ggg p3 soft: 1.2357E+12 1.2357E+12 dDg 4,5,6 coll: 4.1623E+04 4.1624E+04

ggg p4 soft: 1.2357E+12 1.2357E+12 dDg 13,14,15 coll: 8.5966E+08 8.5966E+08

dgd 1,2,3 coll: 2.9102E+05 2.9110E+05 dDg 16,17,18 coll: 8.5894E+04 8.5885E+04

dgd 7,8,9 coll: 3.1100E+05 3.1092E+05 dDg 19,20,21 coll: 1.7684E+08 1.7684E+08

dgd 10,11,12 coll: 6.3894E+04 6.3923E+04 dDg 22,23,24 coll: 8.5966E+08 8.5966E+08

dgd 13,14,15 coll: 2.1869E+10 2.1869E+10 dDg 25,26,27 coll: 8.5966E+08 8.5966E+08

dgd 16,17,18 coll: 2.1516E+09 2.1516E+09 dDg 28,29,30 coll: 1.7684E+08 1.7684E+08

dgd 19,20,21 coll: 2.1516E+09 2.1516E+09 dDg p3 soft: 9.3760E+09 9.3759E+09

dgd p4 soft: 1.6118E+10 1.6119E+10 dDg p4 soft: 9.3760E+09 9.3759E+09

Table 3

Numerical test of the dipole terms for the partonic subprocesses gg → cc[3P
[1]
2 ; 1P

[8]
1 ] + gg (gg2cCgg), dg →

cc[3P
[1]
2 ; 1P

[8]
1 ] + dg (dg2cCdg), gd → cc[3P

[1]
2 ; 1P

[8]
1 ] + dg (gd2cCdg), and dd → cc[3P

[1]
2 ;1 P

[8]
1

] + gg

(dD2cCgg) in the limits where p3 and p4 are soft. The contributions of the dipoles involving V S1 , V S2 , and V S3

are shown separately.

State: 3P21 real corr. dipoles soft S1 soft S2 soft S3

gg2cCgg p3 soft: 4.2128E+10 4.2130E+10 3.7994E+10 -1.5081E+09 5.6437E+09

gg2cCgg p4 soft: 4.2128E+10 4.2130E+10 3.7994E+10 -1.5081E+09 5.6437E+09

dg2cCdg p4 soft: 1.8035E+08 1.8039E+08 4.1168E+07 -2.2504E+07 1.6173E+08

gd2cCdg p4 soft: 5.5345E+09 5.5347E+09 4.9728E+09 -3.0023E+08 8.6211E+08

dD2cCgg p3 soft: 8.9238E+07 8.9252E+07 1.6245E+07 8.2038E+06 6.4803E+07

dD2cCgg p4 soft: 8.9234E+07 8.9252E+07 1.6245E+07 8.2038E+06 6.4803E+07

State: 1P18 real corr. dipoles soft S1 soft S2 soft S3

gg2cCgg p3 soft: 1.1062E+11 1.1062E+11 1.1374E+11 -1.1212E+10 8.0929E+09

gg2cCgg p4 soft: 1.1062E+11 1.1062E+11 1.1374E+11 -1.1212E+10 8.0929E+09

dg2cCdg p4 soft: 3.6100E+08 3.6101E+08 3.5567E+08 -2.1288E+07 2.6633E+07

gd2cCdg p4 soft: 1.4423E+10 1.4424E+10 1.4588E+10 -1.2053E+09 1.0405E+09

dD2cCgg p3 soft: 1.1020E+08 1.1020E+08 1.0914E+08 -6.5828E+06 7.6456E+06

dD2cCgg p4 soft: 1.1018E+08 1.1020E+08 1.0914E+08 -6.5828E+06 7.6456E+06

limits. Three dipoles are always needed to reproduce a collinear limit, many dipoles to reproduce 

a soft limit. As an illustration, we generate certain phase space points close to the singularities 

and evaluate there both the real-correction squared matrix elements and the corresponding dipole 

terms. Our results are presented in Tables 2 and 3. From there we observe that the squared matrix 

elements of the real corrections are indeed nicely matched by the corresponding subtraction terms 

constructed as described above for all the partonic subprocesses, Fock states, and kinematic limits 

considered.

To obtain meaningful numerical checks of the implementation of the integrated dipole terms, 

also beyond self-consistency, it is indispensable to compare with results obtained using phase 

space slicing. This is even more so the case for checks of the implementation of dipole subtrac-
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tion in calculations of physical observables of quarkonium production. Extensive such tests have 

successfully been performed, for all our integrated dipole terms and several phenomenological 

applications. Presenting them in detail would require to explain the anatomy of the implementa-

tion of phase space slicing in NLO NRQCD calculations, which reaches beyond the scope of this 

paper. We will report on such comparisons in a separate communication [12], in which we will 

also quantitatively describe how dipole subtraction outperforms phase space slicing with respect 

to numerical precision and computing time.

6. Summary

We devised an implementation of a subtraction scheme appropriate for studies of inclusive 

quarkonium production at NLO in the NRQCD factorization approach, based on the dipole sub-

traction scheme of Refs. [6,7]. We needed to take special care of the specific structures of the 

bound-state amplitudes and to include additional subtraction terms in the case of P -wave states. 

Our implementation passes all intrinsic tests and yields results consistent with our previous phase 

space slicing implementation, which it outruns both in terms of accuracy and speed.
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Appendix A. Summary of integrated Catani-Seymour and Phaf-Weinzierl dipoles

In this appendix, we collect the expressions through order O(ǫ0) for the integrated Catani-

Seymour and Phaf-Weinzierl dipoles that we need in our study. The mass factorization countert-

erms are directly included here according to our definitions in Eqs. (107) and (108). gi , qi , and 

qi stand for a gluon, light quark, and antiquark with momentum pi , and we further introduce 

ξ̃i = (p̃3 − p̃i)
2. Note that our expressions for V

ini,S1

ij,p1 or 2
imply that n = p3 + p4 as in Catani-

Seymour chapter 5.6, in line with Table 1. The expressions for the integrated VS2,ij and VS3,j

terms, including the operator renormalization counterterms in the latter case, can be found in 

Eqs. (93), (97), and (104).

(

V
ini,S1

giqj ,p0

)

+MFC
= g2

s

8π2

1

2

[

2x(1 − x) − (x2 + (1 − x)2)

(

ln
x(1 − χ̃ix)

(1 − x)2
+ ln

µ2
f

−ψ̃i

)]

,

(112)

(

V
ini,S1
qiqj ,p0

)

+MFC
= g2

s

8π2
CF

[

x −
(

x + 2
1 − x

x

)

(

ln
x(1 − χ̃ix)

(1 − x)2
+ ln

µ2
f

−ψ̃i

)]

, (113)

(

V
ini,S1
qigj ,p0

)

+MFC
= g2

s

8π2
CF

(

4πµ2
r

−ψ̃i

e−γE

)ǫ
{

−
(

2

1 − x

)

+
ln

µ2
f

−ψ̃i

+ 4

(

ln(1 − x)

1 − x

)

+
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− 2(lnx + ln(2 − χ̃ix))

(

1

1 − x

)

+
+ 1 − x + (1 + x)

(

ln
x(1 − χ̃ix)

(1 − x)2
+ ln

µ2
f

−ψ̃i

)

+ δ(1 − x)

[

1

ǫ2
+ 1

ǫ

(

ln(2 − χ̃i) + 3

2

)

+ π2

12
+ 2 ln(1 − χ̃i) ln(2 − χ̃i)

+ 2 Li2(χ̃i − 1) − 1

2
ln2(2 − χ̃i) + 3

2
ln

−ψ̃i

µ2
f

]}

, (114)

(

V
ini,S1
gigj ,p0

)

+MFC
= g2

s

8π2
2CA

(

4πµ2
r

−ψ̃i

e−γE

)ǫ
{(

− lnx − ln(2 − χ̃ix) − ln
µ2

f

−ψ̃i

)

×
(

1

1 − x

)

+
+ 2

(

ln(1 − x)

1 − x

)

+
+
(

2 − 1

x
− x + x2

)

(

ln
x(1 − χ̃ix)

(1 − x)2
+ ln

µ2
f

−ψ̃i

)

+ δ(1 − x)

[

1

2ǫ2
+ 1

ǫ

(

1

2
ln(2 − χ̃i) + 11

12
− nf

6CA

)

+ ln
−ψ̃i

µ2
f

(

11

12
− nf

6CA

)

+ Li2(χ̃i − 1) + ln(1 − χ̃i) ln(2 − χ̃i) − 1

4
ln2(2 − χ̃i) + π2

24

]}

, (115)

(

V
ini,S1
qiqj ,p1 or 2

)

+MFC
= g2

s

8π2
CF

[

1 + (1 − x)2

x
ln

(x − 1)ξ̃i

xµ2
f

+ x

]

, (116)

(

V
ini,S1
giqj ,p1 or 2

)

+MFC
= g2

s

8π2

1

2

[

(

x2 + (1 − x)2
)

ln
(x − 1)ξ̃i

xµ2
f

+ 2x(1 − x)

]

, (117)

(

V
ini,S1
qigj ,p1 or 2

)

+MFC
= g2

s

8π2
CF

(

4πµ2
r

s̃
e−γE

)ǫ
{

−
(

1 + x2

1 − x

)

+
ln

xµ2
f

s̃

+
(

4 ln(1 − x)

1 − x

)

+
+ 1 − x − (1 − x) ln

(x − 1)ξ̃i

s̃

+ δ(1 − x)

[

1

ǫ2
+ 3

2ǫ
+ 2 Li2

(

χ̃iψ̃i

s̃ + ψ̃i

)

+ π2

12

]}

, (118)

(

V
ini,S1
gigj ,p1 or 2

)

+MFC
= g2

s

8π2
2CA

(

4πµ2
r

s̃
e−γE

)ǫ
{
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1 − x

x
− 1 + x(1 − x)

)

ln
(x − 1)ξ̃i

xµ2
f

−
(

1

1 − x

)

+
ln
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f

s̃
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(

2 ln(1 − x)
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+
+ δ(1 − x)
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1
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ǫ

(

11

12
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)
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24
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11

12
− nf

6CA
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ln
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µ2
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, (119)

(

V
ini,S1
qigj ,p3 or 4

)

+MFC
= g2

s

8π2
CF

(

4πµ2
r

−ξ̃i

e−γE

)ǫ
{

−
(

1 + x2

1 − x

)

+
ln

µ2
f x

−ξ̃i

+
(

4 ln(1 − x)

1 − x

)

+

− 2 ln(2 − x)

1 − x
− (1 + x) ln(1 − x) + 1 − x + δ(1 − x)
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1

ǫ2
+ 3

2ǫ
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12

]}

, (120)
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(

V
ini,S1

giqj ,p3 or 4

)

+MFC
= g2

s

8π2

1

2

[

(x2 + (1 − x)2)

(

ln(1 − x) − ln
µ2

f x

−ξ̃i

)

+ 2x(1 − x)

]

,

(121)

(

V
ini,S1
qiqj ,p3 or 4

)

+MFC
= g2

s

8π2
CF

[

1 + (1 − x)2

x

(

ln(1 − x) − ln
µ2

f x

−ξ̃i

)

+ x

]

, (122)

(

V
ini,S1
gigj ,p3 or 4

)

+MFC
= g2

s

8π2
2CA

(

4πµ2
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−ξ̃i

e−γE

)ǫ
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−
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(
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)

+ δ(1 − x)
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1
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ǫ
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12
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)

+ π2

24
+
(

11

12
− nf

6CA

)

ln
−ξ̃i

µ2
f

]}

, (123)

V
fin,S1
p0gj ,pk=1 or 2

= g2
s

8π2
CF

(

4πµ2
r

−ψ̃k

e−γE

)ǫ {(
2

1 − x

)

+

(

ln
2 − χ̃kx

1 − χ̃kx
− (1 − χ̃k)x

2

1 − χ̃kx

)

+ δ(1 − x)

[

1

ǫ

(

1 + ln
1 − χ̃k

2 − χ̃k

)

+ 2 − π2

3
+ ln(1 − χ̃k) + 1

2
ln2(1 − χ̃k)

+ 1

2
ln2(2 − χ̃k) − 2 ln(1 − χ̃k) ln(2 − χ̃k) − 2 Li2(χ̃k − 1)

]}

, (124)

V
fin,S1
p0gj ,p3 or 4

= g2
s

8π2
CF

(

4πµ2
r

s̃ũ2
0

e−γE

)ǫ
[

1

ǫ
(1 + ln(1 − ũ0)) + 4 + ln(1 − ũ0) − 4 Li2(ũ0)

− 1

2
ln2(1 − ũ0)

]

, (125)

V
fin,S1

qiqj ,pk=1 or 2
= g2

s

8π2

1

2

(

4πµ2
r

−ξ̃k

e−γE

)ǫ {
2

3

(

1

1 − x

)

+
+ δ(1 − x)

[

− 2

3ǫ
− 10

9

]}

, (126)

V
fin,S1
qigj ,pk=1 or 2

= g2
s

8π2
CF

(

4πµ2
r

−ξ̃k

e−γE

)ǫ {

−
(

2 ln(1 − x)

1 − x

)

+
− 3

2

(

1

1 − x

)

+

+ 2 ln(2 − x)

1 − x
+ δ(1 − x)

[

1

ǫ2
+ 3

2ǫ
+ 7

2
− 7

12
π2

]}

, (127)

V
fin,S1
gigj ,pk=1 or 2

= g2
s

8π2
2CA

(

4πµ2
r

−ξ̃k

e−γE

)ǫ {

−
(

2 ln(1 − x)

1 − x

)

+
− 11

6

(

1

1 − x

)

+

+ 2 ln(2 − x)

1 − x
+ δ(1 − x)

[

1

ǫ2
+ 11

6ǫ
+ 67

18
− 7

12
π2

]}

, (128)

V
fin,S1
gigj ,p0

= g2
s

8π2
2CA

(

4πµ2
r

s̃ũ2
0

e−γE

)ǫ [

1

ǫ2
+ 11

6ǫ
− 5

6
π2 + 67

12
− 1 − ũ0

3ũ2
0

+ 2 Li2(ũ0)

− 1

6

(

1 − ũ0

ũ3
0

(2 − ũ0) + 11
1 − ũ0

ũ0

)

ln(1 − ũ0) − π2

12

]

, (129)
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V
fin,S1

qiqj ,p0
= g2

s

8π2

1

2

(

4πµ2
r

s̃ũ2
0

e−γE

)ǫ [

− 2

3ǫ
− 11

6
+ 2(1 − ũ0)

3ũ2
0

+ 1 − ũ0

3ũ3
0

(2ũ2
0 − ũ0 + 2) ln(1 − ũ0)

]

, (130)

V
fin,S1
qigj ,p0

= g2
s

8π2
CF

(

4πµ2
r

s̃ũ2
0

e−γE

)ǫ
[

1

ǫ2
+ 3

2ǫ
+ 19

4
− 11

12
π2 + 1

2ũ0
+ 2 Li2(ũ0)

+ (1 − ũ0)(1 − 3ũ0)

2ũ2
0

ln(1 − ũ0)

]

. (131)
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