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1 Introduction

Since the pioneering work of Pestun [1], which builds on previous results on exact non-

perturbative effects in 4d N = 2 supersymmetric gauge theories (8 flat-space super-

charges) [2–7], localization techniques have been successfully applied to computing pro-

tected observables in theories with varying amounts of supersymmetry and in diverse di-

mensions and backgrounds (for recent comprehensive reviews on techniques and results we

refer to [8, 9]). For theories with N = 1 supersymmetry in four dimensions (4 flat-space

supercharges), most of the studies have focused on closed compact spaces with S
n × T

m

topology (or quotient thereof), while only few results for manifolds with boundaries are

available, mostly focused on theories in two and three dimensions [10–21]. Loosely speaking,

we will sometimes refer to a space with a boundary (possibly asymptotic) as non-compact,

in sharp contrast to the radically different case of a closed space without boundary. The

study of theories on non-compact spaces is interesting for many reasons as the bound-

ary provides a kind of refinement of the compact setups. The scarcity of literature on

the subject represents the main motivation for this paper, which is devoted to studying 4d

N = 1 theories with R-symmetry on curved manifolds with boundaries. Following the rigid

supergravity framework developed in [22–26] and demanding the existence of two Killing

spinors of opposite R-charges in the bulk, the allowed backgrounds are complex manifolds

diffeomorphic to torus fibrations over a Riemann surface. We consider the simplest choice,
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namely the (twisted) product of a torus (T2) times a disk (D2). The main goal of the

paper is to compute the exact partition function (Z) through supersymmetric localization,

recovering previous results arising from factorization arguments [27] as well as studying

supersymmetry preserving boundary conditions. This observable can also be interpreted

as a flavored Witten index (up to contact terms)

Z[D2 × T
2] = TrH(−1)Fe−2πH ,

where F is the fermion number and H is a certain element of the bosonic subalgebra

commuting with the localizing supercharge. The trace is over the Hilbert space of states

on D
2×S

1, whose definition includes a choice of boundary conditions. This four dimensional

background is particularly interesting also because most of the lower dimensional results

can be recovered by dimensional reduction.

Factorization. The formulation of supersymmetric theories on manifolds with bound-

aries can be thought to be more elementary to a large extent. Indeed, the majority of the

compact space results can be (non-trivially) obtained from the non-compact ones through

certain sewing procedures, reflecting how a compact background can be decomposed into

basic geometries while respecting supersymmetry (for an alternative approach using com-

pact backgrounds with defect operators we refer to [28–30]). The prototypical example

of this picture is provided by 3d N = 2 gauge theories, where the topology is sufficiently

rich and the theories sufficiently simple to manifest these phenomena in a controllable way.

In fact, in a large number of interesting examples it was explicitly shown that the parti-

tion functions of Yang-Mills-Chern-Simons-Matter theories on S
3, S2 × S

1 or lens spaces

L(p, 1) [31–42] can be assembled from two copies of the partition functions on the half-

space D
2 × S

1, a.k.a. 3d holomorphic blocks [43]. This can intuitively be understood as

a manifestation of the genus one Heegaard decomposition/gluing of the compact spaces

into/from a pair of solid tori D2 × S
1 and the quasi-topological nature of the partition

functions [25, 44]. Together, these observations lead to the expected (schematic) result

Z[(D2 × S
1) ∪g (D

2 × S
1)] =

∑

γ

Zγ [D
2 × S

1]Zγ [D
2 × S

1](g) ,

where g ∈ SL(2,Z) is the group element associated with the homeomorphism implement-

ing the sewing along the boundaries ∂(D2 × S
1) ≃ T

2 of the solid tori into the compact

space (also acting on the disk partition function), while γ represents a label for the IR

boundary conditions (Higgs vacua) to be summed over. This intriguing type of factoriza-

tion, very reminiscent of the tt∗ geometries [45, 46], was first observed by studying the

functional structure of the partition functions on different compact spaces in several exam-

ples [27, 47–52], whereas a derivation of the 3d holomorphic blocks was obtained through

supersymmetric localization on D
2×S

1 [15], lifting the results for 2d N = (2, 2) theories on

D
2 [12, 13]. Similarly, a factorized structure for the partition functions of 4d N = 1 theories

on S
3 × S

1, S2 × T
2 and more generally L(p, 1)× S

1 [53–61] was also observed [27, 62–64],

where the solid tori are naturally replaced by D
2 × T

2 patches with the sewing along the

boundaries ∂(D2 × T
2) ≃ T

3 implemented by an element g ∈ SL(3,Z). One of the main

– 2 –
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motivations behind this work is to provide a derivation of the 4d holomorphic blocks pro-

posed in [27] from an independent computation though supersymmetric localization on

D
2 × T

2, thus completing the 2d-3d-4d or rational-trigonometric-elliptic hierarchy [65, 66]

of the exact effective twisted superpotential of gauge theories with 4 supercharges.

Boundary conditions. The formulation of supersymmetric theories on manifolds with

boundaries is also necessary in order to study interesting aspects which would be lost oth-

erwise, such as the physics of boundary conditions, interfaces and bulk/boundary coupled

systems. Once again, 3d N = 2 theories have provided a very useful laboratory so far [67–

70], and the lift to 4d N = 1 theories provides another strong motivation for this paper

(for a recent general analysis we refer to [71]). An interesting and localization-friendly

approach has been recently put forward in [72] for 3d N = 2 theories and a class of dual

boundary conditions preserving 2d N = (0, 2) supersymmetry on the boundary, including

the familiar Dirichlet and Neumann conditions. In this paper, we begin to develop the

four dimensional lift of that approach, focusing on a subset of boundary conditions which

naturally arises from our localization framework. Indeed, it turns out that we are able to

perform localization upon imposing either Dirichlet or Robin-like conditions on the chiral

multiplets of the theory, which preserve some supersymmetry at the boundary. We argue

that the two boundary conditions can be flipped by coupling additional degrees of freedom

supported on the boundary, and we provide a non-trivial check by computing the D
2 × T

2

partition function for both boundary conditions and showing that their ratio does indeed

reproduce the partition function of a 3d boundary theory on ∂(D2 × T
2) ≃ T

3, which we

derive by cohomological localization. This feature is reminiscent of dualities of boundary

conditions in the context of 3d N = 2 theories [72], and it also provides a physical inter-

pretation of well-known shift properties of the elliptic Gamma function featuring in our

computations. However, a direct uplift would correspond to 4d N = 1 supersymmetry in

the bulk and 3d N = 1 on the boundary, whereas our background only preserves a certain

subalgebra in both cases due to curvature and bulk-boundary couplings.

Localization. On the technical side, our approach to computing exact partition func-

tions is based on the cohomological reformulation of the supersymmetry transformations,

closely following the 3d N = 2 framework of [73, 74]. In a nutshell, the central observation

is that the supercharge which we use for localization can be identified with an equivariant

differential acting on the supermanifold of quantum fields, therefore inducing the structure

of an equivariant cohomological complex. Upon specifying its structure and the pairing

between the different fields, the fluctuations around the localization locus can be integrated

out to obtain the 1-loop determinants for both vector and chiral multiplets. However, we

encounter several subtleties along the way, such as the presence of fermionic zero modes,

singularities of the path integral measure and the related question of identifying the correct

integration contour(s). Many of these issues are already familiar from studies of localization

on compact manifolds [41, 75–77] and can be addressed by existing arguments, whereas

other subtleties are strictly tied to our choice of background. Amongst the main differ-

ences, we can mention the global constraints imposed by the boundary. A key property

of the selected supercharge is that its action squares to a (twisted) Lie derivative along a
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Killing vector parallel to the boundary, hence ensuring the cancellation of several bound-

ary terms and leaving some freedom in the choice of boundary conditions. However, some

of the boundary terms must be killed by a specific choice of boundary conditions, which

turns out to be either Dirichlet or Robin-like for the chiral multiplets, while we consider

Neumann for the vector to preserve some gauge symmetry on the boundary. These re-

strictions discard some of the fluctuations which would otherwise contribute to the 1-loop

determinants, hence yielding different results w.r.t. the compact backgrounds (essentially,

half of those). Finally, we discuss how 4d N = 1 multiplets can be decomposed into 3d

N = 1 multiplets when restricted to the boundary, which is a convenient step before con-

sidering bulk-boundary coupled systems. The literature on 3d supersymmetric theories

with minimal supersymmetry is rather limited (we refer to [78] for a general analysis), but

this very interesting subject has lately gained great attention [79–84]. Our setup naturally

allows us to consider such theories on (twisted) T
3, and opens up a new perspective for

computing their partition functions through cohomological localization in conjunction with

the bulk theory.

Summary of the main results. Our main results are concrete expressions for the 1-

loop determinants of 4d N = 1 vector and chiral multiplets on D
2 × T

2, which constitute

the building blocks of integral expressions of gauge theory partition functions. For a vector

multiplet of a gauge group G with Cartan subalgebra h we find

Zvec
1-loop(Φ0) =

[
e−

iπ
3
P3(0)

Resu=0Γ(u; τ, σ)

]rk(G)

det
ad

′

[
e−

iπ
3
P3(Φ(0))

Γ(Φ(0); τ, σ)

]
,

where Φ(0) ∈ hC is the zero mode of the gauge connection along the (anti-holomorphic)

Killing vector field on the torus, P3(u) is a cubic polynomial arising from regularization,

Γ(u; τ, σ) is the elliptic Gamma function with parameters τ, σ associated with the torus

modulus and disk equivariant parameter respectively (that is the moduli of the complex

structure), while the prime stands for excluding the zero roots (corresponding to Cartan

generators). Similarly, for a chiral multiplet of R-charge r in a representation R of the

gauge group we find

Zchi(D)
1-loop (Φ(0)) = det

R

[
e−

iπ
3
P3(σ(1−r/2)−Φ(0))

Γ(σ(1− r/2)− Φ(0); τ, σ)

]

for Dirichlet conditions, and

Zchi(R)
1-loop (Φ(0)) = det

R

[
e

iπ
3
P3(σr/2+Φ(0)) Γ(σr/2 + Φ(0); τ, σ)

]

for Robin-like conditions. One can notice that the ratio of these results is a Jacobi Theta

function (up to the exponential of a quadratic polynomial)

Zchi(D)
1-loop (Φ(0))

Zchi(R)
1-loop (Φ(0))

= det
R

[
e−iπP2(σr/2+Φ(0))Θ(σr/2 + Φ(0);σ)

]
,
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which can naturally be interpreted as the contribution of boundary degrees of freedom

flipping the boundary conditions. This is an interesting prediction, which we are able to

support by explicit computation of the 1-loop determinants of a pair of 3d N = 1 real

multiplets on ∂(D2 × T
2) ≃ T

3, for which we find the r.h.s. of the ratio above.

Organization of the paper. The paper is organized as follows. In section 2, we col-

lect relevant definitions and properties of the background geometry that we consider. In

section 3, we provide a self-contained discussion of the supersymmetric multiplets, their

actions and boundary terms. In section 4, we discuss the cohomological localization for

vector and chiral multiplets, introducing the relevant complexes and evaluating the 1-loop

determinants subject to boundary conditions. In section 5, we describe how bulk degrees

of freedom split up into boundary multiplets and summarize how the surviving curved

space supersymmetry algebra acts on the latter. In section 6, we review how bulk fields

can be decomposed into multiplets of the minimal supersymmetry preserved by the bound-

ary, laying out the foundation for the analysis of the interplay between boundary matter

and boundary conditions for bulk fields. In section 7, we discuss the inclusion of some

observables and classical terms in the theory which are consistent with our localization

framework, and we also test our results for the gauge theory partition functions against

Seiberg duality for SQCD. In section 8, we conclude with a discussion of the main open

questions that arose from our analysis and suggestions for future works. The paper is

accompanied by several appendices, where we summarize our conventions and notations

used in the main text as well as few side technical aspects of our analysis.

2 Background geometry

Let us start by reviewing the geometry of the class of supergravity backgrounds we are

interested in, closely following [23, 54, 57, 58]. The purpose of this section is to provide a

detailed description of the geometry from various angles. We begin by expressing various

geometric quantities such as the complex structure or the metric in terms of Killing spinor

bilinears. This will be useful in the construction of supersymmetric actions and in the

description of the cohomological complexes adopted for localization. The choice of adapted

complex coordinates will be useful for explicit computations of 1-loop determinants. An

alternative choice of real coordinates will also be useful for dealing with the boundary. Our

conventions are collected in appendix A together with some useful identities.

2.1 General aspects

We consider Riemannian 4-manifolds with metric gµν admitting solutions to the following

Killing spinor equations

(∇µ − iAµ + iVµ + iσµνV
ν)ζ = 0 ,

(∇µ + iAµ − iVµ − iσ̃µνV
ν)ζ̃ = 0 ,

(2.1)

where Aµ is a background Abelian connection for the R-symmetry line bundle R, while

Vµ is a background field satisfying ∇µV
µ = 0. The existence of solutions implies that the
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manifold has to be Hermitian, and we denote the Hermitian metric by gµν . We focus on

the case where two solutions ζ and ζ̃ of R-charges ±1 and opposite chiralities exist. In this

case, we can define the following fundamental vectorial Killing spinor bilinears1

Kµ ≡ ζ̃σ̃µζ, K̄µ ≡ 1

|ζ|2|ζ̃|2
ζ̃†σ̃µζ† , Y µ ≡ 1

|ζ̃|2
ζ̃†σ̃µζ , Ȳ µ ≡ − 1

|ζ|2 ζ̃σ̃
µζ† . (2.2)

The vectors Y µ, Ȳ µ have R-charge ±2, while Kµ is a complex Killing vector and we assume

that Kµ commutes with its conjugate.2 When there is no confusion, we will omit all the

indexes to avoid cluttering. In particular, the dual 1-forms obtained by lowering the indexes

with the metric will be denoted by the same symbols. Next, we define the following 2-form

Killing spinor bilinears3

Jµν ≡ − 2i

|ζ|2 ζ
†σµνζ , Pµν ≡ ζσµνζ , J̃µν ≡ − 2i

|ζ̃|2
ζ̃†σ̃µν ζ̃ , P̃µν ≡ ζ̃σ̃µν ζ̃ . (2.3)

Notice that the tensor P is self-dual and carries R-charge 2, while P̃ is anti-self-dual and

carries R-charge −2. The tensor Jµ
ν squares to −1, it is integrable and provides a complex

structure.4 In fact, the 2-form Jµν is the Kähler form associated with the Hermitian metric.

Notice that the vectors K,Y are anti-holomorphic while K̄, Ȳ are holomorphic. In terms

of the 1-form bilinears, we also have the expressions

J = − i

2

(
K ∧ K̄ + Y ∧ Ȳ

)
, P =

1

2
K ∧ Y ,

J̃ = − i

2

(
K ∧ K̄ − Y ∧ Ȳ

)
, P̃ = −1

2
K ∧ Ȳ . (2.4)

The 1-form Killing spinor bilinears provide an orthonormal frame, and the metric reads

g ≡ 1

2

(
K ⊗ K̄ + K̄ ⊗K + Y ⊗ Ȳ + Ȳ ⊗ Y

)
. (2.5)

The volume form is taken to be

vol4 ≡
1

2
J ∧ J = −1

4
K ∧ K̄ ∧ Y ∧ Ȳ . (2.6)

The Killing spinor equations also impose some integrability condition on the back-

ground fields, in particular

R− 6V µVµ = 2JµνFµν = −2J̃µνFµν , (2.7)

where R is the Ricci curvature (negative for the round sphere) and Fµν is the R-symmetry

field strength. Also, the existence of the Killing spinors, and hence a choice of the above

geometric structures, can be used to determine the background fields Aµ and Vµ, in par-

ticular

Vµ =
1

2
∇νJ

ν
µ + κKµ , (2.8)

1In our conventions, the non-zero contractions of the vectors evaluate to 2 instead of 1/2 as [54].
2Note that, in general, K̄ 6= K†.
3We follow [54] for the definition of J, J̃ , which is minus that of [57].
4A similar property applies to J̃ .
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where κ is an arbitrary K-invariant function, namely Kµ∂µκ = 0. The R-symmetry con-

nection can be similarly written in terms of the Chern connection, the complex structure

and the Killing vector, but we will consider its explicit form later on in specific coordinates.

Finally, given a connection 1-form A for an additional vector bundle, we denote the total

covariant derivative by

Dµ ≡ ∇µ − iqRAµ − iAµ. , (2.9)

where the dot denotes the action in the appropriate representation and qR is the R-charge.

In fact, A will be the gauge connection for a gauge group G with Lie algebra g and choice

of Cartan subalgebra h. For a given vector v, we define the (total) covariant derivative

along v by

Lv ≡ vµDµ . (2.10)

In particular, the Killing spinor equations imply the conservation laws

DµK
µ = 0, DµK̄

µ = 0, DµY
µ = 0, DµȲ

µ = 0 . (2.11)

2.2 Complex coordinates

Under the above assumptions, a complex 4-manifold admitting such geometric structures

is a T
2 fibration over a Riemann surface. Introducing local complex coordinates (w, w̄) on

the torus and (z, z̄) on the base, the Hermitian metric can be locally written as

ds2 ≡ Ω2
(
|dw + hdz|2 + c2dzdz̄

)
, (2.12)

where Ω = Ω(z, z̄) and c = c(z, z̄) are nowhere vanishing real functions while h = h(z, z̄) is

generically complex. This suggest to work in the holomorphic frame

θ1 + iθ2 ≡ Ω(dw + hdz) , θ3 + iθ4 ≡ Ωc dz , (2.13)

where θa form a real orthonormal frame and a = 1, 2, 3, 4 is a flat space index. In this

frame, the Killing spinors we consider can be explicitly given as

ζα =

√
s

2
δ+α , ζ̃α̇ = − Ω√

2s
δα̇+̇ , (2.14)

where s is a nowhere vanishing global section of the canonical line bundle tensored with the

square of the R-symmetry line bundle. In fact, since P is a section of the R-symmetry line

bundle R with R-charge 2 and a section of the canonical bundle K of self-dual (2, 0)-forms,

it can be defined by

P ≡ 1

2
s 4
√
g dw ∧ dz , (2.15)

with the square root of the determinant of the metric being
√
g = c2Ω4/4. In particular,

this shows that s transforms by phases under holomorphic coordinate changes. Local R-

symmetry transformations can then be used to make s, and hence the Killing spinors,

scalar w.r.t. changes of adapted coordinates. The other Killing spinor bilinears read

K = ∂w̄, K̄ =
4

Ω2
∂w, Y =

2s

Ω2c
(∂z̄ − h̄∂w̄), Ȳ =

2s−1

c
(∂z − h∂w) , (2.16)
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and the dual 1-forms are

K =
1

2
Ω2(dw + hdz), K̄ = 2(dw̄ + h̄dz̄), Y = cs dz, Ȳ = Ω2cs−1 dz̄ , (2.17)

while the volume form becomes

vol4 = volT2 ∧ volD2 , volT2 ≡ i
Ω2

2
dw ∧ dw̄ , volD2 ≡ i

Ω2c2

2
dz ∧ dz̄ . (2.18)

Finally, the R-symmetry connection in the holomorphic frame reads

Aµ = −1

2
Jµ

ν∂ν ln 4
√
g − i

2
∂µ ln s+

1

4
(gµν + iJµν)∇αJ

αν +
3

2
κKµ . (2.19)

After the previous general and local analysis, let us next discuss the global properties

of the background we are interested in. We consider the product of a torus T
2 with a

disk D
2. The modular parameter τ ∈ H

+ of the torus determines the periodicities of the

complex coordinate w to be w ∼ w + 2π ∼ w + 2πτ . The boundary of the disk is defined

to be a circle located at |z| = |z|∂ , corresponding to the actual boundary ∂(D2×T
2) ≃ T

3.

In later sections, we will make a few simplifying choices w.r.t. the most general setup that

has been discussed so far. In particular, we will consider the standard flat metric on the

torus and the standard Kähler metric on the disk

ds2 = dwdw̄ +
4dzdz̄

(1 + ǫ|z|2)2 , Ω2 = 1 , c2 =
4

(1 + ǫ|z|2)2 , h = h̄ = 0 , (2.20)

where ǫ = ±1, 0 for the spherical, hyperbolic or flat space. In the following, we will

adapt our discussion to the spherical metric, in which case we can consider a boundary

at finite distance. Note that this metric posses an additional Killing vector corresponding

to rotations parallel to the boundary of the disk generated by −i(z∂z − z̄∂z̄). It will be

convenient to consider the unit normalized real vector

T ≡ − i

c|z|(z∂z − z̄∂z̄) , (2.21)

and introduce the normal direction to the boundary as its orthogonal (unit normalized)

complement on the disk, namely

N ≡ J(T ) =
1

c|z| (z∂z + z̄∂z̄) . (2.22)

Even though these are ill-defined at the origin of the disk, we only need them close to the

boundary, and we will often use the symbol ⊥ to denote the normal direction. As far as

the background fields are concerned, the Kähler condition dJ = 0 implies V = κK, we

may further specialize to κ = 0, in which case the R-symmetry connection reduces to

A = − i

2(1 + |z|2) (z̄dz − zdz̄)− i

2
d ln s . (2.23)

The R-symmetry connection is real provided that |s| is constant, which is what we as-

sume. From dA = volD2/2, we see that this configuration gives a unit flux on the full
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sphere. We also consider a refinement of the background consisting of the following global

identifications of the holomorphic coordinates [54]

(w, z) ∼ (w + 2π, e2πiαz) ∼ (w + 2πτ, e2πiβz) , (2.24)

with α, β ∈ R, α ∼ α+1, β ∼ β+1. The parameters τ and σ ≡ ατ −β can be interpreted

as complex structure moduli. Note that the 2-form (2.15) must be well-defined under the

quotient (2.24), implying that s must also be subject to the identifications

s ∼ e−2πiα s , s ∼ e−2πiβ s , (2.25)

where in each equation the two sides are evaluated at different points precisely as in (2.24).

As we have already mentioned, since s is a nowhere-vanishing global section of R2 ⊗ K

transforming by phases w.r.t. holomorphic coordinate changes, we can always offset these

identifications by a suitable R-transformation so that s (and hence the Killing spinors)

behaves as a scalar w.r.t. changes of adapted coordinates. In other words, one can identify

R ≃ K
− 1

2 (up to a trivial line bundle). After that, since we restrict to constant |s| in
order for the R-symmetry connection to be real, we could treat s as a constant as well,

however it will be more convenient to retain it for bookkeeping purposes. Any other

field X of the theory carrying R-charge qR also acquires twisted periodicities under the

identifications (2.24), namely

X ∼ eiπqRαX , X ∼ eiπqRβ X . (2.26)

For our background, K is topologically trivial, hence the R-charges do not need to be

quantized. This is in contrast with the case where the disk is replaced by a compact sphere.

2.3 Real coordinates

It is also useful to have a description of the background in terms of real coordinates trivializ-

ing the identifications (2.24). This corresponds to another presentation of the background,

instead of a disk fibered over a torus, we will here present it as a torus fibered over a disk.

For the torus we employ real coordinates (x, y) subject to periodic identifications

x ∼ x+ 2π , y ∼ y + 2π . (2.27)

Similarly, we can parametrize the unit disk through a radial coordinate tan ϑ/2, ϑ ∈ [0, π/2]

and an angular coordinate ϕ ∼ ϕ+2π. Here we are adapting the notation to the hemisphere

with polar angle ϑ, and thus it is natural to place the boundary at ϑ = π/2, namely at

|z| = 1 in complex coordinates. The change from real to complex coordinates is as follows

w = x+ τy , w̄ = x+ τ̄ y ,

z = tan
ϑ

2
ei(ϕ+αx+βy) , z̄ = tan

ϑ

2
e−i(ϕ+αx+βy) , (2.28)

which inverts to

x =
i

2Im(τ)
(w τ̄ − w̄ τ) , y = − i

2Im(τ)
(w − w̄) ,

ϑ = 2arctan
√
zz̄ , ϕ = − i

2
log

z

z̄
− i

2Im(τ)
(w σ̄ − w̄ σ) , (2.29)
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where σ = τα− β. In real coordinates, the metric reads

ds2 = (dx+Re(τ)dy)2 + Im(τ)2dy2 + dϑ2 + sin2 ϑ(dϕ+ αdx+ βdy)2 , (2.30)

while the R-symmetry connection becomes (up to flat connections)

A =
1

2
(1− cosϑ)(dϕ+ αdx+ βdy) . (2.31)

These expressions clarify that the refinement provided by α, β is equivalent to turning on

a flat connection in the dϕ direction, namely an equivariant deformation by the chemical

potential σ for the angular momentum on the disk. In fact, the Killing vector is a complex

combination of the three real angles in geometry

K = − i

2Im(τ)
(τ∂x − ∂y − σ∂ϕ) , (2.32)

and the twisted periodicities on the fields can be interpreted as shifting the effective angular

momentum by the R-charge due to the presence of a magnetic field.5 Finally, the normal

and tangent vectors to the boundary introduced in (2.21), (2.22) are simply identified with

N = ∂ϑ , T =
1

sinϑ
∂ϕ . (2.33)

Remark. When there is a boundary, an important piece of data is the transition between

the bulk and boundary frames, and this is particularly delicate for spinorial objects. We

refer to [12] for an exhaustive discussion on the disk in the context of supersymmetric

localization. We discuss the geometry of the boundary and its relation to the bulk in more

detail in section 5.

3 Bulk supersymmetry

Having discussed the background geometry in the previous section, we now turn to a de-

scription of the supersymmetry algebra preserved by this background. We will first review

how supersymmetry acts on 4d N = 1 vector and chiral multiplets in the supergravity back-

ground of the previous section. This will set the stage for the discussion of supersymmetric

actions and suitable boundary terms.

3.1 Supersymmetry multiplets

In Euclidean flat space, the 4d N = 1 supersymmetry algebra is generated by left and right

handed supercharges Qα, Q̃α̇ with R-charges ∓1 satisfying

{Qα, Q̃α̇} = 2σaαα̇Pa , (3.1)

where Pa is the (covariant) momentum operator and a = 1, 2, 3, 4 a flat index. In the

curved background we are considering, we will denote by δζ , δζ̃ the odd supersymmetry

5In real coordinates, it is more convenient to work with periodic fields along the torus and turning on

a corresponding flat connection. While we have repeated all computations also in the real frame, here we

only present them in the holomorphic frame, which is more elegant.
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transformations generated by the commuting Killing spinors ζ, ζ̃ respectively, and the

supersymmetry algebra is broken down to the subalgebra

{δζ , δζ̃} = 2iδK , δK ≡ LK − iKµAµ +GΦ ,

{δζ , δζ} = {δζ̃ , δζ̃} = [δK , δζ ] = [δK , δζ̃ ] = 0 , (3.2)

where LK is the Lie derivative along K and GΦ represents an infinitesimal gauge transfor-

mation with parameter Φ. Gauge transformations act on the gauge connection A and any

other field X as follows

GΦAµ ≡ DµΦ , GΦX ≡ iΦ.X , (3.3)

where Φ. denotes the action in the relevant linear representation. It turns out that

Φ ≡ −ιKA ≡ −KµAµ (3.4)

is a component of the gauge field itself. We also introduce the neutral combination

Q ≡ δζ + δζ̃ , Q 2 = 2iδK , (3.5)

which we are going to use for localization. In particular, using the real coordinates for

the simplified Kähler background described in section 2.2, we can readily identify the

Hamiltonian operator H that appeared in the introduction of the paper with

δK = 0 ⇒ iH ≡ Py = τPx − σPϕ + u , (3.6)

where u can be an element in the Cartan of a global symmetry for which a background flat

connection can be turned on. The almost perfect symmetry amongst the three boundary

translation operators already hints at interesting modular properties of the partition func-

tions.6

We can now move on to discuss how supersymmetry is realized on elementary fields.

Even though for actual computations we are eventually interested in the simplified geometry

where dJ = V = 0, in this section we are going to discuss the general setup, unless

otherwise stated.

3.1.1 Vector multiplet

A vector multiplet (A, λ, λ̃,D) includes a gauge field, gauginos, and an auxiliary scalar D

whose R-charges are (0, 1,−1, 0). In Euclidean signature, λ and λ̃ are independent Weyl

spinors of opposite chirality. All fields are valued in the Lie algebra g of the gauge group

G. The field strength F ≡ dAA = dA− iA ∧A is

Fµν = ∂µAν − ∂νAµ − i[Aµ,Aν ] , (3.7)

with Hodge dual F̃ ≡ ⋆F ,7 that is

F̃µν =
1

2
εµνρσFρσ . (3.8)

6From this viewpoint, it might be more useful to think about our index as a kind of elliptic genus for

a theory quantized on T
2. This can be made more explicit by restoring the term exp[−2πIm(τ)Q 2] under

the trace defining the index. For a similar perspective in the compact case, we refer to [54, 60].
7We use the ε tensor εwzw̄z̄ =

√

|g| × 1.
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SUSY transformations. The off-shell supersymmetry transformations are

QAµ = iζσµλ̃+ iζ̃σ̃µλ ,

Qλ = Fµνσ
µνζ + iDζ , Q λ̃ = Fµν σ̃

µν ζ̃ − iDζ̃ ,

QD = −ζσµD̂µλ̃+ ζ̃σ̃µD̂µλ , (3.9)

where

D̂µλ ≡ Dµλ+ i
3

2
Vµλ , D̂µλ̃ ≡ Dµλ̃− i

3

2
Vµλ̃ . (3.10)

3.1.2 Zero mode multiplet

For later purposes, it is useful to separately study the multiplet of zero modes, which

we now define. This is motivated by the BPS localization locus that we will encounter

later on. Since we are eventually interested in flat connections, it is useful to define the

constant variables

Φ(0) ≡ −ιKA(0) = −A(0)
w̄ , Φ̄(0) ≡ −ιK̄A(0) = − 4

Ω2
A(0)

w , (3.11)

which coincide with the torus zero modes of the connection and encode the commuting

holonomies around its cycles. In fact, using the gauge freedom, we can restrict to constant

configurations along the torus, therefore Φ(0) and Φ̄(0) are proportional to the periods

∮

y
A(0) − τ

∮

x
A(0) ,

∮

y
A(0) − τ̄

∮

x
A(0) . (3.12)

We can further assume that the holonomies can be simultaneously conjugated to the same

Cartan torus,8 hence effectively defining rk(G) independent complex coordinates on the

flat connection moduli space. Also, since the periods shift by ny − nxτ and ny − nxτ̄

respectively under the large gauge transformation Ax,y → Ax,y +2πnx,y,
9 they are defined

on a rk(G)-dimensional torus. The Kähler background we are eventually interested in

admits non-trivial fermionic zero modes coming from the Cartan gaugini

λ = λ(0) ∈ hC , λ̃ = λ̃(0) ∈ hC , (3.13)

which feel only the spin and R-symmetry connections. Therefore, they must be proportional

to the Killing spinors. This is particularly simple to see in the case V = 0, when the Killing

spinors are annihilated by the Dirac operator. Altogether, the zero modes form a complete

supermultiplet, and by defining the following constant fermionic scalar zero modes

Λ0
(0) ≡

ζ†

|ζ|2λ(0) , Λ̃0
(0) ≡

ζ̃†

|ζ̃|2
λ̃(0) , (3.14)

or equivalently

Ξ0
(0) ≡ 2i

(
Λ0
(0) + Λ̃0

(0)

)
, Ψ(0) ≡ 2i

(
Λ̃0
(0) − Λ0

(0)

)
, (3.15)

8For simplicity, we restrict to simply connected or unitary Lie groups.
9With an abuse of notation, we denote by nx, ny elements of the co-root system.
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then the supersymmetry transformations are

QΦ(0) = 0 , Q Φ̄(0) = −Ξ0
(0) ,

QΨ(0) = ∆(0) , Q∆(0) = 0 , (3.16)

where we have defined the constant (generically complex) combination

∆(0)

4
≡ D(0) −

i

2
Y µȲ νF (0)

µν ∈ hC . (3.17)

Note that on the zero mode supermultiplet we have Q 2 = 2iδK = 0, and that the BPS

configurations necessarily have ∆(0) = 0, namely F(0) = D(0) = 0 upon imposing the usual

reality conditions F(0) ∈ hR, D(0) ∈ ihR.

3.1.3 Chiral multiplet

The 4d N = 1 chiral multiplet (φ, ψ, F ) contains a complex scalar, a Weyl spinor, and an

auxiliary complex scalar, all transforming in the same representation of the gauge group G.

We will say that the multiplet has R-charge charge r if its component fields have charges

(r, r − 1, r − 2). In Euclidean signature, each chiral multiplet is accompanied by an in-

dependent anti-chiral multiplet, with component fields denoted by (φ̃, ψ̃, F̃ ). These have

opposite R-charges, and transform in the conjugate representation of G.

SUSY transformations. The off-shell supersymmetry transformations for a chiral mul-

tiplet coupled to a vector multiplet are

Qφ =
√
2 ζψ , Q φ̃ =

√
2 ζ̃ψ̃ ,

Qψ =
√
2Fζ + i

√
2(σµζ̃)Dµφ , Q ψ̃ =

√
2 F̃ ζ̃ + i

√
2(σ̃µζ)Dµφ̃ ,

QF = i
√
2 ζ̃σ̃µD̂µψ − 2iζ̃λ̃φ , Q F̃ = i

√
2 ζσµD̂µψ̃ + 2i φ̃ζλ , (3.18)

where10

D̂µψ ≡ Dµψ − i

2
Vµψ, D̂µψ̃ ≡ Dµψ̃ +

i

2
Vµψ̃. (3.19)

3.2 Supersymmetric actions

Having reviewed how the basic 4d N = 1 multiplets transform under the supercharges pre-

served by our background, we now turn to supersymmetric actions, without superpotential

terms. The inclusion of a superpotential will be discussed in section 7.1 since it is most

conveniently carried out in terms of twisted fields, to be introduced later on. Also, in order

to avoid cluttering, for non-Abelian theories the Tr in all the actions is left implicit.

3.2.1 Vector multiplet

The usual Lagrangian for the vector multiplet is

Lvec ≡
1

4
FµνFµν − D2

2
+

i

2
λσµD̂µλ̃+

i

2
λ̃σ̃µD̂µλ . (3.20)

10Using the Killing spinor equations we can also write ζ̃σ̃µD̂µψ = Dµ(ζ̃σ̃
µψ), ζσµD̂µψ̃ = Dµ(ζσ

µψ̃).
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However, in the presence of a boundary the action

Svec ≡
∫

d4x
√
g Lvec (3.21)

is generically neither Q -exact nor supersymmetric due to boundary terms, namely

Lvec = Q (· · · )−∇µ (· · · )µ , QLvec = ∇µ (K
µ · · · )−∇µ (Q · · · )µ . (3.22)

Let us compute the boundary terms. We define an involution ∨ acting as † on Killing

spinors, background geometric quantities and C-numbers, while we will specify its action

on dynamical fields momentarily. We define the following fermionic functionals

Vvec ≡
1

4|ζ|2 (Qλ)∨λ , Ṽvec ≡
1

4|ζ̃|2
(Q λ̃)∨λ̃ , (3.23)

and compute the variations

Qλ = Fµν

(
ζ
i

2
Jµν − ζ†

|ζ|2P
µν

)
+ iDζ ,

(Qλ)∨ = −i

(
1

2
JµνF∨

µν +D∨

)
ζ† + |ζ|2K̄µȲ νF∨

µνζ ,

Q λ̃ = Fµν

(
ζ̃
i

2
J̃µν − ζ̃†

|ζ̃|2
P̃µν

)
− iDζ̃ ,

(Q λ̃)∨ = −i

(
1

2
J̃µνF∨

µν −D∨

)
ζ̃† − |ζ̃|2K̄µY νF∨

µν ζ̃ , (3.24)

where we used the identities ζ†σµνζ† = |ζ|4K̄ [µȲ ν], ζ̃†σ̃µν ζ̃† = |ζ̃|4K̄ [µY ν]. Then the

bosonic parts of the Lagrangians QVvec, Q Ṽvec read

QVvec

∣∣∣
B
=

1

8
F∨
µν(Fµν + F̃µν) +

1

4
D∨D +

1

8
Jµν(F∨

µνD + FµνD
∨) + iJµ

ρF∨
µνFνρ ,

Q Ṽvec

∣∣∣
B
=

1

8
F∨
µν(Fµν − F̃µν) +

1

4
D∨D +

1

8
J̃µν(F∨

µνD + FµνD
∨) + iJ̃µ

ρF∨
µνFνρ . (3.25)

If we choose the involution to act as (A, D)∨ = (A,−D), then in the summation of the two

contributions most of the terms will cancel out leaving us simply with

Q (Vvec + Ṽvec)
∣∣∣
B
= Lvec

∣∣∣
B
. (3.26)

Similarly, for the fermionic parts after this choice we obtain

QVvec

∣∣∣
F
=

i

2
λσµD̂µλ̃− i

4
Ȳ µDµ (λλ) , Q Ṽvec

∣∣∣
F
=

i

4
Y µDµ(λ̃λ̃) +

i

2
λ̃σ̃µD̂µλ , (3.27)

and using the conservation (2.11) we get

Q (Vvec + Ṽvec) = Lvec +∇µB
µ
vec , B

µ
vec ≡

i

4

(
Ȳ µλλ+ Y µλ̃λ̃

)
. (3.28)

Note that the other Q -exact combination is a boundary Lagrangian

Q (Vvec − Ṽvec) =
1

8
ǫµνρσFµνFρσ +∇µ

(
i

2
λσµλ̃

)
+ LỸ

(
i

4
λλ

)
− LY

(
i

4
λ̃λ̃

)
, (3.29)

which reduces to a 3d N = 1 Chern-Simons term on the boundary.
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Remark. In order to properly define the theory, we need to discuss the allowed boundary

conditions. We will do that when computing the partition function of the theory through

localization. The Lagrangian that we will use differs from the usual one by boundary terms,

and to apply our framework to the latter one would need to additionally restrict to those

boundary conditions that also kill the normal component of B
µ
vec (and its Q-variation if

some supersymmetry has to be preserved on the boundary). Since our Lagrangian is Q-

exact and the supercharge squares to an isometry generated by a Killing vector parallel

to the boundary, supersymmetry alone does not enforce a choice of boundary conditions,

leaving the freedom to explore different choices.

3.2.2 Chiral multiplet

The usual Lagrangian for the chiral multiplet coupled to a vector is

Lchi ≡ Dµφ̃Dµφ+ φ̃
(
D +

r

4
R
)
φ− F̃F + iψ̃ σ̃µD̂µψ

+ i
√
2
(
φ̃λψ − ψ̃λ̃φ

)
+ iVµ

(
φDµφ̃− φ̃Dµφ− i

3r

2
V µφ̃φ

)
. (3.30)

However, in general the action

Schi ≡
∫

d4x
√
g Lchi (3.31)

is not supersymmetric nor Q -exact due to boundary terms, namely

Lchi = Q (· · · )−∇µ (· · · )µ , QLchi = ∇µ (K
µ · · · )−∇µ (Q · · · )µ . (3.32)

Let us compute the boundary terms. We define the following fermionic functionals

Vchi≡
1

2|ζ|2
(
(δζψ)

∨ψ+(δζψ̃)
∨ψ̃
)
=
√
2F∨ζ†ψ+

√
2

(
iζ̃LY φ̃−i

ζ̃†

|ζ̃|2
LK φ̃

)∨

ψ̃ ,

Ṽchi≡
1

2|ζ̃|2
(
(δζ̃ψ̃)

∨ψ̃+(δζ̃ψ)
∨ψ
)
=
√
2F̃∨ζ̃†ψ̃+

√
2

(
−iζLȲ φ−i

ζ†

|ζ|2LKφ

)∨

ψ , (3.33)

Vλ≡−i
ζ†

|ζ|2 φ̃λφ, Ṽλ≡ i
ζ̃†

|ζ̃|2
φ̃λ̃φ ,

Vκ≡− φ√
2|ζ|2

κKµ ζ
†σµψ̃ , Ṽκ≡

φ̃√
2|ζ̃|2

κKµ ζ̃
†σ̃µψ . (3.34)

We let the involution introduced previously to act as (φ, F )∨ = (φ̃,−F̃ ) and assume a real

R-symmetry connection so that A∨ = A. The variations of the fermionic functionals yield

δζ (Vchi + Vλ + Vκ) = Lchi +∇µB
µ
chi , δζ̃ (Vchi + Vλ + Vκ) = 0 ,

δζ

(
Ṽchi + Ṽλ + Ṽκ

)
= 0 , δζ̃

(
Ṽchi + Ṽλ + Ṽκ

)
= Lchi +∇µB̃

µ
chi , (3.35)

where

B
µ
chi ≡ iφ̃φ (2κKµ − V µ)− i

2
ψ̃σ̃µψ − 1

2
Jµνψ̃σ̃νψ − iJµν φ̃Dνφ ,

B̃
µ
chi ≡ −iφ̃φ (2κKµ − V µ)− i

2
ψ̃σ̃µψ +

1

2
J̃µνψ̃σ̃νψ − iJ̃µνφDν φ̃ .

(3.36)
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Remark. In order to properly define the theory, we need to discuss the allowed boundary

conditions. We will do that when computing the partition function of the theory through

localization. As for the vector multiplet, let us reiterate that the Lagrangian that we are

going to use for localization differs by boundary terms from the usual one. Therefore, in

order to apply our framework to the usual Lagrangian one would need to additionally check

that the boundary conditions also kill the the normal components of B
µ
chi, B̃

µ
chi (and their

Q-variations if some supersymmetry has to be preserved on the boundary).

4 Localization

We have now collected all the necessary ingredients for the off-shell Lagrangian formulation

of 4d N = 1 theories on a manifold with boundary. In this section, we will employ the

previous analysis to set up a computation of the path integral by localization. After

some general remarks on the idea behind the cohomological approach to localization, we

will discuss a preliminary reduction of the functional integral to a contour integral over

the bosonic zero modes of the vector multiplet. We will then introduce the localization

Lagrangians for vector and chiral multiplets and discuss the BPS locus defined by each of

them. The next step will be to switch to twisted fields in order to make the structure of

cohomological complexes manifest, both for vector and chiral multiplets. The identification

of the complexes will then allow us to proceed with an explicit evaluation of the 1-loop

determinants, taking into account the choice of boundary conditions. We will conclude the

section with a brief discussion of the peculiar modular properties of the partition functions.

4.1 Preliminaries on the cohomological approach

The path integral we wish to compute takes the schematic form

Z =

∫
[dX] e−S [X] , (4.1)

where we have generically denoted by X the collection of all quantum fields. We also recall

that the combination Q of supercharges introduced in (3.2) represents an odd symmetry

which is preserved even in the presence of the boundary. The localization principle relies

on the fact that, upon very general and mild conditions,11 Q-exact deformations of the

supersymmetric measure do not modify the path integral (we refer to [9] for an exhaustive

review of the subject, here we simply recall the main points). Therefore, one can either

work in the semiclassical limit if the defining action is already Q-exact, or one can consider

Q-exact deformations

S → S +
1

e2
Q(· · · )vec +

1

g2
Q(· · · )chi (4.2)

and then take the semiclassical limit e2, g2 → 0, which becomes an exact approximation.

The crucial requirement is that the localizing action has positive semi-definite bosonic

part along the integration contour in the complexified field space. Upon such procedure,

11Incidentally, we will soon see that in our case a very careful analysis of the Q -exact terms is needed.
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the final result can be expressed in terms of a matrix-like integral of classical and 1-loop

contributions over the moduli of the localizing equations, usually given by constant field

configurations, namely12

Z =

∫
dX(0) e

−S [X(0)]Z1-loop(X(0)) . (4.3)

Different techniques have been developed to compute 1-loop determinants, from brute force

diagonalization of kinetic operators to sophisticated index theorems. Our approach will be

based on the cohomological reformulation of the supersymmetry transformations.13 The

key observation is that the supercharge Q can be identified with an equivariant differential

acting on the field supermanifold, which can be in turn neatly divided into base (ϕ) and

fiber (ϕ′) coordinates forming an equivariant cohomological complex

X = (ϕ,ϕ′) , Qϕ = ϕ′ , Qϕ′ = 2iδKϕ . (4.4)

After this identification, one can linearize the cohomological complex around the localiza-

tion locus and integrate out the Gaussian fluctuations, obtaining the reduction

Z =

∫
dϕ(0) e

−S [ϕ(0)]Z1-loop(ϕ(0)) , Z1-loop(ϕ(0)) =

√
sdetϕ2iδ

(0)
K , (4.5)

which allows one to bypass the brute force diagonalization of the relevant kinetic operators.

In fact, this result does not even require a choice of the Q -exact deformation terms and

relies only on supersymmetry, but it is a good practice to define these terms as the field

space is infinite dimensional and some care may (and will) be needed. Another advantage

of this approach is that, along the way, one naturally discovers the operators which pair up

the bosonic and fermionic modes, which may be used to simplify the problem even further.

The main goal of this section is to compute the determinant (4.5) for the vector and

chiral multiplets. However, we should stress that there are several subtleties in the blind

application of the localization principle to our setup, such as the presence of fermionic zero

modes, singularities and divergences in the quantum measure at special loci as well as the

identification of the correct integration cycle(s) in field space. These difficulties have already

appeared, and have been extensively studied, in the literature [41, 61, 75–77]. However,

most works focus on lower-dimensional theories, or on spaces without boundaries. In the

following, we will adapt those results to our setup, emphasizing the additional working

assumptions, similarities and differences, while we refer to the original references for a

full account.

4.2 Reduction to a contour integral

Before embarking on the proper localization of the path integral and the computation of

the 1-loop determinants, we would like to discuss two main sources of subtleties:

1. The presence of fermionic zero modes (Ξ0
(0),Ψ(0)), making the direct application of

the cohomological localization approach non-obvious.

12In this paper, we do not have to deal with non-perturbative saddles. Also, we focus on the so-called

Coulomb branch localization scheme. In principle, Higgs branch localization would also be possible and

interesting to analyze, see e.g. [62, 77, 85–92].
13For recent work in the context of 4d N = 2 theories, see e.g. [93, 94].
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2. The presence of singularities at special loci (Φ(0) = Φsing.
(0) ), making the analysis of

the Gaussian integration around the localization locus and the choice of integration

contour very subtle.

Here we argue that these issues are related and that can be cured together to obtain a

concrete answer for the partition function, along the lines of [41, 61, 77]. In fact, the

original analysis of [75, 76] applies essentially unchanged to our background too, with the

modification of taking into account the disk modes. However, for the sake of completeness

let us briefly recall how one can arrive at the expression (4.5), focusing on the Abelian case

which is much simpler and eventually generalizes to the non-Abelian case too.

Even before any application of the localization machinery, the partition function of

the whole theory can schematically be represented as an integral over the zero mode su-

permultiplet, and we can thus write

Z =

∫
dΦ(0) dΦ̄(0) d∆(0) dΞ

0
(0) dΨ(0)Z(Φ(0), Φ̄(0),∆(0),Ξ

0
(0),Ψ(0)) , (4.6)

where Z is the result of path integration over all the field configurations but the zero modes.

The integration over the fermionic modes can be performed using a shortcut exploiting

supersymmetry. Using the property QΦ(0) = 0, one can deduce that

QZ = 0 ⇒ ∆(0)
∂2

∂Ξ0
(0)∂Ψ(0)

Z
∣∣∣
Ξ0
(0)

=Ψ(0)=0
=

∂

∂Φ̄(0)

Z
∣∣∣
Ξ0
(0)

=Ψ(0)=0
, (4.7)

and hence

Z =

∫
dΦ(0) dΦ̄(0)

∂

∂Φ̄(0)

∫
d∆(0)

∆(0)
Z(Φ(0), Φ̄(0),∆(0)) , (4.8)

where the specialization Ξ0
(0) = Ψ(0) = 0 is to be understood. Now the integrand on the

r.h.s. can be computed exactly by localization, namely in the limit e2, g2 → 0. While the

g2 → 0 limit does not pose serious problems, the limit e2 → 0 must be taken with some care

because the integrand may develop singularities at certain points in the Φ(0), Φ̄(0) plane

where chiral multiplets develop scalar massless modes.

Remark. Intuitively, the dangerous loci come from the scalar zero modes of the kinetic

operator on which Q 2 acts diagonally. In fact, for the modes |LȲ φ|2 = 0 the only damping

term is the mass |Φ(0) − Φsing.
(0) |2|φ|2, which would vanish at Φ(0) = Φsing.

(0) . As expected,

these points are exactly the poles (mod Zτ − Z) of the meromorphic 1-loop determinant

we will compute later on.

As a partial fix, one can make sure that there is the usual D-term coupling between

the chirals and the vector, which is easy to fulfill by including in the localization action the

Q -exact term Q (Vλ + Ṽλ) from (3.33). This will generate a quartic potential providing a

damping even at the dangerous locus. Unfortunately, this is true only as long as e2 6= 0.

The recipe to control this bad behavior is to keep ∆(0) as a regulator, and remove a small

tubular neighborhood of the singular loci, of size ε shrinking faster than any power of e2.

With this double scaling limit in mind, one is left with the contour integral

Z =

∮
dΦ(0)

∮
d∆(0)

∆(0)
Z(Φ(0), Φ̄(0),∆(0)) , (4.9)
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which still needs to be properly defined.14 Now the disk kinetic action includes a mass term

(|Φ(0) − Φsing.
(0) |2 + ∆(0)/2)|φ|2, so the (towers of) singularities in the complex ∆(0)-plane

become quite involved and one should specify the integration contour such that the scalar

modes do not develop a tachyonic potential. The prescription that does the job is as

follows: i) the contour of −i∆(0) must asymptote the real axis and passes either slightly

above or below the obvious singularity at ∆(0) = 0; ii) assuming the chiral multiplets have

(effective) R-charges all of the same sign, one splits the singularities to lie on either side

of the contour according to the sign of their gauge charges. In the double scaling limit

ε ≪ e2 → 0, the poles in the ∆(0)-plane will start moving around, towards the real axis

and the origin. However, as long as the contour can be shifted to avoid possible collisions,

the integral is well defined and in fact trivial because of the smoothness of the integrand

and the Gaussian damping. However, a pole which moves towards the origin from the same

side as the contour will inevitably pinch it against the pole at the origin. The contour must

then cross the origin, picking up the residue at the unique BPS pole ∆(0) = 0. This is the

net contribution to the path integral, yielding the final expression

Z =

∮

J.K
dΦ(0)ZBPS(Φ(0)) , (4.10)

where we have set Z(Φ(0), Φ̄(0),∆(0))|∆(0)=0 ≡ ZBPS(Φ(0)) since this is the meromorphic

1-loop determinant around the BPS saddles, and the subscript simply means that this

pole prescription is equivalent to using the Jeffrey-Kirwan cycle/residue. The non-Abelian

generalization is much more involved but the final result is the same, with the J.K. contour

being a specific middle-dimensional cycle in the complex bosonic moduli space.

Remark. We expect that on the disk there should be multiple (in fact, a basis of)

integration cycles (roughly speaking, corresponding to different vacua as described in [43]).

While the J.K. cycle arises from the above arguments, there are more choices that one may

take. In particular, in the case of diverse chiral multiplets supporting a flavor symmetry, one

can first resolve the degeneracies by turning on distinct background flat connections, and

then one may consider contours going around the singularities associated with a selected

multiplet γ, namely

Z → Zγ =

∮

γ
dΦ(0)ZBPS(Φ(0)) . (4.11)

The basis of integration contours can be determined after the computation of the integrand.

4.3 BPS localization locus

Having laid out some of the subtleties involved in the computation, we now turn to the

characterization of the BPS locus. In the cohomological localization approach, the com-

putation of ZBPS(Φ(0)) amounts to the evaluation of two quantities: i) the classical action

on the “trivial” BPS localization locus, in which Ψ(0) = Ξ0
(0) = ∆(0) = 0; ii) the 1-loop de-

terminant of Gaussian fluctuations around this background. The BPS locus is determined

by a suitable choice of Q -exact localization actions, which we now construct.

14We are already using that after the ∆(0) integral, the integrand has to be meromorphic in Φ(0).
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Vector multiplet. As a localizing action we choose the Q -exact term

S
loc
vec ≡ Q

∫
d4x

√
g V

loc
vec , V

loc
vec ≡ Vvec + Ṽvec , (4.12)

with Vvec and Ṽvec defined in (3.23). Thanks to Q 2 = 2iLK on a neutral scalar, this

action is automatically supersymmetric even in the presence of a boundary and regardless

the boundary conditions if the Killing vector is tangent to the boundary, which is indeed

our case. Notice that the bosonic part is also manifestly positive semi-definite on the real

contour (A, D)† = (A,−D) = (A, D)∨, i.e. along D ∈ iR and A ∈ R.15 The localization

locus is thus given by the BPS equations

δζλ = δζ̃ λ̃ = 0 , (4.13)

leading to

PµνFµν = P̃µνFµν = KµK̄νFµν = 0,
∆

4
≡ D − i

2
Y µȲ νFµν = 0 . (4.14)

On the real contour, these are simply equivalent to F = ∆ = 0. Therefore, the BPS locus

is given by flat connections (mod gauge transformations)

MBPS
vec ≃

{
F = ∆ = λ = λ̃ = 0

}
/G . (4.15)

These are classified by the commuting holonomies along T
2, encoded by Φ(0), Φ̄(0), which

can be assumed simultaneously conjugated to the same Cartan torus.16 In fact, using the

gauge freedom, the BPS locus can be reduced to the complexified Cartan torus (mod the

Weyl group)

MBPS
vec ≃

{
e2πiΦ(0) , e2πiΦ̄(0) ∈ eihC ,∆ = λ = λ̃ = 0

}
/W . (4.16)

Remark. Relaxing the reality condition on the contour of integration for D allows for

a much larger set of BPS solutions, which can be called flux configurations. Taking a

contour parallel to the imaginary axis, but not passing through the origin, the new BPS

loci correspond to

0 = Re

(
∆

4

)
= Re(D)− i

2
Y µȲ νFµν , 0 = Im

(
∆

4

)
= Im(D) . (4.17)

The configurations with Re(∆) 6= 0 are non-BPS, and therefore they are expected not

to contribute in the limit e2 → 0. However, configurations with constant ∆ = ∆(0) and

constant disk flux proportional to ιȲ ιY F(0) would deserve a separate analysis because

they pass through the BPS point and can reach the real contour D ∈ iR. As pointed

15Notice that the path integral we started with makes sense as an integral over a complexified field

space along a suitable contour. In fact, the SUSY transformations do not generically preserve the reality

conditions one is interested in. As usual, the action of the involution ∨ must be taken as a definition, and

it coincides with Hermitian conjugation only on the real contour. This is manifestly convergent but other

choices may be possible.
16We remind that we restrict to simply connected or unitary Lie groups.

– 20 –



J
H
E
P
1
2
(
2
0
1
9
)
1
4
7

out in [41, 77], these non-trivial non-BPS flux saddles play indeed an important role in A-

twisted theories on compact spaces. In our case, since we are mainly interested in preserving

same gauge symmetry at the boundary through Neumann conditions, these saddles can be

discarded. However, they can play a role for Dirichlet conditions, we will briefly return to

this in section 6.4.

Chiral multiplet. As a localizing action we choose the Q -exact term

S
loc
chi ≡ Q

∫
d4x

√
g V

loc
chi , (4.18)

where the localizing functional is

V
loc
chi ≡ 1

2

(
Vchi + Ṽchi + Vλ + Ṽλ

)
, (4.19)

with Vchi, Ṽchi, Vλ and Ṽλ, defined in (3.33) and (3.34).

As already mentioned for the vector, this action is automatically supersymmetric even

in presence of the boundary. However, the bosonic part of the action is not manifestly

positive semi-definite because of mixed terms involving δζ , δζ̃-variations and the D-term

coupling. On the one hand, the mixed terms simply cancel out upon the standard choice

(F, F̃ )∨ = −(F̃ , F ) as shown in appendix C, and the real contour where ∨ acts as † yields

a manifestly positive semi-definite action. The convergence conditions imposed by the

presence of the D-term coupling have already been discussed in section 4.2. Therefore, the

bosonic localization locus is given by the BPS equations

δζψ = δζ̃ψ = δζψ̃ = δζ̃ψ̃ = 0 , (4.20)

in the (trivial) BPS vector background A = A(0). Contracting these equations with the

Killing spinors, we simply get

F = F̃ = 0 , L(0)
K φ = L(0)

K φ̃ = 0 , L(0)

Ȳ
φ = L(0)

Y φ̃ = 0 . (4.21)

In order to solve these equations, we need some information about the R-symmetry con-

nection. We see from (2.19) that ιKA ∼ Kµ∂µ( 4
√
gs), implying that the general solution

to L(0)
K φ = 0 takes the form

φ = ( 4
√
gs)

r
2 f(w, z, z̄) e−iΦ(0)(w̄−w) . (4.22)

Once the twisted periodicities (2.26) are taken into account, one can conclude that the

solution has to be φ = 0, and a similar argument also shows φ̃ = 0. As we will explain

below, the other equations can be thought as consistency conditions for F − iL(0)

Ȳ
φ = 0,

F̃ + iL(0)
Y φ̃ = 0. We can thus conclude that the BPS localization locus is trivial, namely

MBPS
chi ≃

{
φ = φ̃ = F = F̃ = ψ = ψ̃ = 0

}
. (4.23)
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4.4 Cohomological complex

Having determined the BPS locus in the previous subsection, the next step is to introduce

the 4d N = 1 cohomological complexes. This will set up the coordinate system (on the

space of fields) in which we are going to compute 1-loop determinants. In practice, the

cohomological complexes are obtained by converting all fields to differential forms through

appropriate contractions with the Killing spinors. The selected supercharge then clearly

acts as an equivariant differential on the supermanifold of cohomological field variables.

4.4.1 Vector multiplet

We start by introducing twisted variables for the gauginos by using the Killing spinors. We

introduce scalar fermionic variables

Λ0 ≡ ζ†

|ζ|2λ , Λ̃0 ≡ ζ̃†

|ζ̃|2
λ̃ , Λ+ ≡ ζλ , Λ̃− ≡ ζ̃λ̃ , (4.24)

and fermionic 1-forms

Λµ ≡ iζσµλ̃ , Λ̃µ ≡ iζ̃σ̃µλ . (4.25)

The superscripts of the scalar modes (Λ0, Λ̃0,Λ+, Λ̃−) emphasize their R-charges which

equal (0, 0,+2,−2), while the 1-forms are neutral. Note that the relations between scalars

and 1-forms are

Λµ = iΛ̃0Kµ − iΛ̃−Yµ , Λ̃µ = iΛ0Kµ + iΛ+Ȳµ . (4.26)

The SUSY transformations for the twisted fields are

δζAµ = Λµ , δζ̃Aµ = Λ̃µ ,

δζΛµ = 0 , δζ̃Λµ = −2iF−
µνK

ν +KµD , (4.27)

δζΛ̃µ = −2iF+
µνK

ν −KµD , δζ̃Λ̃µ = 0 ,

δζD = iD̂µΛ
µ , δζ̃D = −iD̂µΛ̃

µ ,

where

D̂µΛ
µ ≡ (Dµ − 2iVµ)Λ

µ , D̂µΛ̃
µ ≡ (Dµ + 2iVµ)Λ̃

µ . (4.28)

Since we are using the supercharge Q = δζ + δζ̃ in order to perform localization, the SUSY

transformations suggest to introduce the combinations

Ξµ ≡ Λµ + Λ̃µ , Πµ ≡ Λµ − Λ̃µ , (4.29)

and to choose the cohomological multiplets

(Aµ,Ξµ = QAµ) , (Ψ,∆ = QΨ) , (4.30)

where we have defined17

Ψ ≡ K̄µΠµ = 2i(Λ̃0 − Λ0) , ∆ ≡ 4D + 2iF̃µνK̄
µKν = 4D − 2iY µȲ νFµν . (4.31)

We refer to these multiplets and Q as the SUSY complex of the vector multiplet.18

17We use that εµναβJ
αβ = 2Jµν , εµναβ J̃

αβ = −2J̃µν .
18In principle, one can also use scalar variables only. This might also be a convenient choice, but we

decided to keep the 1-form nature of the connection manifest.

– 22 –



J
H
E
P
1
2
(
2
0
1
9
)
1
4
7

Remark. The decomposition

Ψ̄ ≡ K̄µΞµ = 2i(Λ̃0 + Λ0) , Ξµ =
1

2
Ψ̄Kµ − iΛ̃−Yµ + iΛ+Ȳµ (4.32)

makes it manifest that Ξµ and Ψ capture all four fermionic (off-shell) scalar degrees of

freedom and that ιKΞ = 0, implying the property

Q (ιKA) = 0 . (4.33)

As a consequence, on the r.h.s. of QA what really appears is Ξ = pK̄Ξ, where we defined

the following projector onto the space of horizontal 1-forms w.r.t. K̄

pK̄ ≡ 1− 1

2
K̄ιK . (4.34)

This is ultimately due to the fact that the component Φ = −ιKA appears as the gauge

parameter in Q 2 = 2iδK . We will come back to this important point later on when

computing the 1-loop determinant for the vector multiplet.

Finally, since the cohomological fields are R-symmetry neutral forms on the manifold,

we can introduce the usual inner product between g-valued n-forms on spacetime

〈ω1, ω2〉 ≡ Tr

∫
ω†
1 ∧ ⋆ω2 , ω1,2 ∈ Ωn , (4.35)

which can be used to rewrite the actions, compute the adjoint of the relevant operators as

well as determine normalizability of the fields.

4.4.2 Chiral multiplet

We start by introducing scalar fermions by using the Killing spinors. We define

ψ ≡ ζB − ζ†

|ζ|2C , B ≡ ζ†

|ζ|2ψ , C ≡ ζψ ,

ψ̃ ≡ ζ̃B̃ − ζ̃†

|ζ̃|2
C̃ , B̃ ≡ ζ̃†

|ζ̃|2
ψ̃ , C̃ ≡ ζ̃ψ̃ . (4.36)

Note that the R-charges of (φ,C) and (B,F ) and are r and r− 2 respectively, while those

of (φ̃, C̃) and (B̃, F̃ ) are −r and 2 − r respectively. In terms of the twisted variables the

SUSY transformations (3.18) read

δζφ =
√
2C , δζ̃φ = 0 ,

δζC = 0 , δζ̃C =
√
2iLKφ , (4.37)

δζB =
√
2F , δζ̃B = −

√
2iLȲ φ ,

δζF = 0 , δζ̃F =
√
2i (LKB + LȲ C)− 2iΛ̃−φ , (4.38)

and similarly

δζ φ̃ = 0 , δζ̃ φ̃ =
√
2C̃ ,

δζC̃ =
√
2iLK φ̃ , δζ̃C̃ = 0 , (4.39)

δζB̃ =
√
2iLY φ̃ , δζ̃B̃ =

√
2F̃ ,

δζF̃ =
√
2i
(
LKB̃ − LY C̃

)
+ 2iΛ+φ̃ , δζ̃F̃ = 0 . (4.40)
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Since we are using the supercharge Q = δζ + δζ̃ to perform localization, these variations

led us to choose the cohomological multiplets

(φ,
√
2C = Qφ) , (B,

√
2XF = QB) , (4.41)

and similarly

(φ̃,
√
2C̃ = Q φ̃) , (B̃,

√
2X̃F = Q B̃) , (4.42)

where

XF ≡ F − iLȲ φ , X̃F ≡ F̃ + iLY φ̃ . (4.43)

We refer to these multiplets and Q as the SUSY complex of the chiral multiplet.

Finally, having rewritten all the fields in terms of scalars, we can introduce the usual

inner product between fields with the same quantum numbers (in particular, the same

R-charge)

〈ω1, ω2〉 ≡
∫
⋆ω†

1 ω2 , ω1,2 ∈ Ω0
(r) , Ω0

(r) ≡ R
r ⊗ Ω0 , (4.44)

which can be used to rewrite the actions, compute the adjoint of the relevant operators as

well as determine normalizability of the fields.

4.5 1-loop determinants

Since the BPS locus and the relevant cohomological complexes have been found, we are now

in a position to finally compute 1-loop superdeterminants of Gaussian fluctuations. For

concreteness and ease of computations, we focus on the real Kähler background described

in section 2.2, but the final results are expected to hold more generally.

4.5.1 Vector multiplet

In order to compute the 1-loop determinant of Gaussian fluctuations around the localization

locus, it may be useful to recast V loc
vec into the operatorial matrix form

√
g V

loc
vec =

(
Ξ

Ψ

)T

∧ ⋆
(
D11 D10

D01 D00

)(
A
∆

)
. (4.45)

Since in cohomological variables we have

V
loc
vec =

i

16

(
−ΨY µȲ ν + ΞαK̄

αK̄µKν − 4ΞνK̄µ
)
F∨
µν +

1

8
ΨD∨ , (4.46)

recalling that we have set F∨ = F and D∨ = −D = −∆
4 − i

2Y
µȲ νFµν ,

19 we can easily

read off the resulting matrix

(
D11 D10

D01 D00

)
= − i

8

(
(1 + pK̄)ιK̄dA 0

2ιȲ ιY dA − i
4

)
, (4.47)

19We recall that the real contour is defined by ∨ acting as Hermitian conjugation, that is F ∈ R, D ∈ iR.

In general, this functional may be taken as a definition.
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which can be simply linearized around the trivial BPS locus by substituting A = A(0)

in dA. Given the lower-triangular nature of this matrix and the supersymmetric pairing

between bosons and fermions, simple linear algebra (see e.g. [95, 96] in the review [9] for

a general derivation) would naively lead us to conclude that the superdeterminant of the

kinetic operators in QV loc
vec around the localization locus would be given by

√√√√detΩ0 2iδ
(0)
K

detΩ1 2iδ
(0)
K

, (4.48)

where δ
(0)
K denotes the operator (3.2) at the BPS locus, and the determinants are taken over

the fermionic Ψ ∈ Ω0 and bosonic A ∈ Ω1 coordinates. However, it is easy to understand

that this cannot be quite correct for at least two reasons:

1. As remarked around (4.34), Ξ is horizontal w.r.t. K̄. Therefore, the operator D11 is

dangerously ambiguous by left-multiplication by the projector pK̄ , and the argument

leading to the simplification of its determinant between bosons and fermions fails.

2. The gauge symmetry has not been fixed yet, therefore the space of 1-forms over which

we are evaluating the bosonic determinant is highly redundant.

As we are going to explain, these two problems are actually related, and we outline how

they can be solved together to yield a sensible answer. First of all, it is natural to resolve

the first ambiguity by restricting the evaluation of all the 1-form determinants on the image

of pK̄ , where it simply restricts to the identity. This means that the determinant should

be computed on the subspace Ω1
K ≡ {ω ∈ Ω1| ιKω = 0}. One can see the necessity for such

a restriction on the bosonic side too. For the gauge field this amounts to splitting

A ≡ Â − 1

2
Φ K̄ , Φ ≡ −ιKA , (4.49)

and restricting to Â. In the cohomological formalism, Φ should not be treated as a co-

ordinate because QΦ = 0 and it rather it appears as a gauge parameter in Q 2 = 2iδK .

Therefore, it is natural to exclude it from the computation of the determinant. Secondly,

in order to properly fix the gauge, one should introduce the usual Faddeev-Popov ghosts

c, c̄ and the Lagrange multiplier b, together with the BRST charge Q B generating gauge

transformations with parameter c, for instance Q BA = dAc. However, in order to preserve

supersymmetry, the BRST complex must be combined with the SUSY complex, in par-

ticular Q c = −2iΦ, and then localization must be performed w.r.t. the total odd charge

Q + Q B. This is indeed consistent with Φ being not a coordinate field but rather the

differential of a fermionic variable, and as such it does not contribute to the determinant.

The bottom line of these arguments is that the correct ratio of 1-loop determinants can be

obtained from (4.48) by enlarging the space of 0-forms to include the missing ghosts and

reducing the space of 1-forms, namely

Zvec
1-loop(Φ0) ≡

√√√√(detΩ0 2iδ
(0)
K ) (det′Ω0 2iδ

(0)
K ) (det′Ω0 2iδ

(0)
K )

detΩ1
K
2iδ

(0)
K

, (4.50)
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where the prime means exclusion of the constant modes. Unfortunately, we are not able

to provide a complete proof of this formula. A posteriori, the strongest support for our

proposal comes from the consistency of the final answer with known results and compar-

ison with dimensional reductions. Therefore, before computing the concrete expression

for (4.50), let us make a few more observations that support our result. Upon dimensional

reduction, the 4d N = 1 cohomological complex we are considering should reduce to the

3d N = 2 cohomological complex studied for example in [73, 74], which will be referred to

as Källen’s complex. Hence, our setup is expected to be related to a lift of the 3d setup by

the inclusion of an additional tower of KK modes. In order to push the similarities between

the 4d and 3d setups even further, let us comment on some features of the splitting of the

gauge field introduced in (4.49):

1. Under a general gauge transformation Â and Φ do not mix. The full gauge symmetry

of the 4d theory is preserved, however Â and Φ transform in a funny way w.r.t.

arbitrary gauge transformations. On the other hand, Â transforms as an ordinary

gauge field and Φ is covariant w.r.t. gauge transformations which are holomorphic on

the torus, thus preserving the condition ιKÂ = 0.

2. The field Â really contains three independent components due to ιKÂ = 0. At the

same time, Φ is a gauge parameter in the SUSY transformations, hence it should not

enter the cohomological complex as a bosonic coordinate.

3. In complex coordinates Â = Azdz + Az̄dz̄ + Awdw, hence our cohomological com-

plex is formally the same as Källen’s but with a complex direction and a partial

connection20 upon the identifications

Ψ3d ∼ Ξ , α3d ∼ Ψ , A3d ∼ Â , Φ3d ∼ Φ , D̃3d ∼ ∆ . (4.51)

These formal substitutions into Källen’s computation [73] reproduce (4.50).

We can now move on and compute the actual expression of the proposed determinant.

Once the localizing action is brought to the cohomological form, the usual strategy is to

look for the off-diagonal operator (commuting with δK) pairing bosons and fermions and

to study the equivariant index to extract the contributing modes and weights. In our

case, we have to solve two other problems: i) we have not fully worked out the combined

SUSY-BRST complex explicitly and ii) we cannot easily exploit the usual index theorems

because of the boundary. We propose to solve these problems as follows. From (4.47),

we see that the off-diagonal operator written in the holomorphic frame is essentially the

pullback to the disk of the de Rham differential. This suggests that the right complex to

look at is eventually the de Rham one, restricted to the disk with differential d2, as also

argued in [58]. We can use the complex structure to split Ω1
K = Ω1,0

T2 ⊕ Ω1,0
D2 ⊕ Ω0,1

D2 and

notice that there is a natural bijection between Ω1,0
T2 and Ω0,0 given by acting on the former

with the interior product ιK̄ .21 This implies that the contribution of modes from these

20This resembles Costello-Yamazaki-Witten theory [97–100]. It would be interesting to explore connec-

tions.
21Note that it is also important to demand that this bijection is compatible with the boundary conditions.
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two spaces exactly cancel each other in the 1-loop determinant. The remaining modes can

also be mapped into each other by replacing the de Rham differential with the Dolbeault

operators, namely d2 = ∂2 + ∂̄2. We are thus led to consider the complex

Ω0,0 ⊕ Ω0,0 ∂2⊕∂̄2−−−−→ Ω1,0
D2 ⊕ Ω0,1

D2 , (4.52)

and (ignoring possible phases) we can remove the square root from (4.50) by just considering

(∂̄2 : Ω0 → Ω0,1
D2 ) × (c.c.). Hence our problem has reduced to studying the Dolbeault

complex on D
2 subject to the desired boundary conditions (of course, with two towers of

KK modes). The map ∂̄2 : Ω
0 → Ω0,1

D2 is surjective without restrictions on the domain and

codomain, in which case the contributing modes come entirely from the kernel of ∂̄2, that

is holomorphic ghosts on the disk. This conclusion still holds if we restrict the codomain

to 1-forms whose field strengths have vanishing contractions with Y, Ȳ at the boundary

(Neumann conditions). Because of the quotient (2.24) and the twisted periodicities (2.26)

we are imposing on all the fields, let us introduce twisted Fourier modes on the torus

F (m)
nx,ny

(w, w̄) ≡ exp

[
− 1

2Im(τ)

(
w(τ̄nx − ny +mσ̄)− w̄(τnx − ny +mσ)

)]
, (4.53)

satisfying the property

F (m)
nx,ny

(w + 2πk + 2πnτ, w̄ + 2πk + 2πnτ̄) = e2πim(kα+nβ)F (m)
nx,ny

(w, w̄) . (4.54)

Then we can expand the ghost field in a basis of holomorphic modes on the disk and twisted

Fourier modes as

c(z, w, w̄) =
′∑

nx,ny ,m∈Z

c(m)
nx,ny

zm F (−m)
nx,ny

(w, w̄) , (4.55)

where we recall that this field has zero R-charge and hence should not get any phase under

the identifications (2.24), consistently with (2.26). The prime on the summation reminds

us to exclude the constant mode (nx, ny,m) = (0, 0, 0). Finally, we demand m ≥ 0 for the

modes to be regular at the origin. The eigenvalues of 2iδ
(0)
K on such modes are

λc =
i

Im(τ)

(
τ nx − ny − σm+Φ(0)

)
, (4.56)

leading to the result

Zvec
1-loop(Φ(0)) = det

ad


− Im(τ)

iΦ(0)

∏

nx,ny∈Z

∏

m≥0

− i

Im(τ)

(
τ nx − ny + σm− Φ(0)

)

 , (4.57)

which of course needs to be regularized. We can do that by using ζ-function regularization

as discussed in appendix B, with the final result (up to an overall constant)

Zvec
1-loop(Φ0) =

[
e−

iπ
3
P3(0)

Resu=0Γ(u; τ, σ)

]rk(G)

det
ad

′

[
1

Φ(0)

e−
iπ
3
P3(Φ(0))

Γ(Φ(0); τ, σ)

]
, (4.58)

where Γ is the elliptic Gamma function defined in appendix B, the prime denotes exclusion

of zero roots and P3 is a cubic polynomial. The factor detad
′(Φ(0))

−1 coming from the

constant mode can be canceled by the Vandermonde determinant in the integration measure

once a change of variables from the algebra to its Cartan is performed.
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4.5.2 Chiral multiplet

We now move our focus to the chiral multiplet. Ideally, in order to compute the 1-loop

determinant around the BPS locus, we would like to recast V loc
chi into the matrix form

V
loc
chi =

(
φ̃√
2X̃F

)T(
D

(r,r)
1 D

(r,r−2)
2

D
(r−2,r)
3 D

(r−2,r−2)
4

)(√
2C

B

)

+

(√
2C̃

B̃

)T(
D̃

(r,r)
1 D̃

(r,r−2)
2

D̃
(r−2,r)
3 D̃

(r−2,r−2)
4

)(
φ√
2XF

)
+

1

4
φ̃Ψφ , (4.59)

up to terms whose Q -variations can be killed by choosing suitable boundary conditions.

The superscripts in D
(r,r′)
i : Ω0

(r′) → Ω0
(r) remind us what is the space the operator acts

on as the cohomological variables have generically non-zero R-charges. Also, note that the

last term can be dropped because we are eventually interested in linearizing this functional

around the trivial BPS locus in which Ψ = Ψ(0) = 0. Since we have22

V
loc
chi =

1

2

(√
2F∨B +

√
2i(LY φ̃)B −

√
2i(LK̄ φ̃)C − B̃

√
2iLȲ φ− C̃

√
2iLK̄φ+

√
2B̃F̃∨

)
,

(4.60)

recalling that we have defined (F, F̃ )∨ = (−F̃ ,−F ),23 we can easily read off the resulting

matrices
(

D
(r,r)
1 D

(r,r−2)
2

D
(r−2,r)
3 D

(r−2,r−2)
4

)
=

1

2

(
iLK̄ −2

√
2iLY

0 −1

)
, (4.61)

(
D̃

(r,r)
1 D̃

(r,r−2)
2

D̃
(r−2,r)
3 D̃

(r−2,r−2)
4

)
=

1

2

(
−iLK̄ 0

2
√
2iLȲ −1

)
, (4.62)

which can be easily linearized around the BPS localization locus by substituting A = A(0)

in the covariant derivatives.

Remark. In order to achieve this form, we had to integrate by parts, i.e. to define the

adjoints of LK̄ ,LY w.r.t. (4.44), which imposes the vanishing of the boundary terms

∫
d4 x

√
gLK̄(φ̃ C) ,

∫
d4x

√
gLY (φ̃ B) . (4.63)

The first term vanishes because K̄ is tangent to the boundary, while the vanishing of the

second term requires suitable boundary conditions to which we will return below.

As we have already discussed for the vector multiplet, now simple linear algebra implies

that the 1-loop determinant is computed by

detΩ0
(r−2)

2iδ
(0)
K

detΩ0
(r)

2iδ
(0)
K

, (4.64)

22We are assuming a real background and contour. In general, this functional may be taken as a definition.
23Correspondingly (XF , X̃F )

∨ = (−X̃F + 2iLY φ̃,−XF − 2iLȲ φ).
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with the numerator and denominator capturing the contributions of the fermionic and

bosonic coordinates B ∈ Ω0
(r−2) and φ ∈ Ω0

(r) respectively. In appendix D, we present a

detailed derivation. This result may be further simplified by noting that the off-diagonal

operators commute with δ
(0)
K and provide maps between 0-forms of different R-charges

LȲ : Ω0
(r) −→ Ω0

(r−2) , LY : Ω0
(r−2) −→ Ω0

(r) . (4.65)

In order for these operators to provide meaningful maps, we have to impose compatible

boundary conditions which are in fact dictated by the vanishing of the boundary terms

appearing in (4.63), which we call:

• Robin-like boundary conditions

(R) : LȲ φ|∂ = B|∂ = 0 , (4.66)

• Dirichlet boundary conditions

(D) : φ|∂ = LYB|∂ = 0 . (4.67)

The ratio of determinants can then be computed on smaller spaces given by the kernels

and cokernels of the pairing operators, namely

Zchi(R)
1-loop (Φ(0)) ≡

detCokerLȲ |
Ω0
(r−2)

2iδ
(0)
K

detKerLȲ |
Ω0
(r)

2iδ
(0)
K

, Zchi(D)
1-loop (Φ(0)) ≡

detKerLY |
Ω0
(r−2)

2iδ
(0)
K

detCokerLY |
Ω0
(r)

2iδ
(0)
K

. (4.68)

In our simplified choice of Kähler background, the relevant operators read

LȲ =
2s−1

c
(∂z − iqRAz) , LY =

2s

c
(∂z̄ − iqRAz̄) , (4.69)

and we can perform explicit computations. The kernels are easily seen to be parametrized

by (anti-)holomorphic functions on the disk, namely

KerLȲ ∋ φ = (s/ 4
√
g)

r
2 fφ(w, w̄, z̄) , KerLY ∋ B = ( 4

√
gs)

r−2
2 fB(w, w̄, z) , (4.70)

while the cokernels are empty, since the corresponding operators are surjective thanks to

boundary conditions, as can be seen from a Laurent expansion on the disk.24

Remark. In general, the selection of modes depends on the analytic properties of the

metric. Assuming 4
√
g = (1 + εzz̄)−1 as for the standard Kähler metric on the disk, there

are three cases corresponding to ε = ±1, 0 (spherical, hyperbolic, flat). As we have already

mentioned, our analysis is adapted to the spherical case, and the mode expansion of a scalar

function assumes the form f(z, z̄) =
∑

m,n∈Z fmnz
mz̄n. Normalizability of the individual

modes on the hemisphere restricts m+ n ≥ 0.

24It may be more convenient to use “gauge” transformed operators to simplify various factors of 4
√
g.
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The modes that contribute to (4.68) can be expanded in a basis of (anti-)holomorphic

modes on the disk and twisted Fourier modes (4.53) on the torus according to

fφ(w, w̄, z̄) =
∑

nx,ny ,m∈Z

f
(m)
φ;nx,ny

z̄mF (r/2+m)
nx,ny

(w, w̄) ,

fB(w, w̄, z) =
∑

nx,ny ,m∈Z

f
(m)
B;nx,ny

zmF (r/2−1−m)
nx,ny

(w, w̄) . (4.71)

Assuming that not only d|s| = 0 (as required for a real background) but also ds = 0 after

imposing the twisted periodicities, then ιKA = 0 and the spectrum of 2iδ
(0)
K is given by the

eigenvalues

λφ =
i

Im(τ)

(
τnx−ny+σ(r/2+m)+Φ(0)

)
, λB =

i

Im(τ)

(
τnx−ny+σ(r/2−1−m)+Φ(0)

)
.

(4.72)

Keeping only regular modes at the origin, Dirichlet conditions yield a net contribution from

B-modes only

Zchi(D)
1-loop (Φ(0)) = det

R

[
∏

nx,ny∈Z

∏

m≥0

− i

Im(τ)

(
τnx − ny + σ(1− r/2 +m)− Φ(0)

)]
, (4.73)

where R is the gauge (and/or flavor) group representation. Viceversa, imposing Robin-like

conditions leaves only a net contribution from φ-modes

Zchi(R)
1-loop (Φ(0)) = det

R

[
∏

nx,ny∈Z

∏

m≥0

−iIm(τ)
(
τnx − ny + σ(r/2 +m) + Φ(0)

)−1
]
. (4.74)

In this case it should be noted that imposing B|∂ = 0 also requires iLȲ φ|∂ = F |∂ by

compatibility with supersymmetry, and we can consistently set F |∂ = 0.

Remark. If the matter content support a global symmetry, we can turn on chemical

potentials uF, ūF for the associated background flat connection. This will simply shift

Φ(0) → Φ(0) + uF and will resolve the 1-loop singularities into simple poles. Following the

discussion in section 4.2, we see that the contours mentioned in (4.11) must be middle

dimensional cycles around the singularities associated with a selection of chiral multiplets

with Robin-like conditions, which are indeed the dangerous modes as expected.

The regularization of the 1-loop determinants can be performed by using Hurwitz

ζ-function regularization as discussed in appendix B, with the final result (up to an over-

all constant)

Zchi(D)
1-loop (Φ(0)) = det

R

[
e−

iπ
3
P3(σ(1−r/2)−Φ(0))

Γ(σ(1− r/2)− Φ(0); τ, σ)

]
, (4.75)

Zchi(R)
1-loop (Φ(0)) = det

R

[
e

iπ
3
P3(σr/2+Φ(0)) Γ(σr/2 + Φ(0); τ, σ)

]
. (4.76)

Interestingly, using the shift property (B.16), we can observe the relation

Zchi(D)
1-loop (Φ(0)) = Zchi(R)

1-loop (Φ(0)) det
R

[
e−iπP2(σr/2+Φ(0))Θ(σr/2 + Φ(0);σ)

]
, (4.77)
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where Θ is the short Jacobi Theta function defined in appendix B and P2 is a quadratic

polynomial. In section 6.2, we will provide a microscopic interpretation of this relation

between different boundary conditions in terms of boundary degrees of freedom.

4.6 Lower dimensional limits

The 1-loop determinants for the dimensionally reduced gauge theories on D
2 × S

1 [15] and

D
2 [12, 13] can be obtained from the results above by taking suitable limits. These simply

amount to discarding either one or two towers of KK modes. For instance, employing

Hurwitz ζ-function regularization and focusing on the zero modes nx = 0, the determinants

in (4.73) and (4.74) reduce to (up to exponentials of quadratic polynomials)

Zchi(D)
1-loop (Φ(0))→ det

R

[
1

Γ(σ(1−r/2)−Φ(0);σ)

]
, Zchi(R)

1-loop (Φ(0))→ det
R

[
Γ(σr/2+Φ(0);σ)

]
,

(4.78)

where Γ(u;σ) ≡ ∏
n≥0(1 − e2πi(u+nσ))−1 is the inverse of the q-factorial (B.1) and hence

proportional to the q-Gamma function. These results coincide with those in [15] for chiral

multiplets on D
2 × S

1 with Dirichlet or Neumann boundary conditions respectively. The

two determinants are still related by (4.77), the Theta function now representing the contri-

bution (elliptic genus) of additional degrees of freedom on the boundary T
2 with modulus

σ. Similarly, by further dropping the KK modes labeled by ny, after regularization one

gets (up to exponentials of linear polynomials)

Zchi(D)
1-loop (Φ(0)) → det

R

[
1

Γ(1− r/2− Φ(0)/σ)

]
, Zchi(R)

1-loop (Φ(0)) → det
R

[
Γ(r/2 + Φ(0)/σ)

]
,

(4.79)

where Γ(u) is the ordinary Euler Gamma function. These results coincide with those

in [12, 13] for chiral multiplets on D
2 with Dirichlet or Neumann boundary conditions

respectively. The two determinants are now related by the identity

det
R

[
1

Γ(1− r/2− Φ(0)/σ)

]
= det

R

[
Γ(r/2 + Φ(0)/σ)

]
det
R

[
π−1 sinπ(r/2 + Φ(0)/σ)

]
,

(4.80)

the Sine function representing the contribution (flavored Witten index) of additional de-

grees of freedom on the boundary S
1. This is consistent with the limit Θ(u;σ) → sin(πu/σ),

up to a u-independent divergent factor. The limits for the vector multiplet can similarly

be worked out and correctly reproduce the 1-loop determinants for vector multiplets in

lower dimensions.

4.7 Anomalies and modularity

The cubic polynomials appearing in the regularization of 1-loop determinants are known

to encode the possible gauge, global and mixed-gauge anomalies [27, 101]. Therefore, in a

physical anomaly-free theory, we can ignore the exponential factors associated with local

symmetries, which must cancel out when building the block integral (4.11). However,

the constant terms can have a physical significance (at least in superconformal theories)
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since they determine the asymptotic behavior of the partition function as a function of

the moduli. In particular, in the case of the index background these terms have been

successfully matched against Casimir energies and central charges [102–111]. It would be

interesting to understand whether one can extract something new from the disk geometry,

also in view of the almost perfect democracy between the torus and disk parameters τ ,

σ and the peculiar modular properties of the partition functions. In fact, it is worth

noting that the very same cubic polynomials also appear in the modular transformation

properties of the elliptic Gamma functions. These objects are not sections of a line bundle

over an elliptic curve, rather they are sections of a gerbe on the universal triptic curve [112],

and as such they enjoy SL(3,Z) ⋊ Z
3 modular properties [113] rather than SL(2,Z) ⋊ Z

2

as Theta functions, which do appear as 1-loop determinants of honest torus partition

functions (7.15). Therefore, the D
2 × T

2 partition functions can be thought as defined on

the torus of holonomies only in this generalized sense. In particular, the 1-loop determinants

are not invariant under large gauge transformations, unless one imposes special relations

between the torus and disk parameters and/or other global fugacities. For instance, the

failure of the double periodicity under u→ u+ Z+ τZ is reflected in the law

Γ(u+ k + nτ ; τ, σ) = Θ(u;σ; τ)n Γ(u; τ ;σ) , (4.81)

where the Θ-factorial is defined in appendix B. In view of (4.77), we may also say that

such a shift induces additional boundary contributions, but unfortunately we do not have

a deep understanding for those.25 We also observe that by using the modular property26

Γ (u; τ, σ) Γ

(
u

τ
;
1

τ
,
σ

τ

)
Γ

(
u

σ
;
τ

σ
,
1

σ

)
= e−

iπ
3
B33(u;1,τ,σ) , (4.82)

the 1-loop determinants may also be rewritten in terms of modified elliptic Gamma func-

tions [114], which may be useful for studying the unrefined limit σ → 0 and also gluings

into compact geometries. Finally, it is conceivable that having a field theoretic construc-

tion of this class of special functions may be helpful for developing the field even further,

especially in the context of automorphic forms or integrable systems.

5 Boundary supersymmetry

In former sections, we have focused on bulk degrees of freedom only. However, the boundary

has played several roles, from demanding the addition of certain terms to the actions to

preserve supersymmetry, to requiring certain choices of boundary conditions for bulk fields.

In flat space, upon imposing half-BPS boundary conditions, the restriction of bulk fields

to the boundary gives rise to 3d N = 1 multiplets. In this section, we describe how bulk

degrees of freedom split up into boundary multiplets and summarize how the surviving

curved space supersymmetry algebra acts on the latter.

25However, it has been observed that these factors cancel out in compact space partition functions [27],

hence supporting the boundary interpretation.
26For the S

2 ×T
2 geometry, the action of an SL(3,Z) subgroup on (τ, σ) gives rise to equivalent complex

structures [54], i.e. the same identifications (2.24).
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5.1 3d N = 1 supersymmetry

In Euclidean signature, the minimal three dimensional flat space supersymmetry algebra

is generated by a Dirac supercharge27 QA subject to

{QA, QB} = −2Γâ
ABPâ , (5.1)

where Pâ is the (covariant) momentum operator, â = 1̂, 2̂, 3̂ a three dimensional flat index

and Γâ B
A the Dirac matrices

Γ1̂ = −iσ2 , Γ2̂ = iσ1 , Γ3̂ = −iσ3 , ΓâΓb̂ = −δâb̂ + εâb̂ĉ Γĉ , (5.2)

with the convention ε1̂2̂3̂ = +1. Spinor indices are raised and lowered with the charge

conjugation matrix ǫAB. In order to study supersymmetry in a curved but conformally flat

space, one can start by solving the conformal Killing spinor equation for a Dirac spinor ξ

∇mξ +
1

3
Γm Γn∇nξ = 0 , (5.3)

where we use m,n for three dimensional spacetime indices. In the case of our interest, we

have to solve (5.3) with the line element induced from the bulk. We consider again the

Kähler metric (2.20), leading to the (flat) induced metric and volume form

ds2 = dwdw̄ + dt2 , volT3 =
i

2
dw ∧ dw̄ ∧ dt , (5.4)

where the adapted “holomorphic” coordinates xm = (w, w̄, t) describe the twisted T
3 given

by the global identifications

(w, t) ∼ (w, t+ 2π) ∼ (w + 2π, t+ 2πα) ∼ (w + 2πτ, t+ 2πβ) . (5.5)

Close to the boundary, the coordinate t = arg(z) = −arg(z̄) can be identified with a

coordinate along the tangential direction T (2.21) complementary to the normal N (2.22).

In the “holomorphic” frame

θ1̂ + iθ2̂ ≡ dw , θ3̂ ≡ dt , (5.6)

the general solution to (5.3) reads

ξA =

(
a1
a2

)

A

+ xmΓm
B

A

(
b1
b2

)

B

, (5.7)

and it encodes four supercharges, one for each constant parameter ai, bi. In particular, ai
correspond to Poincaré supercharges QA, whereas bi correspond to superconformal super-

charges, which are however broken due to the identifications (5.5). The Killing spinor

ξA ≡ 1√
2
δ+A , (5.8)

27In Lorentzian signature, one can impose a Majorana condition on spinors. We will discuss later on

what is the Euclidean analog of this condition. We also refer to [115] for an exhaustive classification of

spinors in arbitrary dimension.
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and its conjugate thus generate the full 3d N = 1 supersymmetry algebra (5.1), in partic-

ular

{δ, δ} = −2iδk , (5.9)

where we set δ ≡ ξAQA and δk is a (covariant) momentum along the vector

km ≡ ξΓmξ . (5.10)

Indeed, the Killing spinor ξA and its conjugate ξ†A can be used to form bilinears yielding

a complete three dimensional frame, namely

k̄m ≡ ξ†Γmξ†

|ξ|4 , ym ≡ ξ†Γmξ

|ξ|2 , (5.11)

which in adapted “holomorphic” coordinates simply reads as

k = −∂w̄ , k̄ = −4∂w , y = −i ∂t , (5.12)

and similarly for the dual 1-forms, which we denote with the same symbols

k = −1

2
dw , k̄ = −2dw̄ , y = −i dt . (5.13)

By using Fierz identities, one finds that Killing spinor bilinears satisfy the relations28

kmk̄n − ymyn = gmn+εmnℓ yℓ , 2 y[mk̄n] = εmnℓk̄ℓ , 2 y[mkn] = −εmnℓkℓ , (5.14)

and the vector ym can be used to define an almost contact metric structure (ym,Φm
n),

29

Φm
n ≡ i εmnℓ y

ℓ , ymym = −1 , Φm
ℓΦ

ℓ
n = −δmn − ymyn . (5.15)

This is trivially integrable and it induces a complex structure on the transverse torus

described by the holomorphic coordinate w, w.r.t. which km is anti-holomorphic and k̄m

is holomorphic. In fact, the Killing spinor bilinears, and hence the (integrable) almost

contact metric structure, directly descend from the bulk

Kµ|∂ =− kµ , Y µ|∂ = Y⊥|∂ (Nµ|∂ − yµ) ,

K̄µ|∂ =− k̄µ , Ȳ µ|∂ = Ȳ⊥|∂ (Nµ|∂ + yµ) , (5.16)

where the vanishing of the normal component of boundary vectors is to be understood.

5.2 Supersymmetry multiplets and actions

In this section, we recall the minimal three dimensional supersymmetry multiplets and

construct δ-exact supersymmetric actions.

28We use the ε tensor εww̄t = i
√

|g| × 1.
29Note that we are using conventions where y is purely imaginary.
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5.2.1 Real multiplet

In Lorentzian signature, 3d N = 1 matter is described by the real multiplet containing

a real scalar ϕ, a Majorana spinor χ and a real auxiliary field f . Their supersymmetry

transformations are (see e.g. [78–80])

δϕ = ξχ , δχ = f ξ − i Γmξ ∂mϕ , δf = −i ξΓm∂mχ . (5.17)

In Euclidean signature, the definition of a single real multiplet is problematic due to the

absence of Majorana spinors, even though attempts to overcome the obstruction have

appeared in the literature [116, 117]. Therefore, in our setup all the multiplets are actually

complex. However, we can mimic a real setup by assuming that all the fields transform

under a USp(2Nf) global symmetry as the latter allows for describing fermionic fields by

means of symplectic Majorana spinors χi, i = 1, . . . , 2Nf. These can be defined in 3d

Euclidean signature, and they satisfy the reality condition

(
χi A

)†
= χi A ≡ ωijǫABχ

j B , (5.18)

where ωij is the standard invariant symplectic form. Slightly more generally, given 2Nf ×
2Nc real multiplets

(
ϕia, χia, f ia

)
transforming in the bifundamental representation of

USp(2Nf) × USp(2Nc), where i = 1, . . . , 2Nf is a flavour index and a = 1, . . . , 2Nc a

gauge index, we have the supersymmetry transformations

δϕia = ξχia , δχia = f ia ξ − i ΓmξDmϕ
ia , δf ia = −i ξΓmDmχ

ia , (5.19)

with the fields fulfilling the reality conditions

(
ϕia
)†

= ϕia ,
(
χia
)†

= χia ,
(
f ia
)†

= −fia , (5.20)

where indices are raised and lowered by the corresponding symplectic form.30 The covariant

derivative Dm may contain a background field vm in the adjoint representation of USp(2Nf)

as well as a gauge field am in the adjoint of USp(2Nc), namely

Dmϕ
ia ≡ ∂mϕ

ia − i vm
i
j ϕ

ja − i am
a
b ϕ

ib . (5.21)

The supersymmetric variation of the fermionic functional

VRM ≡ 1

|ξ|2 δχ
iaχia = − 1

|ξ|2 f
ia ξ†χia −

i

|ξ|2 ξ
†ΓmχiaDmϕ

ia (5.22)

produces by construction a δ-exact Lagrangian with positive semi-definite bosonic term

LRM ≡ δVRM = Dmϕ
iaDmϕia − f iafia − iχiaΓmDmχia , (5.23)

where we omitted the total derivative ∂m
[
−i (ξχia)(χ

iaΓmξ†)
]
.

30These reality conditions are reminiscent, but do not coincide with, those for symplectic Majorana

spinors. The reason is that they involve the product of two antisymmetric invariant tensors (respectively for

the groups USp(2Nc) and USp(2Nf)), resulting in a overall symmetric invariant tensor. Similar conditions

are also considered e.g. in [118]. We thank the referee for calling our attention to this detail.
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Remark. In order to avoid cluttering, in the following will often omit any gauge index

when not explicitly needed.

5.2.2 Vector multiplet

The 3d N = 1 vector multiplet consists of a gauge field am and a Dirac spinor ρ in the

adjoint representation of the gauge group. As before, for USp(2Nc) we can impose a reality

condition. The supersymmetry transformations read as follows

δam = −i ξΓmρ , δρ =
1

2
εmnℓfmn Γℓξ . (5.24)

The latter can be used to write down a δ-exact Lagrangian containing a Yang-Mills term

for the gauge field and a kinetic term for the gaugino (a Tr is left implicit for non-Abelian

theories)

V
3d
VM ≡ 1

2|ξ|2 (δρ)† ρ , L
3d
VM ≡ δV 3d

VM =
1

4
fmnf

mn − i

2
ρΓmDmρ . (5.25)

Furthermore, one can also consider a Chern-Simons term at level k ∈ Z given by

L
3d
CS ≡ ik

4π

(
εmnℓ(am∂naℓ −

2i

3
amanaℓ)− i ρρ

)
, (5.26)

which is δ-closed.

5.2.3 Cohomological fields

By contracting all the spinors with the Killing spinor ξ and its conjugate ξ†, we can

introduce fermionic scalar variables as we did for the bulk multiplets.

Real multiplet. For the matter spinor fields χi we introduce

ci ≡ ξχi , bi ≡ ξ†

|ξ|2χ
i , χi ≡ ξbi − ξ†

|ξ|2 c
i . (5.27)

These allow us to rewrite the supersymmetry transformations for the real multiplet as

δϕi = ci , δci =− iLkϕ
i ,

δbi = f i − iLyϕ
i , δf i =− iLkb

i + iLyc
i , (5.28)

where Lk, Lk̄, Ly denote the total covariant derivatives along k, k̄ and y respectively. Note

that the supersymmetry algebra in this notation is given by (5.9) with δk = Lk. The real

multiplet Lagrangian (5.23) in terms of cohomological fields reads as

LRM = Lk̄ϕ
iaLkϕia − Lyϕ

iaLyϕia − f iafia

− i biaLkbia + i ciaLybia + i biaLycia − i ciaLk̄cia . (5.29)

We recall that this action is δ-exact w.r.t. the fermionic functional (5.22), which in coho-

mological fields is simply

VRM = δbiabia + |ξ|−4δciacia = −f ia bia − i biaLyϕ
ia + i ciaLk̄ϕ

ia . (5.30)
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Vector multiplet. Similarly, for the vector multiplet we can introduce the odd scalars

ψ̄v ≡ 2i
√
2
ξ†

|ξ|2 ρ , λv ≡
√
2 ξρ , ρ ≡ ξ

2i
√
2
ψ̄v −

ξ†√
2 |ξ|2

λv , (5.31)

and then the supersymmetry transformations are

δam = − 1

2
√
2
kmψ̄v +

i√
2
ym λv , δλv =

√
2 kmyn fmn , δψ̄v = i

√
2 km k̄n fmn . (5.32)

Note that the variation of the gauge field is missing a component, namely δ(kmam) = 0.

This is again due to the fact that kmam appears as a gauge parameter in δ2. For later

purposes, it is convenient to rewrite the cohomological vector multiplet in terms of scalar

components31 obtained by contraction with the Killing spinor bilinears:

a‖ ≡ iymam , φv ≡ kmam , φ̄v ≡ k̄mam , (5.33)

so that the supersymmetry transformations are

δa‖ =
1√
2
λv , δλv =

√
2 kmyn fmn ,

δφ̄v =− 1√
2
ψ̄v , δψ̄v = i

√
2 km k̄n fmn , δφv = 0 . (5.34)

Since we will not need to consider boundary vector multiplets, we omit writing their la-

grangian in cohomological form.

5.3 Induced supersymmetry

After having reviewed basic facts about three dimensional minimal supersymmetry which

are relevant for our boundary, we are ready to study in more detail how the bulk super-

symmetry acts on the latter. In particular, since the supercharge Q played a major role for

localization in the bulk, the natural question is whether it can be interpreted as a boundary

supercharge as well. In this case, it is possible to consider bulk-boundary coupled systems

and perform (in principle) localization w.r.t. the very same supercharge. In flat space, the

boundary would preserve half of the bulk supercharges at most. In curved space, the full

supersymmetry algebra is already broken down to the subalgebra (3.2), and we recall that

the selected localizing supercharge is the linear combination Q = δζ + δζ̃ of supercharges

preserved by the bulk. Therefore, the minimal setup we would like to consider is when Q
is a preserved supercharge of the 3d N = 1 supersymmetry algebra we have just reviewed.

Following our previous discussion, it is clear that the correct candidate is the supercharge

δ defined in (5.9) and associated with the spinor (5.8). In this section, we show how this

comes about, closely following the approach of [79, 80].

We start by considering embedding functions ηαA, η̃
α̇
A and the following linear combi-

nation of bulk supercharges

QA ≡ 1√
2

(
ηαAQα + η̃α̇AQ̃α̇

)
, (5.35)

31To be precise, such components are scalars up to shifts induced by gauge transformations.
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which, by plugging in (3.5), satisfy the algebra

{QA,QB} = ηα(Aη̃
α̇
B){Qα, Q̃α̇} = 2ηα(Aη̃

α̇
B)σ

µ
αα̇Pµ , (5.36)

where A,B are SU(2) indices to be identified with boundary spinor indices. In order

for the algebra (5.36) to match with the algebra (5.1) and hence for it to describe the

minimal supersymmetry of a boundary theory, the embedding functions must satisfy certain

conditions. First of all, the matrix

Γµ
(AB) ≡ −ηα(Aη̃α̇B)σ

µ
αα̇ (5.37)

must act as a projector on the transverse space w.r.t. the normal N , that is

Γ⊥
(AB) = 0 . (5.38)

Therefore, the projection on the normal must be captured by the anti-symmetric part

ǫABηαAη̃
α̇
B ≡ σ̃α̇α⊥ . (5.39)

Then, (5.37) can be interpreted as boundary Dirac matrices, namely they must satisfy

{Γµ,Γν} B
A = −2(gµν −NµNν)δBA , (5.40)

where indices are moved with ǫAB. The orthogonality condition can be solved by setting

Γµ
(AB) ≡ (ΓµνNν)(AB) for some matrix-valued anti-symmetric 2-tensor Γµν , and we can

almost immediately identify (up to signs)

Γµ
(AB) ≡ −2σµν(AB)Nν = 2σ⊥µ

AB . (5.41)

Indeed, one can verify that (5.40) is satisfied and the algebra (5.36) reproduces (5.1). A

concrete choice for the embedding functions can be given by noticing that QA must be

R-symmetry neutral and that in three dimensions there is no distinction between dotted

and undotted spinors, a convenient identification being provided by σ⊥αα̇ and σ̃α̇α⊥ . For

definiteness, we identify the SU(2) indices with undotted indices, and then it is easy to

show that the following choice meets all the requirements32

ηαA ≡
√
Y⊥ δ

α
A , η̃α̇A ≡ −

√
Ȳ⊥ σ̃

α̇β
⊥ ǫβαδ

α
A , (5.42)

where we set Y⊥ ≡ ιNY , Ȳ⊥ ≡ ιN Ȳ . Let us now define a spinor ξA such that

ζα ≡ ξAηαA = ξA
√
Y⊥ δ

α
A , ζ̃α̇ ≡ −ξAη̃α̇A = ξA

√
Ȳ⊥ σ̃

α̇β
⊥ ǫβαδ

α
A . (5.43)

Then it follows that the supercharge ξAQA can be identified (up to a factor of
√
2) with the

localizing supercharge Q . Moreover, since we have the inverse relations ηαAη
B
α = −Y⊥δBA ,

η̃Bα̇ η̃
α̇
A = Ȳ⊥δ

B
A , we can write the spinor ξA also as

ξA = −ǫAB
ηBα
Y⊥

ζα =
1√
Y⊥

δαAζα , ξA = −ǫAB
η̃Bα̇
Ȳ⊥

ζ̃α̇ = − 1√
Ȳ⊥

δαAσ
⊥
αα̇ζ̃

α̇ , (5.44)

32Because of the four dimensional R-symmetry, this identification is up to local phase rotations.
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or more democratically

ξA = −ǫAB

2

(
ηBα
Y⊥

ζα +
η̃Bα̇
Ȳ⊥

ζ̃α̇
)
. (5.45)

One can verify that the spinor bilinears given in section 5.1 are correctly reproduced,

allowing us to finally identify ξA defined here with the spinor defined in (5.8),33 and hence

ξAQA with the supercharge δ defined in (5.9).

5.4 Mapping 4d multiplets to 3d multiplets

We are now ready to discuss how bulk and boundary supersymmetry can be related.

Matter multiplets. Let us start by considering 4d N = 1 chiral and anti-chiral multi-

plets, transforming in the fundamental and anti-fundamental representations of the gauge

group G respectively. If these representations are Nc dimensional, they can be accommo-

dated into a pair of 3d N = 1 real multiplets transforming in the fundamental of USp(2Nc)

by embedding the Nc ⊕N c representation of G into the fundamental of USp(2Nc).
34 For

concreteness, we may consider G = (S)U(Nc). Using twisted variables, we can then write

(φa, Ca, Ba, F a) for the chiral multiplet and (φ̃a, C̃a, B̃a, F̃ a) for the anti-chiral multiplet,

where a = 1, . . . , 2Nc is a USp(2Nc) index, and eventually set the last Nc components to

zero to recover the original multiplets. In analogy with [79, 80, 119], we introduce

φia ≡ φa δi1 − φ̃a δi2 ,

Cia ≡ Ca δi1 − C̃a δi2 ,

Bia ≡
(
Ȳ⊥
)−1

Ba δi1 − (Y⊥)
−1 B̃a δi2 , ,

F ia ≡ δi1

[(
Ȳ⊥
)−1

F a − iL⊥φ
a
]
− δi2

[
(Y⊥)

−1 F̃ a + iL⊥φ̃
a
]
, (5.46)

where the index i = 1, 2 can be associated with a (broken) USp(2) flavor symmetry. In

particular, the new bosonic fields can be taken to satisfy the reality conditions

(
φia
)†

= φia ≡ ǫij ωab φ
jb ,

(
F ia
)†

= −Fia ≡ −ǫij ωab F
jb, (5.47)

which can be though of as imposing the real contour (φ, F )† = (φ̃,−F̃ ) in terms of the

original bulk fields. A similar reality condition is to be imposed on the fermions.

Having set up some notation, we can now rewrite in 3d language the SUSY complex of

the 4d chiral multiplet. Using the relations (5.16), we can write the bulk transformations

33Note that, because of the different frames, there is a relative Lorentz rotation to take into account.

This does not affect the quantities with all the spinor indices contracted.
34This is not necessary but we decided to mimic a real structure as discussed before.
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at the boundary as

Qφ =
√
2C , Qφ̃ =

√
2 C̃ ,

Q
[(
Ȳ⊥
)−1

B
]
=

√
2
[(
Ȳ⊥
)−1

F − iL⊥φ− iLyφ
]
,

Q
[
(Y⊥)

−1 B̃
]
=

√
2
[
(Y⊥)

−1 F̃ + iL⊥φ̃− iLyφ̃
]
,

Q
[(
Ȳ⊥
)−1

F − iL⊥φ
]
= −i

(
Ȳ⊥
)−1√

2LkB + i
√
2LyC ,

Q
[
(Y⊥)

−1 F̃ + iL⊥φ̃
]
= −i (Y⊥)

−1
√
2LkB̃ + i

√
2LyC̃ , (5.48)

which are easily seen to coincide with the 3d N = 1 cohomological complex (5.28) by using

the definitions (5.46) and the capital/lower case map

Q →
√
2δ , (φi, Ci) → (ϕi, ci) , (Bi, F i) → (bi, f i) . (5.49)

The covariant derivatives along the boundary directions contain the induced gauge and

R-symmetry connections, namely

Dm ≡ ∇m − iAm − i rA(R)
m , A(R) i

m j ≡ AmR
i
j , (5.50)

where Ri
j is the diagonal Pauli matrix. Note that all the fields have now the same R-

charge magnitude, with the i = 1, 2 components representing the ±1 eigenspaces. Also,

the background A(R) explicitly breaks the global USp(2) to its U(1) Cartan. Equivalently,

the bulk R-symmetry is realized at the boundary as the Cartan of the putative USp(2)

global symmetry for which a Wilson line is turned on.

Vector multiplets. Working with scalar components only, at the boundary the gauge

field can be split as Aµ = (A⊥,Am) ≡
(
A⊥,A‖, Φ̄,Φ

)
, while the gauginos as (λα, λ̃

α̇) ≡(
Λ⊥,Λ‖,Ψ, Ψ̄

)
, where we defined

A⊥ ≡ 1

2

(
Ȳ⊥Y

µ + Y⊥Ȳ
µ
)
Aµ , A‖ ≡

1

2i

(
Ȳ⊥Y

µ − Y⊥Ȳ
µ
)
Aµ = i ymAm ,

Φ̄ ≡− K̄µAµ = k̄mAm , Φ ≡−KµAµ = kmAm ,

Λ⊥ ≡ i√
2
Ȳ⊥ (ζλ)− i√

2
Ȳ⊥

(
ζ̃λ̃
)
, Λ‖ ≡ Ȳ⊥ (ζλ) + Y⊥

(
ζ̃λ̃
)
,

Ψ̄ ≡ 2i

(
ζ†λ

|ζ|2 +
ζ̃†λ̃

|ζ̃|2

)
, Ψ⊥ ≡− Ψ

2
√
2

= − i√
2

(
ζ̃†λ̃

|ζ̃|2
− ζ†λ

|ζ|2

)
. (5.51)

Moreover, normal derivatives of fields yield or redefine auxiliary fields

DA ≡ −
(
D −D⊥A‖

)
, DΦ ≡ D⊥Φ . (5.52)

In this notation, part of the 4d N = 1 vector multiplet gives rise to a 3d N = 1 vector

multiplet with supersymmetry transformations

QA‖ = Λ‖ , QΛ‖ = 2 km ynFmn ,

Q Φ̄ =− Ψ̄ , Q Ψ̄ = 2i km k̄nFmn , QΦ = 0 , (5.53)
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which is indeed identical to the cohomological complex (5.34) upon the identifications

Q →
√
2 δ , (A‖,Λ‖) →

(
a‖, λv

)
, (Φ̄, Ψ̄) →

(
φ̄v, ψ̄v

)
, Φ → φv . (5.54)

The remaining fields have supersymmetry transformations

QA⊥ =
√
2Λ⊥ , QΛ⊥ =− i

√
2LkA⊥ + i

√
2DΦ ,

QΨ⊥ =
√
2DA − i

√
2LyA⊥ , QDA =− i

√
2LkΨ⊥ + i

√
2GΦΨ⊥ + i

√
2LyΛ⊥ ,

QDΦ =
√
2GΦΛ⊥ . (5.55)

Up to the additional auxiliary field DΦ, which is a remnant of the bulk gauge symme-

try, (5.55) are the supersymmetry transformations of an adjoint real multiplet. Indeed,

they coincide with (5.28) if the map

Q →
√
2 δ , (A⊥,Λ⊥) → (ϕ, c) , (Ψ⊥, DA) → (b, f) , (5.56)

is performed. In particular, we see that Dirichlet or Neumann boundary conditions on

the bulk vector multiplet correspond to killing either the 3d N = 1 vector or real adjoint

multiplets respectively at the boundary. This is an example of dual boundary conditions,

which we study in more detail in the next section.

6 Dual boundary conditions from 3d multiplets

We will now explore basic aspects of a rather interesting interplay between boundary con-

ditions for bulk fields and couplings to boundary degrees of freedom. Using the D
2 × T

2

partition functions computed previously, together with the discussion of boundary super-

symmetry of the previous section, we study how it is possible to change the boundary

conditions through the inclusion of boundary fields. Our main goal is to give a micro-

scopic derivation of the relation (4.77). Very similar phenomena were discovered for 3d

N = 2 theories with 2d N = (0, 2) boundary degrees of freedom in [72]. We expect that

many results of this reference should have an interesting uplift to four dimensions, vastly

generalizing the discussion of this section.

6.1 Chiral multiplet boundary conditions

Let us start by writing down the action of a 4d N = 1 chiral multiplet in 3d N = 1

language. For Fon-shell = F̃on-shell = 0, we find35

Lchi = LK̄ φ̃aLKφ
a + LȲ φ

aLY φ̃a + i B̃aLKB
a + i B̃aLȲ C

a − iBaLY C̃a + i C̃aLK̄C
a

=
1

2
Lk̄φiaLkφ

ia +
1

2
L⊥φ

iaL⊥φia −
1

2
Lyφ

iaLyφia + L⊥φiaR
i
jLyφ

ja

− i

2
BiaLkB

ia + i BiaR
i
jL⊥C

ja + iBiaLyC
ia − i

2
CiaLk̄C

ia . (6.1)

35We focus on the chiral multiplet alone, omitting the coupling to the vector multiplet.
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We may ask whether this Lagrangian is Q-exact with respect to the boundary super-

symmetry. To answer this question, we can consider the fermionic deformation term

4V
(R)
chi ≡ (QBia)Bia + |ξ|−4(QCia)Cia − 2i

√
2BiaR

i
jL⊥φ

ja (6.2)

= −
√
2
(
F ia + iLyφ

ia
)
Bia + i

√
2Lk̄φiaCia − 2i

√
2BiaR

i
jL⊥φ

ja , (6.3)

leading to the Q-exact Lagrangian

L
(R)
chi ≡ QV

(R)
chi =

1

2
Lk̄φ

iaLkφia −
1

2
Lyφ

iaLyφia − i (Fia − iLyφia)R
i
jL⊥φ

ja (6.4)

− 1

2
F iaFia −

i

2
BiaLkBia + iBiaLyCia −

i

2
CiaLk̄Cia + i BiaR

i
jL⊥C

ja .

We have that F i
on-shell = −iRi

j L⊥φ
j , thus the actions Schi and S

(R)
chi are identical upon

integrating out the auxiliary fields. Moreover, from (6.4) we see that the equations of

motion of Bi, Fi give bulk terms only. Instead, those of φi, Ci yield boundary terms

δ̂(φ,C)S
(R)
chi = bulk e.o.m. + i

∫

∂

√
g d3x

(
BiaR

i
j δ̂C

ja − (Fia − iLyφia)R
i
j δ̂φ

ja
)
, (6.5)

where δ̂ denots field variations producing the equations of motion, not to be confused

with supersymmetry variations. The boundary terms in (6.5) can be removed in two ways

compatible with supersymmetry:

• Dirichlet boundary conditions

(D) : φi|∂ = const. , Ci|∂ = const. . (6.6)

• Robin-like boundary conditions

(R) : Fi|∂ = i (Lyφi)∂ , Bi|∂ = 0 . (6.7)

Especially, if we choose not to constrain the field variations δ̂φi, δ̂Ci, the action (6.4)

naturally encodes (R).

6.2 From Robin to Dirichlet boundary conditions

We are now ready to explain the relation (4.77) in greater detail. In the following, we show

that a suitable modification of the Lagrangian leads to different constraints on boundary

fields, turning Robin-like conditions into Dirichlet. In order to do this, let us start from

the action given in (6.4), with i = 1, 2 for simplicity. We construct a new action Ŝ
(D)
chi

by adding to S
(R)
chi a positive and Q -exact boundary action for the 3d multiplets (bi,Q bi)

along with a bulk-boundary coupling

Ŝ
(D)
chi ≡ S

(R)
chi + i

∫

∂

√
g d3x

(√
2 (fia − iLyϕia)R

i
jφ

ja − biaR
i
jC

ja
)
+ kinetic . (6.8)

Note that, since Q ∼ δ at the boundary, we just use Q . The equations of motion of bia, fia
now provide Dirichlet boundary conditions

φi|∂ = 0 , Ci|∂ = 0 . (6.9)
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Since Qφi ∼ Ci, these boundary conditions are trivially supersymmetric. On the other

hand, the equations of motion of φi, Ci lead to

Bi|∂ = bi , Fi|∂ = fi . (6.10)

Supersymmetry imposes the further conditions ϕi = φi|∂ and ci = Ci|∂ . Therefore, Dirich-

let boundary conditions on φi and Ci imply ϕi = ci = 0. As a result, the degrees of

freedom in the kinetic term in (6.8) effectively reduce to bi, fi and only these latter will

contribute to the 1-loop determinant of the boundary action. At the end of the day, the

action Ŝ
(D)
chi correctly encodes Dirichlet conditions. Consequently, we can borrow the flip-

ping argument from [72] and argue that the partition functions computed with different

boundary conditions should be related as

Z(D)[φi, Ci, Bi, Fi; bi,Q bi] = Z(R)[φi, Ci, Bi, Fi]Z∂ [bi,Q bi] , (6.11)

where Z∂ [bi,Q bi] is the partition function of the boundary theory on ∂(D2 × T
2) ≃ T

3.

The bulk-boundary couplings in (6.8) deserve some comment. First of all, these terms

do not respect full 3d N = 1 supersymmetry since only half-multiplets appear. This

unusual fact is consistent with our setup since the bulk preserves two of the four flat space

supercharges, and the boundary is only required to preserve a further half of these, namely

the linear combination Q . Interactions are only required to transform in representations

of the surviving supersymmetry subalgebra, and the half-multiplets appearing in (6.8) are

by construction representations of the subalgebra generated by Q. However, note that

since our boundary is flat, if taken alone it could preserve all supercharges: the breaking of

supersymmetry is a consequence of coupling to a curved bulk. This differs from the case of

a flat space with boundary [72], where half of the bulk supercharges would be preserved,

leading to a full 3d N = 1 theory on the boundary in our case.

We can now turn to discussing the boundary partition function, which is given by the

1-loop determinant of the kinetic operator −iLk ∼ Q 2 computed over the vector space of

bi modes, in the constant background A(0). Calculations can be simplified by inverting the

maps in (5.46), that is

b ≡ Ȳ⊥B
1|∂ , b̃ ≡ −Y⊥B2|∂ . (6.12)

In this language, the on-shell conditions (6.10) simply read as B|∂ = b and B̃|∂ = b̃.

Therefore, the mode expansions of b, b̃ should coincide with that of B, B̃ restricted to the

boundary, namely

b(w, w̄, t) =
∑

nx,ny ,m∈Z

bnx,ny ,meimtF (r/2−1−m)
nx,ny

(w, w̄) , (6.13)

and similarly for the conjugate field b̃. Note that on T
3 all the modes are normalizable,

hence m ∈ Z. Up to an overall constant, the boundary partition function is then

Z∂ [bi,Q bi] ≡ detb(−iLk) = det
R

[ ∏

nx,ny ,m∈Z

i

Im(τ)

(
τ nx − ny + σ(r/2− 1−m) + Φ(0)

)]
.

(6.14)
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The condition B|∂ = b descending from (6.10) instructs us to regularize this infinite product

by factoring out the bulk contribution Zchi(D)
1-loop (Φ(0)), yielding

Z∂ [bi,Q bi] = det
R

[ ∏

nx,ny∈Z
m∈Z≥0

− i

Im(τ)

(
τ nx − ny + σ(m+ 1− r/2)− Φ(0)

)

×
∏

nx,ny∈Z
m∈Z≥0

i

Im(τ)

(
τ nx − ny + σ(m+ r/2)− Φ(0)

)]

=
Zchi(D)
1-loop (Φ(0))

Zchi(R)
1-loop (Φ(0))

, (6.15)

where in the last step we have used the very same regularization employed in (4.75), (4.76).

This result explains the physics behind the relation observed in (4.77).

6.3 From Dirichlet to Robin boundary conditions

We have just seen how adding matter fields at the boundary with a coupling to the bulk

fields can be used to switch from Robin-like to Dirichlet boundary conditions. Here we

discuss the reverse mechanism. Let us start from the alternative Lagrangian

L
(D)
chi ≡ 1

2
Lk̄φ

iaLkφia −
1

2
Lyφ

iaLyφia −
1

2
F iaFia + iRi

jφ
ja L⊥ (Fia − iLyφia)

− i

2
BiaLkBia + iBiaLyCia −

i

2
CiaLk̄Cia + iRi

jC
jaL⊥Bia , (6.16)

which encodes (D) through the equations of motion of Bia, Fia. We can obtain (R) by

adding a positive and Q -exact action for boundary multiplet (ϕi,Qϕi) coupled to bulk

Ŝ
(R)
chi ≡ S

(D)
chi − i

∫

∂

√
g d3x

(√
2BiaR

i
jc

ja + (Fia − iLyφia)R
i
jϕ

ja
)
+ kinetic . (6.17)

The equations of motion of ϕi, ci set Robin-like conditions QBi|∂ = Bi|∂ = 0, while those of

Bi, Fi set φi|∂ = ϕi as well as Ci|∂ = ci. According to the flipping argument presented in the

previous subsection, the partition functions computed with different boundary conditions

should then satisfy

Z(R)[φi, Ci, Bi, Fi;ϕi,Qϕi] = Z(D)[φi, Ci, Bi, Fi]Z∂ [ϕi,Qϕi] , (6.18)

where Z∂ [ϕi,Qϕi] is the partition function of the boundary theory, which is computed by

the 1-loop determinant of the kinetic operators −Lk̄Lk and −i Lk̄ over the vector spaces

of modes of the boundary fields ϕi, ci. The maps in (5.46) suggest to consider the fields

ϕ ≡ ϕ1 , ϕ̃ ≡ −ϕ2 , c ≡ c1 , c̃ ≡ −c2 . (6.19)

The boundary partition function is then

Z∂ [ϕi, ci] ≡
detc(−iLk̄)

detϕ(−Lk̄Lk)
=

1

detϕ(−iLk)
, (6.20)
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as expected from the cohomological structure of the multiplets. In this notation, the on-

shell conditions relating bulk and boundary fields reduce to φ|∂ = ϕ, C|∂ = c and similarly

for the tilded fields. The mode expansion of boundary fields should therefore match with

their bulk counterparts, for instance

ϕ(w, w̄, t) =
∑

nx,ny ,m∈Z

ϕnx,ny ,me−imtF (r/2+m)
nx,ny

(w, w̄) . (6.21)

The relation φ|∂ = ϕ teaches us to regularize the determinant by factoring out Zchi(R)
1-loop , and

a computation analogous to (6.15) directly leads to (6.18), namely

Z∂ [ϕi, ci] =
Zchi(R)
1-loop (Φ(0))

Zchi(D)
1-loop (Φ(0))

. (6.22)

Remark. The partition functions Z∂ [ϕi,Qϕi] and Z∂ [bi,Q bi] are formally the same as

those of chiral and Fermi multiplets on a two-torus with modular parameter σ. This

seems to be consistent with the previous observation made after (6.11) that the peculiar

boundary theories we have considered behave essentially as a 2d N = (0, 2) theories due

to the coupling with the bulk. It would be natural to expect τ to emerge as the modular

parameter, instead of σ. The appearance of σ can be traced to the asymmetry between

the two moduli introduced in the choice of regularization made in (6.15), which is dictated

by coupling with the bulk.

6.4 A conjecture for the vector: from Neumann to Dirichlet

In the previous two subsections, we have described a mechanism for switching from Robin-

like to Dirichlet conditions for the 4d N = 1 chiral multiplets. From the viewpoint of

the bulk, imposing one type or the other translates to the vanishing of either submultiplet

(B,QB) or (φ,Qφ) respectively. From the viewpoint of the boundary, these two choices

can be related by the coupling additional degrees of freedom, which can restore one sub-

multiplet at the expense of the other. Using the explicit results (4.75), (4.76) for the 1-loop

determinants with either boundary conditions, we have been able to explain the reflection

property (4.77) through 1-loop computations on the boundary (6.15), (6.22).

In (5.53), (5.55), we have managed to split the 4d N = 1 vector multiplet into two

submultiplets of the boundary supersymmetry, one of which is set to zero by either Neu-

mann or Dirichlet conditions for the gauge field. It is therefore natural to expect that a

boundary condition changing mechanism should exist in this case too. Since throughout

the main text we have assumed Neumann conditions in order to preserve gauge symmetry

at the boundary, we expect that, upon considering suitable boundary couplings, it should

be possible to obtain the results for Dirichlet conditions. Unfortunately, as discussed in

section 4.5.1, when dealing with the vector multiplet the proper gauge fixing is crucial,

and since we have not worked out the full BRST complex, we are not able to present

an exhaustive analysis. However, we can at least propose what the final result should be

at the level of 1-loop partition functions: guided by the observation that, in the case of

the chiral multiplet the 1-loop determinants of dual boundary conditions are related by
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a simple reflection property, we can assume that the same holds for the vector multiplet.

Starting from the computation with Neumann conditions (5.53) and using (B.16), we are

thus led to propose that

Zvec(D)
1-loop (Φ(0)) = det

ad

[
e

iπ
3
P3(σm/2+Φ(0)) Γ(σm/2 + Φ(0); τ, σ)

]
, (6.23)

where we have allowed any multiplet (including the vector) to have an effective shifted

R-charge to take into account possible contributions of flux configurations with flux m,

described around (4.17). In fact, while Neumann conditions have allowed us to discard such

configurations due to F⊥µ|∂ = 0, Dirichlet conditions are compatible with these non-trivial

saddles. As mentioned in the main text, even though such configurations are not BPS,

they cannot a priori be discarded as can represent the non-perturbative contribution to the

path integral [41, 77]. Moreover, while Neumann conditions preserve gauge symmetry at

the boundary and hence Φ(0) is to be seen as a modulus of the theory to be integrated over,

Dirichlet conditions allow only gauge transformations that coincide with the identity at the

boundary, hence changing the interpretation of Φ(0) as a background chemical potential for

a global symmetry acting at the boundary. On the other hand, now a summation36 is to

be performed over the modulus m to take into account all possible saddles. In support of

this rather heuristic derivation, this picture seems to be consistent with a four dimensional

lift of the discussion presented in [72].

7 Observables and examples

In this section, we discuss which observables are compatible with our background. We

also discuss a relevant example, namely the SU(N) theory coupled to (anti-)fundamental

matter and check Seiberg duality.

7.1 Superpotential

In order to begin with, let us investigate the effect of including superpotential terms. In

the bulk we consider a standard superpotential, described by (anti-)holomorphic functions

W (φ) and W̃ (φ̃) of R-charge ±2 of the scalars in the (anti-)chiral multiplets. We directly

use twisted fields to write the F-term descending from W (φ) as

SW ≡
∫

d4x
√
gLW , LW ≡WI(φ)F

I −WIJ(φ)B
I CJ , (7.1)

where WI ≡ ∂IW , WIJ ≡ ∂I∂JW . Supersymmetry acts on the two pieces as

Q
(
WIF

I
)
=

√
2WIJC

JF I + i
√
2WI

(
LKB

I + LȲ C
I −

√
2Λ̃−φI

)
,

Q
(
WIJB

ICJ
)
=

√
2WIJ

(
F I − iLȲ φ

I
)
CJ − i

√
2WIJB

ILKφ
J , (7.2)

36We can assume m to be quantized precisely due to Cauchy boundary conditions. Configurations of

the gauge field can be classified by relative cohomology classes, due to the presence of a boundary. The

holonomy along the disk boundary captures the non-integral part of the flux, while the integral part is

classified by quantized flux through the disk (corresponding to m).
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where the Lie derivatives contain the gauge field Aµ, the R-symmetry connection Aµ and

a flavour connection A
(F )
µ . By taking into account that

−2i Λ̃−WIφ
I = Q

(
ιȲ A WIφ

I
)
−
√
2 (ιȲ A)WIJC

JφI −
√
2 (ιȲ A)WIC

I , (7.3)

we find

QLW = i
√
2∇µ

(
KµWIB

I + Y
µ
WIC

I
)

−
√
2WIΦB

I −
√
2BIWIJΦφ

J

−
√
2Φ(R)BI

[
(rI − 2)WI + rJWIJφ

J
]
−
√
2Φ(F )BI

[
vIWI + vJWIJφ

J
]

+ Ȳ µQ
[
WI(Aµ)φ

I + rIAµ WIφ
I + vIA

(F )
µ WIφ

I
]
, (7.4)

where we defined Φ(R) ≡ −ιKA, Φ(F ) ≡ −ιKA(F ), while rI , vI denote the R-symmetry and

flavor charges respectively. The second line is a gauge transformation acting on WIB
I

δG
(
WIB

I
)
≡WIΦB

I +BIWIJΦφ
J = 0 . (7.5)

Hence, the supersymmetric variation of the holomorphic superpotential is a total derivative

if the conditions

δR
(
WIφ

I
)
≡ rJWIJφ

IφJ + rIWIφ
I = 2WIφ

I ,

δF
(
WIφ

I
)
≡ vJWIJφ

IφJ + vIWIφ
I = 0 , (7.6)

are satisfied, simply meaning that W (φ) must have R-charge +2 and be a singlet under

flavour symmetry. Consequently

QSW = i
√
2

∫
d4x

√
g∇µ

(
Ȳ µWIC

I
)

= i
√
2

∫

∂
d3x

√
g Ȳ⊥WIC

I = iQ
∫

∂
d3x

√
g Ȳ⊥W . (7.7)

Similarly, the anti-holomorphic superpotential term reads

S
W̃

≡
∫

d4x
√
gL

W̃
, L

W̃
≡ W̃I(φ̃) F̃

I − W̃IJ(φ̃)B̃
I C̃J , (7.8)

where W̃I ≡ ∂IW̃ , W̃IJ ≡ ∂I∂JW̃ . Repeating the same steps as above, one can confirm that

W̃ (φ̃) must have R-charge −2 and neutral under gauge and flavour symmetries. Eventually

QS
W̃

= −i
√
2

∫
d4x

√
g∇µ

(
Y µW̃IC̃

I
)
=

= −i
√
2

∫

∂
d3x

√
g Y⊥W̃IC̃

I = −iQ
∫

∂
d3x

√
g Y⊥W̃ . (7.9)

Therefore, we showed that the supersymmetric variations of SW and S
W̃

do not vanish

because of the boundary. This can be cured by introducing the F-term

SF ≡ −i

∫

∂
d3x

√
gF , F ≡ Ȳ⊥W − Y⊥ W̃ , (F )† = −F . (7.10)
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The supersymmetric variation of SF exactly cancels the boundary terms generated by

QSW and QS
W̃
, and the improved superpotential term

ŜW ≡ SW + S
W̃

+ SF (7.11)

is supersymmetric without imposing boundary conditions.

7.2 Fayet-Iliopoulos term

For a U(1) factor in the gauge group, we can consider a Fayet-Iliopoulos (FI) term, which

for the class of backgrounds we are considering in this paper reads [26]

SFI ≡ ξFI

∫
d4x

√
g (D − 2AµV

µ) . (7.12)

Notice that for a Kähler metric V µ = κKµ, so gauge invariance holds due to ∇µV
µ = 0 and

V ⊥ = 0. The Q -variation of SFI vanishes up to boundary terms, and we find that QSFI

generates a boundary term that is exact w.r.t. the boundary supersymmetry, namely

QSFI = ξFI

∫
d4x

√
gL⊥

(
Ȳ⊥ζλ+ Y⊥ ζ̃λ̃

)
= ξFI

∫

∂
d3x

√
gΛ‖ =

ξFI√
2
Q
∫

∂
d3x

√
gA‖ ,

(7.13)

where we used the 3d cohomological fields defined in (5.51). As a consequence, we can

define an improved FI term

ŜFI ≡ ξFI

∫
d4x

√
g (D − 2AµV

µ)− ξFI√
2

∫

∂
d3x

√
gA‖ , (7.14)

whose supersymmetry variation vanishes without imposing boundary conditions. Note that

for our choice of background this term is zero on the localization locus we have considered,

hence it cannot give classical contributions. However, it may contribute for more general

choices and/or if one allows for flux configurations. Also, this term cannot be made fully

invariant w.r.t. arbitrary large gauge transformations, unless one imposes some rational

condition on ξFI and Im(τ)/Re(τ). A similar observation can be found in [26, 120].

7.3 Surface defects

In A-twisted 2d N = (2, 2) theories on the sphere [77, 121], correlation functions of local

operators at the poles can be computed through localization. In 3d N = 2 theories, the

natural lift is provided by Wilson loops [31, 41]. In our setup, Wilson loops cannot be

defined because the Killing vector is complex and it generates the whole torus (together

with its complex conjugate). Therefore, it is more natural to look for surface operators

wrapping the torus. In terms of the twisted variables (4.36), the 4d N = 1 SUSY transfor-

mations (4.37) of the chiral multiplet can naturally be interpreted in terms of 2d N = (0, 2)

SUSY transformations on the torus, with (φ,C) and (B,F ) representing chiral and Fermi

multiplets respectively. Similarly, the 4d N = 1 SUSY transformations (4.27) and the

components (Aw,Aw̄,Λw̄, Λ̃w̄, D) can be interpreted in terms of a 2d N = (0, 2) vector

multiplet on the torus. Therefore, it is easy to couple to the bulk a 2d defect theory on the
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torus while preserving the Q supercharge. For Lagrangian theories, the partition functions

of the defect theories can be again computed by localization, and the 1-loop determinants

of chiral, Fermi and vector multiplets read [75, 76, 122] (up to zero-point energies)

Zc(u) ≡
1

Θ(u; τ)
, ZF(u) ≡ Θ(u; τ) , Zv(w) ≡ det

ad
[Θ(w; τ)] , (7.15)

where u is a U(1) chemical potential and w belongs to a Cartan subalgebra of the 2d gauge

group. The coupling to the bulk can be accomplished by gauging a subgroup of the 2d

flavor group with a 4d vector multiplet, namely by inserting the 2d partition function under

the integral of the bulk partition function. More generally, provided that the partition

function can be computed by other means, one can also consider non-Lagrangian defect

theories. A very interesting class of 2d N = (0, 2) theories was constructed in [68] from a

twisted compactification of the 6d N = (0, 2) theory on a 4-manifold, whose torus partition

functions are computed by certain affine characters. These objects represent the natural lift

of ordinary characters to our setup,37 which in 3d N = 2 theories can be used to compute

the expectation values of Wilson loops.

7.4 SQCD and Seiberg duality

We can now apply the results of this paper to an interesting example, namely the SU(N)

theory with (anti-)fundamental matter. We will denote by µ ≡ m + σr/2 and µ̄ ≡ m̄ −
σr/2 the combined flavor and R-symmetry chemical potentials, while we will denote the

fundamental gauge chemical potential by u. The absence of gauge anomalies instruct us

to consider Nf anti-fundamental chirals with Robin-like conditions and Nf fundamental

chirals with Dirichlet conditions with the correct R-charge assignment r = 1 − N/Nf and

flavor chemical potentials constrained by
∑

f (m̄f −mf ) = N(1 + τ). We also restrict to

Nf ≥ N . The 1-loop integrand of the localized partition function

Zγ [SU(N)] ≡
∮

γ

dNu

(2πi)NN !
δ(
∑

a

ua)ΥN (u, µ, µ̄) (7.16)

reads (up to u-independent normalization)

ΥN (u, µ, µ̄) ≡
∏

1≤a 6=b≤N

1

Γ(ub − ua; τ, σ)

N∏

a=1

Nf∏

f=1

Γ(µf − ua; τ, σ)

Γ(σ + µ̄f − ua; τ, σ)
. (7.17)

For the U(N) case, the choice of contour would correspond here to a selection of N funda-

mental chirals out of Nf, and as such there are Nf!/(Nf−N)!N ! possibilities. In fact, since

the unconstrained U(N) integral is easier to handle, we assume that the SU(N) partition

function can eventually be recovered from the former by either imposing the traceless con-

dition by hand [64] or through a Fourier-like transform on the FI parameter ξ that can be

introduced. Therefore, we consider the independent poles at38

ua ∈ {µf + kfσ , f ∈ γ, kf ∈ Z≥0} , (7.18)

37See also [123] for another interesting approach.
38This pole prescription is essentially the 4d lift of the contours which are usually considered in 3d [43, 47].
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where γ is a label set of N elements out of Nf. Taking into account the permutation

symmetry, we thus obtain the residue series

Zγ [U(N)] = e2πiξ
∑

f∈γ µfΥN (µf∈γ , µ, µ̄)
∑

{kf}

e2πiξσ
∑

f∈γ kf (7.19)

×
∏

f ′∈γ

1

kf ′ !

∏

f∈γ

Θ(µf − µf ′ ; τ, σ)−kf ′

Θ(µf − µf ′ ; τ, σ)kf−kf ′

∏
f 6∈γ Θ(µf − µf ′ ; τ, σ)−kf ′∏Nf

f=1Θ(σ + µ̄f − µf ′ ; τ, σ)−kf ′

,

where the divergent factor in Υ(µf∈γ) is to be understood as its residue at the pole. This

expression can be identified with the elliptic vortex partition function of the theory in the

vacuum where N anti-fundamentals acquire an expectation value. In order to see this more

explicitly, let us focus on the fixed vortex number k =
∑

f∈γ kf and compare this with the

more conventional integral

Zk ≡ 1

k!

∮

J.K.

k∏

i=1

dφi
2πi

′∏

1≤i,j≤k

Θ(φi − φj ; τ)

Θ(−σ + φi − φj ; τ)

×
k∏

j=1

∏Nf
f=1Θ(φj + āf ; τ)∏

f∈γ Θ(−φj − af ; τ)
∏

f 6∈γ Θ(φj + af − σ; τ)
, (7.20)

where the prime denotes that the zero factor (i = j) in the numerator is to be replaced

by Resu=0Θ(u, τ). Notice that the 4d anomaly cancellation condition guarantees that the

form of the 2d integrand is preserved under the identification φj ∼ φj+Z+τZ and modular

transformation τ → −1/τ . Recalling (7.15), we see that the k-vortex sector corresponds

to the elliptic genus of a 2d N = (0, 2) U(k) theory coupled to N anti-fundamental chirals,

Nf −N fundamental chirals, Nf fundamental and one adjoint Fermi multiplets, correspond-

ing to the k-vortex theory of the 4d N = 1 theory we are considering.39 More explicitly,

we distribute each of the k integration variables around the N chirals according to the

unordered partition {kf} and integrate them one by one. What we eventually get is a net

contribution from a tail of poles arising from the charge minus chirals starting at φj = −af
for some f ∈ γ, namely

φj ∈ {−af − σℓ , ℓ = 0, . . . , kf − 1 , f ∈ γ} . (7.21)

The evaluation of the residues at these poles yields

Zk =
∑

{kf}
k=

∑
f∈γ kf

∏

f ′∈γ

1

kf ′ !
∏

f∈γ Θ(af ′ − af − σkf ; τ ;σ)kf ′

∏
f 6∈γ Θ(−af ′ + af ; τ ;σ)−kf ′∏Nf

f=1Θ(σ − af ′ + āf ; τ ;σ)−kf ′

.

(7.22)

We can now use the identity

Θ(u; τ ;σ)k′−k =
Θ(u− σk; τ ;σ)−k′

Θ(u− σk; τ ;σ)−k
(7.23)

39See e.g. [63, 124] for a recent and more detailed discussion related to our setup.
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to write

Zk =
∑

{kf}
k=

∑
f∈γ kf

∏

f ′∈γ

∏
f∈γ Θ(af − af ′ ; τ ;σ)−kf ′

kf ′ !
∏

f∈γ Θ(af − af ′ ; τ ;σ)kf−kf ′

∏
f 6∈γ Θ(af − af ′ ; τ ;σ)−kf ′∏Nf

f=1Θ(σ + āf − af ′ ; τ ;σ)−kf ′

,

(7.24)

coinciding with the k-vortex part of (7.19) upon straightforward identifications of the pa-

rameters. This exercise allows us to test Seiberg duality. In fact, the integrand of the

elliptic genus (7.20) is a meromorphic elliptic function of φj ∼ φj +Z+Zτ , and by deform-

ing the integration contour to pick up the poles arising from the tail of charge plus chirals,

the U(N) vortex partition function (7.19) has an alternative representation in which the

role of f ∈ γ and f 6∈ γ are swapped, namely it is equivalent to a dual U(Nf −N) vortex

partition function. What is left to be checked is the correct transformation law of the

1-loop determinant in the γ vacuum, which is indeed invariant up to the appearance of the

singlet contributions

ΥN (u = µf∈γ , µ, µ̄) = ΥNf−N (u = µ̂f 6∈γ , µ̂, ˆ̄µ)

Nf∏

f,f ′=1

1

Γ(σ + µ̄f − µf ′ ; τ, σ)
, (7.25)

with the dual variables defined by µ̂ ≡ −µ+ σ/2, ˆ̄µ ≡ −µ̄− σ/2 + 1 + τ .

8 Conclusions and future directions

In this paper, we have studied 4d N = 1 theories on D
2 × T

2 and certain BPS boundary

conditions, and we have used supersymmetric localization techniques to perform the exact

evaluation of the partition functions. We have met several subtle points during our analy-

sis, part of which are also shared with the compact backgrounds (such as the presence of

fermionic zero modes in A-twisted theories) and part of which are instead proper of the

non-compactness of the background (such as the proper implementation of the boundary

conditions in 1-loop computations) or due to the complex nature of the Killing vector aris-

ing from the localizing supercharge (such as the proper treatment of the cohomological

complex for the vector multiplet). Despite these issues, the results that we have presented

in this work passed some nontrivial tests, such as the derivation of a consistent picture,

the correct 3d and 2d limits, and the recovery of known results and dualities. One promi-

nent question that remains unclear, is to find a microscopic understanding of the relation

between boundary conditions and integration contours for the localized path integral, a

closely related one is the map between IR/UV boundary conditions. One overarching mo-

tivation for trying to give more rigorous — or more satisfactory — answers to this and

other questions, is that localization techniques would eventually allow one to compute

partition functions and indices on non-compact manifolds with diverse topologies, which

provide important tools in a wide range of current research areas. For an illustration of

this point, we conclude with a collection of few potential applications of our results and

suitable extensions thereof.

1. It would be very interesting to extend our results to more general boundary condi-

tions. In the case of the chiral multiplet, we found that there is a nice mechanism
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for switching between two choices which naturally arise from our localization setup.

Classifying boundary conditions would conceivably lead to a larger group of similar

dualities. Analogous programs have been carried out in 3d N = 2 [72] and N = 4

theories [125–129], which uncovered rich duality actions on the space of boundary

conditions.

2. 4d holomorphic blocks should exhibit interesting global behavior in parameter space,

such as Stokes phenomena. In fact, viewing our setup as a double uplift of 2d

N = (2, 2) theories on a disk, it should be possible to establish a precise rela-

tion between (sums of products of) 4d holomorphic blocks and the topological-anti-

topological amplitudes first considered by Cecotti and Vafa [45]. Indeed, in [46] a four

dimensional version of the tt∗ geometry was proposed, involving precisely 4d N = 1

theories on D
2 ×T

2. Similar considerations for 3d holomorphic blocks were explored

in [43]. It would be interesting to study to what extent suitable combinations of 4d

holomorphic blocks can be used to construct solutions to tt∗ equations, and explore

applications to moduli spaces of hyper-holomorphic connections.

3. 3d holomorphic blocks can be characterized as solutions to a set of difference equa-

tions, physically interpreted as Ward identities for the algebra of half-BPS line oper-

ators [43, 48, 130, 131]. In our case, the 1-loop determinants of the chiral multiplets

also satisfy simple difference equations (we refer to [27] for an interacting example),

and it is tempting to identify them as basic Ward identities for the algebra of surface

defects (constructions of such identities may presumably be obtained with the help

of the algebraic interpretation of 4d holomorphic blocks [132–135]). This would allow

the 4d holomorphic blocks, possibly enriched with defects, to be also characterized

as solutions to elliptic difference equations. This perspective has successfully been

applied in the context of class S theories [136] and index computations [137–141].

4. It may be possible to preserve more supercharges with suitable restrictions on the

background geometry or by modifying the supergravity background fields. This would

lead to the possibility of computing interesting protected indices of 4d N = 2 the-

ories. One of these would be the AMNP 3d index [142]. The AMNP index enjoys

several interesting properties, including a relation to Darboux coordinates for twistor

constructions of hyper-Kähler metrics, and a relation to solutions of TBA equations

arising in the study of 4d N = 2 wall-crossing. To employ our approach for its

computation, one should take a limit of the background with a flat infinite disk and

simultaneously stretch the complex structure of the torus, so as to obtain the required

geometry of R2 ×R× S
1 (in fact, torus compactification and stretching were already

employed in [142] as a regulator). Perhaps the main technical step to be taken in this

direction would be to understand how to include instanton and monopole corrections.

Acknowledgments

It is a pleasure to thank Francesco Benini, Stefano Cremonesi, Guido Festuccia, Dario

Martelli, Joe Minahan, Yiwen Pan and Maxim Zabzine for discussions. We are especially

– 52 –



J
H
E
P
1
2
(
2
0
1
9
)
1
4
7

grateful to Jian Qiu for numerous illuminating discussions on technical questions studied

in this work, and to Achilleas Passias for collaboration during part of this project.

The work of PL is supported by a grant from the Swiss National Science foundation.

He also acknowledges the support of the NCCR SwissMAP that is also funded by the Swiss

National Science foundation. PL was also supported by the grants “Geometry and Physics”

and “Exact Results in Gauge and String Theories” from the Knut and Alice Wallenberg

foundation during part of this work. The work of FN is supported by the German Research

Foundation (DFG) via the Emmy Noether program “Exact results in Gauge theories”. FN

was also supported by Vetenskapsr̊adet under grant #2014-5517, by the STINT grant and

by the grant “Geometry and Physics” from the Knut and Alice Wallenberg foundation

during part of this work. The work of AP is supported by the ERC STG Grant 639220.

A Spinor conventions and identities

We mainly follow [143] adapted to the Euclidean signature. The σ-matrices with flat indices

a, b are defined by

σaαα̇ = (~σ,−i 12) , σ̃a α̇α = (−~σ,−i 12) , σab =
1

2
σ[aσ̃b] , σ̃ab =

1

2
σ̃[aσb] ,

(A.1)

where ~σ are the usual Pauli matrices. The following identities hold

σaσ̃b =− δab + 2σab, σ̃aσb =− δab + 2 σ̃ab ,

ǫabcd σ
cd = 2σab , ǫabcd σ̃

cd =− 2 σ̃ab ,

(σaαα̇)
∗ =− σ̃a α̇α ,

(
σabα

β
)∗

=− σabβ
α
,

(
σ̃ab α̇
β̇

)∗
= −σ̃ab β̇α̇ , (A.2)

where ∗ denotes complex conjugation. The transition to curved indices is achieved by

defining the real Euclidean frame θa, a = 1, 2, 3, 4, and using the vielbeins, θa ≡ ea µdx
µ.

In the main text, we have used the following Fierz identities for commuting spinors

(χ1χ2) (χ3χ4) = − (χ1χ3) (χ4χ2)− (χ1χ4) (χ2χ3) ,

(χ̃1χ̃2) (χ̃3χ̃4) = − (χ̃1χ̃3) (χ̃4χ̃2)− (χ̃1χ̃4) (χ̃2χ̃3) ,

(χ1χ2) (χ̃1χ̃2) = −1

2
(χ1σaχ̃2) (χ2σ

aχ̃1) = −1

2
(χ̃1σ̃aχ2) (χ̃2σ̃

aχ1) ,

(χ1σ
µχ̃2) (χ3σµνχ4) =

1

2
(χ1χ3) (χ4σνχ̃2) +

1

2
(χ1χ4) (χ̃2σ̃νχ3) ,

(χ̃1σ̃
µχ2) (χ̃3σ̃µν χ̃4) =

1

2
(χ̃1χ̃3) (χ̃4σ̃νχ2) +

1

2
(χ̃1χ̃4) (χ2σνχ̃3) . (A.3)

Conjugation on spinors fulfils

(ζα)
∗ = (ζ†)α, (ζα)∗ = −(ζ†)α, (ζ̃α̇)∗ = (ζ̃†)α̇, (ζ̃α̇)

∗ = −(ζ̃†)α̇ . (A.4)

Assuming that ∗∗ = id, we also have

ζα = (ζα)
∗∗ = ((ζ†)α)∗ = −(ζ††)α, ζ̃α̇ = (ζ̃α̇)∗∗ = ((ζ̃†)α̇)

∗ = −(ζ̃††)α̇ . (A.5)
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Moreover

(|ζ|2)∗ = ((ζ†)αζα)
∗ = ζα(ζ

†)α = |ζ|2, (|ζ̃|2)∗ = ((ζ̃†)α̇ζ̃
α̇)∗ = ζ̃α̇(ζ̃†)α̇ = |ζ̃|2 . (A.6)

In particular, the previous formulae yield

(Kµ)∗ = (ζασµαα̇ζ̃
α̇)∗ = (ζ†)ασ̃

µ α̇α(ζ̃†)α̇ = |ζ|2|ζ̃|2K̄µ ,

(Y µ)∗ = |ζ̃|−2(ζασµαα̇(ζ̃
†)α̇)∗ = −|ζ̃|−2(ζ†)ασ̃

µ α̇αζ̃α̇ = |ζ̃|−2|ζ|2Ȳ µ . (A.7)

B Special functions and regularization of determinants

In this appendix, we collect useful definitions and properties of some special functions used

in the main text. Our main reference is [144].

Definitions. We start by defining the (infinite) q-factorial

(x; q)∞ ≡
∏

k≥0

(1− qkx) , |q| < 1 . (B.1)

Using the representation

(x; q)∞ = e−Li2(x;q) , Li2(x; q) ≡
∑

k≥1

xk

k(1− qk)
, (B.2)

it can be extended to the domain |q| > 1 by means of

(qx; q)∞ → 1

(x; q−1)∞
. (B.3)

The short Jacobi Theta function is defined by

Θ(x; q) ≡ (x; q)∞(qx−1; q)∞ . (B.4)

In order to avoid cluttering, in the main text we will often use the alternative notation

Θ(x; q) ≡ Θ(u; τ) for q ≡ e2πiτ , x ≡ e2πiu . (B.5)

A useful property is

Θ(qmx; q)

Θ(x; q)
= (−xq(m−1)/2)−m,

Θ(q−mx; q)

Θ(x; q)
= (−x−1q(m+1)/2)−m . (B.6)

The double (infinite) q-factorial is defined by

(x; p, q)∞ ≡
∏

k≥0

(1− pjqkx) , |p|, |q| < 1 . (B.7)

Using the representation

(x; p, q)∞ = e−Li3(x;p,q) , Li3(x; p, q) ≡
∑

k≥1

xk

k(1− pk)(1− qk)
, (B.8)
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it can be extended to other domains by means of

(qx; p, q)∞ → 1

(x; p, q−1)∞
. (B.9)

The elliptic Gamma function is defined by

Γ(x; p, q) ≡ (pqx−1; p, q)∞
(x; p, q)∞

. (B.10)

It has has zeros and poles at

zeros : x = pm+1qn+1 , poles : x = p−mq−n , m, n ∈ Z≥0 . (B.11)

In order to avoid cluttering, in the main text we will often use the alternative notation

Γ(x; p, q) ≡ Γ(u; τ, σ) for q ≡ e2πiτ , p ≡ e2πiσ , x ≡ e2πiu . (B.12)

The Θ-factorial is defined by

Θ(x; p; q)n ≡ Γ(qnx; p, q)

Γ(x; p, q)
=

{∏n−1
k=0 Θ(xqk; p) if n ≥ 0

∏|n|−1
k=0 Θ(q−1xq−k; p)−1 if n < 0

, (B.13)

Θ(x; p, q)−n ≡ Θ(q−nx; p, q)−1
n . (B.14)

Useful properties of the elliptic Gamma function are (m,n ∈ Z≥0):

• Reflection

Γ(x; p, q)Γ(pqx−1; p, q) = 1 . (B.15)

• Shift

Γ(pmqnx; p, q)

Γ(x; p, q)
= (−xp(m−1)/2q(n−1)/2)−mnΘ(x; p; q)nΘ(x; q; p)m ,

Γ(pmq−nx; p, q)

Γ(x; p, q)
= (−xp(m−1)/2q−(n+1)/2)mn Θ(x; q; p)m

Θ(pqx−1; p; q)n
. (B.16)

• Residues

Resx=ypmqn
Γ(yx−1; p, q)

x
= Resx=1Γ(x; p, q)

(−pq q(n−1)/2p(m−1)/2)mn

Θ(pq; p; q)nΘ(pq; q; p)m
. (B.17)

Regularization of 1-loop determinants. In the computation of functional 1-loop de-

terminants, we have to deal with divergent expressions involving infinite products. In fact,

we have to regularize two towers of KK torus modes and one tower of disk modes. We can

do that by a two-step Hurwitz ζ-function regularization. In particular, we use

∏

n,k≥0

1

nτ + k +X
≃ Γ2(X|1, τ) , (B.18)
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where Γ2(X|1, τ) is the double Gamma function, and [145]

Γ2(X|1, τ)Γ2(1−X|1,−τ) = e−
iπ
2
B22(X|1,τ)

(e2πiX ; e2πiτ )∞
, (B.19)

where B22 is the quadratic Bernoulli polynomial

B22(X|1, τ) ≡ X2

τ
− 1 + τ

τ

(
X − 1 + τ2 + 3τ

6(1 + τ)

)
. (B.20)

This prescription regularizes the torus modes, giving the standard result

∏

n,k∈Z

1

nτ − k +X
≃ e−iπB22(X|1,τ)

Θ(e2πiX ; e2πiτ )
. (B.21)

Next, we consider the disk modes, yielding the result

∏

j≥0

∏

n,k∈Z

1

nτ − k + jσ +X
≃ e

iπ
3
P3(X)Γ(e2πiX ; e2πiτ , e2πiσ) , (B.22)

where P3 is the cubic Bernoulli polynomial B33 up to a constant

P3(X) ≡ B33(X|1, τ, σ)− 1− τ2 + τ4

24σ(τ + τ2)
, (B.23)

B33(X|1, τ, σ) ≡ X3

τσ
− 3(1 + τ + σ)X2

2τσ
+

+
1 + τ2σ2 + 3(τ + σ + τσ)

2τσ
X − (1 + τ + σ)(τ + σ + τσ)

4τσ
. (B.24)

In the last step we used that

ζ(s,X) ≡
∑

k≥0

(k +X)−s (B.25)

represents an order |s+ 1| polynomial for s < 0.

C Some computation with twisted fields

In this appendix, we spell out some detail about manipulations used to compute super-

symmetry variations and tQ -exact actions.

Vector multiplet. Let us compute

Qλ = Fµν

(
ζ
i

2
Jµν − ζ†

|ζ|2P
µν

)
+ iDζ ,

(Qλ)∨ =
1

2
F∨
µν

(
(KνK̄µ + Y ν Ȳ µ)ζ† + 2|ζ|2K̄µȲ νζ

)
− iD∨ζ† . (C.1)
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Similarly

Q λ̃ = Fµν

(
ζ̃
i

2
J̃µν − ζ̃†

|ζ̃|2
P̃µν

)
− iDζ̃ ,

(Q λ̃)∨ =
1

2
F∨
µν

(
(KνK̄µ + Y µȲ ν)ζ̃† − 2|ζ̃|2K̄µY ν ζ̃

)
+ iD∨ζ̃† . (C.2)

Hence the localizing functional used in the main text reads

V
loc
vec ≡ (Qλ)∨λ

4|ζ|2 +
(Q λ̃)∨λ̃

4|ζ̃|2
=

i

16

(
−ΨY µȲ ν + ΞαK̄

αK̄µKν − 4ΞνK̄µ
)
F∨
µν +

1

8
ΨD∨ .

(C.3)

Given

D ≡ ∆

4
+

i

2
Y µȲ νFµν , D∨ ≡ ∆∨

4
+

i

2
Y µȲ νF∨

µν , (C.4)

one can also rewrite the above functional in terms of ∆∨.

Chiral multiplet. In the main text, we have considered the action constructed by acting

with Q on the following functionals

Vchi ≡
1

2|ζ|2
(
(δζψ)

∨ψ + (δζψ̃)
∨ψ̃
)
, Ṽchi ≡

1

2|ζ̃|2
(
(δζ̃ψ̃)

∨ψ̃ + (δζ̃ψ)
∨ψ
)
. (C.5)

Let us rewrite them in terms of the twisted fields. We use

(δζψ)
∨ψ =

√
2(Fζ)∨α

(
ζB − ζ†

|ζ|2C
)

α

,

(δζ̃ψ)
∨ψ = i

√
2

(
ζLȲ φ+

ζ†

|ζ|2LKφ

)∨α(
ζB − ζ†

|ζ|2C
)

α

,

(δζψ̃)
∨ψ̃ = i

√
2

(
−ζ̃LY φ̃+

ζ̃†

|ζ̃|2
LK φ̃

)∨

α̇

(
ζ̃B̃ − ζ̃†

|ζ̃|2
C̃

)α̇

,

(δζ̃ψ̃)
∨ψ̃ =

√
2(F̃ ζ̃)∨α̇

(
ζ̃B̃ − ζ̃†

|ζ̃|2
C̃

)α̇

. (C.6)

In order to obtain a positive semi-definite bosonic part on the nose after varying with δζ
or δζ̃ , we should identify ∨ with † on the spinor indices and complex conjugation on C

numbers and vectors/forms. Since ζ†† = −ζ, ζ̃†† = −ζ̃, we obtain

1

|ζ|2 (δζψ)
∨ψ =

√
2F∨B ,

1

|ζ̃|2
(δζ̃ψ)

∨ψ = i
√
2

( |ζ|2
|ζ̃|2

(LȲ φ)
∨B − 1

|ζ|2|ζ̃|2
(LKφ)

∨C

)
,

1

|ζ|2 (δζψ̃)
∨ψ̃ = −i

√
2

(
|ζ̃|2
|ζ|2 (LY φ̃)

∨B̃ +
1

|ζ|2|ζ̃|2
(LK φ̃)

∨C̃

)
,

1

|ζ̃|2
(δζ̃ψ̃)

∨ψ̃ =
√
2F̃∨B̃ . (C.7)
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Now notice that

LKφ = LKφ− iqRK
µAµφ− iKµAµ.φ ,

1

|ζ|2|ζ̃|2
LK† φ̃ = LK̄ φ̃− iq̃RK̄

µAµφ̃− iK̄µAµ.φ̃ . (C.8)

This means that for a real background we can simply identify

1

|ζ|2|ζ̃|2
(LKφ)

∨ = LK̄ φ̃ , (C.9)

where we set φ∨ = φ̃ and considered that A.φ = −A.φ̃, q̃R = −qR. Similarly

1

|ζ|2|ζ̃|2
(LK φ̃)

∨ = LK̄φ ,
|ζ|2
|ζ̃|2

(LȲ φ)
∨ = LY φ̃ ,

|ζ̃|2
|ζ|2 (LY φ̃)

∨ = LȲ φ̃ , (C.10)

where we set φ̃∨ = φ. Then the sum of the four pieces becomes

2Vchi + 2Ṽchi ≡
√
2F∨B +

√
2i(LY φ̃)B −

√
2i(LK̄ φ̃)C − B̃

√
2iLȲ φ− C̃

√
2iLK̄φ+

√
2B̃F̃∨ .

(C.11)

Eventually, we may also want to set (F, F̃ )∨ = (−F̃ ,−F ) and identify ∨ with †. Notice that

if we act on Vchi, Ṽchi with Q , there are pieces which are manifestly positive semi-definite,

but there are also mixed terms given by

1

|ζ|2 (δζψ)
∨δζ̃ψ =− 2iF∨LȲ φ ,

1

|ζ̃|2
(δζ̃ψ)

∨δζψ = 2i(LY φ̃)F ,

1

|ζ|2 (δζψ̃)
∨δζ̃ψ̃ =− 2iF̃LȲ φ ,

1

|ζ̃|2
(δζ̃ψ̃)

∨δζψ̃ = 2iF̃∨LY φ̃ . (C.12)

However, they do cancel out in the summation if we indeed consider F∨ = −F̃ , F̃∨ = −F .
In terms of the twisted variables, there is another natural action we may consider,

namely

2Vtwisted ≡ (QB)∨B + (Q B̃)∨B̃ + (QC)∨C + (Q C̃)∨C̃ , (C.13)

with the usual involution ∨ acting as †. The two definitions only agree in special cases. In

terms of the Q -variations of the twisted fields we can write

2Vchi + 2Ṽchi =
√
2(F∨ + iLY φ̃)B +

√
2B̃(F̃∨ − iLȲ φ)−

√
2i(LK̄ φ̃)C −

√
2iC̃LK̄φ

=
√
2

(
F − i

|ζ|2
|ζ̃|2

LȲ φ

)∨

B +
√
2

(
F̃ + i

|ζ̃|2
|ζ|2LY φ̃

)∨

B̃

+
1

|ζ|2|ζ̃|2
(QC)∨C +

1

|ζ|2|ζ̃|2
(Q C̃)∨C̃ . (C.14)

Therefore, we have the general relation

2Vchi + 2Ṽchi = (QB)∨B + (Q B̃)∨B̃ +
(QC)∨C

|ζ|2|ζ̃|2
+

(Q C̃)∨C̃

|ζ|2|ζ̃|2

+

(
1− |ζ|2

|ζ̃|2

)(√
2iLȲ φ

)∨
B −

(
1− |ζ̃|2

|ζ|2

)(√
2iLY φ̃

)∨
B̃ , (C.15)
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which coincides with Vtwisted for |ζ| = |ζ̃| = 1. We may also observe that the whole point

in setting F∨ = F † = −F̃ is to obtain a positive semi-definite Lagrangian. In twisted

variables, we see that there is another “exotic” involution which can do the job, namely

F∨ = F †|ζ|2/|ζ̃|2, F̃∨ = F̃ †|ζ̃|2/|ζ|2.

D More details on the chiral multiplet

In this section, we give more details on the computation of the 1-loop determinant for the

chiral multiplet. We also use another basis for the mode expansion which confirms the

results obtained in the main text through (anti-)holomorphic modes. The fermionic part

of the localizing Lagrangian (4.19) reads

QV
loc
chi

∣∣∣
F
= iB̃LKB + iC̃LK̄C + iB̃LȲ C − iC̃LYB + L

∂
chi

∣∣∣
F
, (D.1)

where we omitted the term Vλ+ Ṽλ for simplicity. Upon integration by parts, this equation

defines the boundary Lagrangian

L
∂
chi

∣∣∣
F
≡ − i

2
LK(B̃B)− i

2
LK̄(C̃C) + iLY (C̃B) . (D.2)

In order to compute the 1-loop determinant of Gaussian fluctuations around trivial field

configurations, let us introduce the new auxiliary fields (with trivial Jacobian determinant)

XF ≡ F − iLȲ φ , X̃F ≡ F̃ + iLY φ̃ , (D.3)

which allows us to recast the supersymmetry transformations into the cohomological form

Qϕe,o = ϕ′
o,e , Qϕ′

o,e = 2iLKϕe,o , (D.4)

with the identifications ϕe = (φ, φ̃), ϕo = (B, B̃), ϕ′
o =

√
2(C, C̃), ϕ′

e =
√
2(X, X̃). On

the real contour we have φ̃ = φ†, F̃ = −F †, namely X̃F = −X†
F + i(1 + Ω2

|s|2
)LY φ̃. Then

we can write

− F̃F = (X†
F − i

Ω2

|s|2LY φ̃)(XF + iLȲ φ) = X†
F (XF + iLȲ φ)+ φ̃

iΩ2

|s|2LY (XF + iLȲ φ)+L
∂
XF

,

(D.5)

where we defined the boundary term

L
∂
XF

≡ LY

(
− i

Ω2

|s|2 φ̃(XF + iLȲ φ)
)
. (D.6)

Now we can recast the localizing Lagrangian in the form

QV
loc
chi =

(
φ

XF

)†

KB

(
φ

XF

)
+

(
C

B

)†

KF

(
C

B

)
+ L

∂
bos + L

∂
fer , (D.7)
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where we defined the kinetic operators

KB ≡ ML

(
∆(r) 0(r−2)

0(r) 1(r−2)

)
MR , KF ≡

(
iL(r)

K̄
−iL(r−2)

Y

iL(r)

Ȳ
iL(r−2)

K

)
,

ML ≡
(
1(r) i Ω

2

|s|2
L(r−2)
Y

0(r) 1(r−2)

)
, MR ≡

(
1(r) 0(r−2)

iL(r)

Ȳ
1(r−2)

)
, (D.8)

with ∆(r) ≡ −L(r)
K L(r)

K̄
−L(r)

Y L(r)

Ȳ
and we added a superscript to remind on which space the

operators act on. The boundary terms are

L
∂
B ≡ 1

2
LK(φ̃LK̄φ)+

1

2
LK̄(φ̃LKφ)+LY (φ̃LȲ φ)+LY

(
φ̃

(
−i

Ω2

|s|2XF+

(
1+

Ω2

|s|2
)
LȲ φ

))
,

L
∂
F ≡− i

2
LK(B̃B)− i

2
LK̄(C̃C)+iLY (C̃B) . (D.9)

Now we can notice that there exists the operator

T =

(
iL(r)

K 0(r−2)

−iL(r)

Ȳ
1(r−2)

)
(D.10)

such that

detKF

detKB
=

det(KF ◦ T)
det(KB ◦ T) =

det(KF ◦ T)
det(ML) det(∆(r)) det(MR) det(T)

=
det iL(r−2)

K

det iL(r)
K

, (D.11)

where we used that KF ◦ T is upper triangular thanks to [LK ,LȲ ] = 0, with determi-

nant det(∆(r)) det(iL(r−2)
K ). The determinants on the r.h.s. are to be computed on the

space of scalar fields of R-charge r or r − 2, and the modes to be kept are determined by

the vanishing of the boundary actions. The only obvious ways to impose their vanishing

on the boundary (consistently with supersymmetry) is either through Dirichlet boundary

conditions on φ, and by supersymmetry Dirichlet conditions also on C, or LȲ φ|∂ = 0 and

Dirichlet conditions on B, and by supersymmetry Dirichlet conditions also on XF .

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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