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ABSTRACT

Context. PSR B1259–63/LS 2883 is a gamma-ray binary system consisting of a pulsar in an eccentric orbit around a bright Oe
stellar-type companion star that features a dense circumstellar disc. The bright broad-band emission observed at phases close to
periastron offers a unique opportunity to study particle acceleration and radiation processes in binary systems. Observations at
gamma-ray energies constrain these processes through variability and spectral characterisation studies.
Aims. The high- and very-high-energy (HE, VHE) gamma-ray emission from PSR B1259–63/LS 2883 around the times of its
periastron passage are characterised, in particular, at the time of the HE gamma-ray flares reported to have occurred in 2011,
2014, and 2017. Short-term and average emission characteristics of PSR B1259–63/LS 2883 are determined. Super-orbital variability
is searched for in order to investigate possible cycle-to-cycle VHE flux changes due to different properties of the companion star’s
circumstellar disc and/or the conditions under which the HE gamma-ray flares develop.
Methods. Spectra and light curves were derived from observations conducted with the H.E.S.S.-II array in 2014 and 2017. Phase-
folded light curves are compared with the results obtained in 2004, 2007, and 2011. Fermi-LAT observations from 2010/11, 2014,
and 2017 are analysed.
Results. A local double-peak profile with asymmetric peaks in the VHE light curve is measured, with a flux minimum at the time
of periastron tp and two peaks coinciding with the times at which the neutron star crosses the companion’s circumstellar disc
(∼ tp ± 16 d). A high VHE gamma-ray flux is also observed at the times of the HE gamma-ray flares (∼ tp + 30d) and at phases
before the first disc crossing (∼ tp − 35 d). The spectral energy range now extends to below 200GeV and up to ∼ 45TeV.
Conclusions. PSR B1259–63/LS 2883 displays periodic flux variability at VHE gamma-rays without clear signatures of super-orbital
modulation in the time span covered by the monitoring of the source with the H.E.S.S. telescopes. This flux variability is most
probably caused by the changing environmental conditions, particularly at times close to periastron passage at which the neutron
star is thought to cross the circumstellar disc of the companion star twice. In contrast, the photon index remains unchanged within
uncertainties for about 200 d around periastron. At HE gamma-rays, PSR B1259–63/LS 2883 has now been detected also before
and after periastron, close to the disc crossing times. Repetitive flares with distinct variability patterns are detected in this energy
range. Such outbursts are not observed at VHEs, although a relatively high emission level is measured. The spectra obtained in
both energy regimes displays a similar slope, although a common physical origin either in terms of a related particle population,
emission mechanism, or emitter location is ruled out.

Key words. Astroparticle physics — Radiation mechanisms: non-thermal — Shock waves — Gamma rays: general — binaries:
general — pulsars: general
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H.E.S.S. Collaboration: PSR B1259–63 in 2014 and 2017

1. Introduction

Gamma-ray binaries consist of a massive star and a com-
pact object, either a stellar-mass black hole or a neutron
star, in orbit around each other. These systems display a
non-thermal energy flux maximum in the gamma-ray band.
At very high energies (VHE; E > 100GeV) only a handful
of such systems have been detected: LS 5039 (Aharonian
et al. 2005a), PSR B1259–63/LS 2883 (Aharonian et al.
2005b), LS I +61 303 (Albert et al. 2006), HESS J0632+057
(Aharonian et al. 2007), HESS J1018-589 (Abramowski
et al. 2015), and the recently discovered objects LMC P3
(Abdalla et al. 2015) and TeV J2032+4130 (MAGIC Col-
laboration & VERITAS Collaboration 2017). Only in the
cases of PSR B1259–63/LS 2883 and TeV J2032+4130 are
the compact companions well-identified, in both cases as
pulsars, making them unique objects for the study of the
interaction between pulsar and stellar winds as well as par-
ticle acceleration as well as emission and absorption mech-
anisms in close binary systems.

Initially discovered in a high-frequency radio survey
aiming to detect young and distant short-period pulsars,
PSR B1259–63/LS 2883 has since been the object of exten-
sive studies at all frequencies. The source is composed of
the rapidly rotating pulsar PSR B1259–63/LS 2883 with
a spin period of 48ms and a spin-down luminosity of
8× 1035 erg s−1 and a bright Oe companion star, LS 2883,
with a bolometric luminosity of L∗ = 2.3× 1038 erg s−1

(Negueruela et al. 2011).
The pulsar orbits the companion with a period Porb =

3.4 yr (1237 d) in a very eccentric orbit (e = 0.87) with an
orbital separation of about 13.4 astronomical units (AUs) at
apastron and less than 1AU at periastron (Johnston et al.
1992a; Wex et al. 1998; Wang et al. 2004). The mass func-
tion of the system indicates a mass of the companion star
of M∗ ≈ 30M⊙ and an orbital inclination angle iorb ≈ 25◦

for the minimal neutron star mass of 1.4M⊙.
The massive star LS 2883 features an equatorial disc

which extends to at least 10 stellar radii (Johnston et al.
1992a; Negueruela et al. 2011; Chernyakova et al. 2014).
The disc is inclined with respect to the pulsar’s orbital plane
(Johnston et al. 1992a; Melatos et al. 1995; Negueruela et al.
2011) in such a way that the pulsar crosses the disc twice
each orbit, just before (∼ 16 d) and after (∼ 16 d, Johnston
et al. 2005) the time of periastron (tp).

PSR B1259–63/LS 2883 displays broad-band emission
which extends from radio wavelengths up to VHE gamma
rays. In the radio domain, a pulsed component is detectable
until the system approaches periastron (see e.g. Johnston
et al. 1992b). Thereafter the intensity of the radio pulsed
emission decreases until its complete disappearance be-
tween tp− 16 d and tp+16d. The definition of the nominal
times of the disc crossings is based on the disappearance of
this pulse. The times of the disc crossings are almost con-
stant across orbits, although some differences of a few days
have been reported (see e.g. Connors et al. 2002; Johnston
et al. 2005; Abdo et al. 2011). A transient unpulsed com-
ponent appears and sharply rises to a level more than ten
times higher than the flux density of the pulsed emission far
from periastron (see e.g. Johnston et al. 2005). Flux max-
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ima are observed around the first and second disc crossings
by the neutron star. A similar behaviour is observed in the
X-ray domain (see e.g. Chernyakova et al. 2014). The tran-
sient, unpulsed radio emission is presumably synchrotron
radiation produced by electrons accelerated at the shock
interface between the relativistic pulsar wind and stellar
outflows (see e.g. (Ball et al. 1999)).

At optical wavelengths, variability in the Hα and HeI
lines has been reported to occur around the periastron pas-
sage of PSR B1259–63/LS 2883, with the line strengths dis-
playing a maximum about 13 d after periastron (van Soelen
et al. 2016). These observations are consistent with a sce-
nario in which the circumstellar disc gets disrupted around
periastron due to the interaction with the pulsar wind. Fur-
thermore, the decrease in the equivalent width of the Hα
line seems to roughly coincide with the onset of the HE
gamma-ray flare observed with the Fermi-LAT, implying
a physical connection between the properties of the disc and
the mechanisms behind the HE flares (Chernyakova et al.
2015).

In high-energy (HE; 0.1GeV < E < 100GeV) gamma
rays, the source was detected by the Fermi -LAT for the
first time around the periastron passage of 2010/2011. In
this energy band, a strong, unexpected enhancement of the
emission starting approximately 30 d after periastron was
detected. This flare lasted more than one month. At the
peak, the emitted power in gamma rays almost matched
the total spin-down luminosity of the pulsar (Abdo et al.
2011). This flaring event was detected again around the pe-
riastron passages in 2014 (see e.g. Caliandro et al. 2015)
and in 2017 (e.g. Tam et al. 2018), strengthening the hy-
pothesis of a periodic phenomenon. The nature of these flar-
ing episodes is still unclear, with theoretical interpretations
considering either the unshocked pulsar wind, Doppler-
boosted emission from shocked material, and/or enhanced
photon field energy densities provided by the circumstel-
lar disc (Chernyakova et al. 2015; Khangulyan et al. 2011,
2012). Moreover, differences in the HE flare as observed in
2011, 2014 and in particular in 2017, seem to indicate that
other factors need to be accounted for to characterise it. In
particular, the flaring event of 2017 has shown variability
characteristics such as minute scale variability that were
not identified in previous cycles (Johnson et al. 2018).

At very high energies, the H.E.S.S. telescopes detected
the source during the periastron passage in 2004 (Aharo-
nian et al. 2005b) and also recorded the subsequent passages
in 2007 (Aharonian et al. 2009), 2010/2011 (Abramowski
et al. 2013), 2014 (see Romoli et al. (2015) for preliminary
results of these observations) and 2017. The source was de-
tected firmly in every case except 2017, where the limited
data set prevented a detection above the 5σ level. Obser-
vations at other orbital phases did not reveal a detectable
signal from the source (Aharonian et al. 2009; Abramowski
et al. 2013; Romoli et al. 2015; Aharonian et al. 2005b).

Due to the visibility constraints of ground-based tele-
scopes, during each observation campaign it was only pos-
sible to probe parts of the orbit around each periastron pas-
sage. In 2004, PSR B1259–63/LS 2883 was observed mostly
after the periastron, in 2007 mostly before it and in 2011
only a short observation window of five days around tp+30d
was available. A double-peak profile of the VHE light curve
in the orbital phase range encompassing the first and sec-
ond disc crossings, with a local flux minimum close to ∼ tp,
results when combining data from all those years (see e.g.
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the discussion in Kerschhaggl 2011). The similarity of this
light curve to the profiles derived from radio and X-ray ob-
servations suggests a common particle population and/or
emitting region.

Sufficient coverage of the orbital phase around the time
of periastron passage at VHEs was lacking up to now, pre-
venting a definite assessment of the double-peak profile or
of any possible super-orbital variability of the source at
these energies. Furthermore, neither the periastron passage
nor the periods in which HE flares occur have been cov-
ered deeply so far. This situation changed after a deep
H.E.S.S. observation campaign was conducted in 2014 un-
der favourable observation conditions. Observations of PSR
B1259–63/LS 2883 in 2017 are reported here for the first
time. For this campaign, the observation conditions were
not optimal, and the campaign was restricted to a short
time period about 40 d before periastron.

In Sect. 2 of this paper, the H.E.S.S. observations con-
ducted in 2014 and 2017 are described. Furthermore, de-
scriptions of the telescopes and different H.E.S.S. observa-
tion modes are given. In Sect. 3, details of the VHE analysis
procedures used in this paper are provided. The results of
the analyses are reported in Sect. 4, including a sky map
obtained with the H.E.S.S.-II array (see Sect. 3), as well as
the spectral and timing characterisations of the source for
all available data. A dedicated analysis of the Fermi-LAT
data during the source periastron passage in 2011, 2014 and
2017 has also been performed. This LAT analysis and the
results obtained for each event are summarised in Sect. 5.
In Sect. 6, the outcomes of the analyses are discussed in
a multi-wavelength context. The findings from the analy-
ses are compared with theoretical models addressing the
phase-folded light-curve profiles and the spectral and tim-
ing properties of PSR B1259–63/LS 2883 in the gamma-ray
domain. Conclusions and perspectives are briefly outlined
in Sect. 7.

2. Observations of PSR B1259–63/LS 2883 with
H.E.S.S.

2.1. The H.E.S.S. array and observation modes

H.E.S.S. is an array of five telescopes designed to detect
the Cherenkov light produced during the development of air
showers that are initiated by highly-energetic particles as
they interact with particles of air in the upper atmosphere.
H.E.S.S. is located in the Khomas Highland in Namibia
at an altitude of 1800m above sea level. In its first phase
(H.E.S.S. I), the array consisted of four identical imaging
atmospheric Cherenkov telescopes (CT1–4) with a mirror
diameter of 12m, positioned on the corners of a square with
a side length of 120m. The H.E.S.S. I array provides a field
of view (FoV) with a diameter of about 5◦ and an energy
threshold of about 100GeV. A detailed description of the
H.E.S.S. I array can be found in Aharonian et al. (2006).

In 2012 a new telescope (CT5), featuring a 28m
parabolic dish, was added to the centre of the array, initi-
ating the phase H.E.S.S. II. The Cherenkov camera of CT5
covers a FoV of about 3.2◦. Due to the large reflector area,
the energy threshold of CT5 can be as low as ∼ 20GeV,
for example in the case of pulsed signals (H. E. S. S. Col-
laboration et al. 2018).

In 2016, the cameras of the CT1–4 telescopes underwent
an extensive upgrade aiming to reduce their readout dead

time and to improve the overall performance of the array
(Giavitto et al. 2017). Data taken with these new cameras
in 2017 are, however, not included in the analyses presented
here, such that data obtained with CT5 are considered ex-
clusively in this case.

The heterogeneous composition of the H.E.S.S.-II array
allows for various observation and analysis modes. In this
paper, data obtained with CT5 and a minimum of three
of the CT1–4 telescopes are referred to as CT1–5 stereo-
mode data. Data analysed with a minimum of three of the
smaller telescopes but not CT5 are referred to as CT1–4
stereo mode, whereas CT5 mono indicates CT5 standalone
analyses.

The PSR B1259–63/LS 2883 VHE data reported in this
paper were all taken in a mode in which the H.E.S.S. tele-
scopes are pointed towards two symmetric positions offset
from the source by 0.5◦ along right ascension. In case of
the 2017 data set, a third pointing position south of PSR
B1259–63/LS 2883 was used for 30% of the observations.

2.2. H.E.S.S. observations in 2014 and 2017

The H.E.S.S. observation campaign in 2014 benefited from
favourable observing conditions of PSR B1259–63/LS 2883
at orbital phases close to its periastron passage. The source
was observable both before, during and after the time of
periastron, in particular also at the orbital phase during
which a HE gamma-ray flare was detected in 2011 and
2014. A rich data set was obtained, including 141 (151)
observation runs (typically 28min-blocks of observations),
corresponding to a total acceptance corrected observation
time of 62.2 h (63.4 h) in CT5 mono (CT1–5 stereo) mode.
The runs were taken at mean zenith angles in the range
41◦ to 47◦, with an average value of 42◦. Data were taken
during six periods, each corresponding to one moon cycle,
with interruptions in the monitoring of the source every
28 d lasting about 4 d.

In 2017, PSR B1259–63/LS 2883 was observable for a
much shorter time period. Observations were conducted
only in the time range tp − 42 d ≤ t ≤ tp − 37 d. These
observations were mainly intended to cover a phase period
in which a relatively high flux level was observed during
the 2014 campaign. A data set of 6 h was collected, taken
at zenith angles between 52◦ to 62◦ with an average value
of 57◦.

In Table 1, the total number of runs, observation times
and average zenith angles of the 2014 and 2017 data sets
are summarised. Values are provided for both monoscopic
analyses and for analyses using CT1–4.

2.3. The 2004, 2007 and 2011 H.E.S.S. data sets

Observations of PSR B1259–63/LS 2883 during its perias-
tron passage in 2004, 2007 and 2011 have been reported
in Aharonian et al. (2005b), Aharonian et al. (2009) and
Abramowski et al. (2013), respectively. These data are re-
analysed using up-to-date analysis techniques, the same
used for the analysis of the 2014 and 2017 data sets, in CT1–
4 stereo mode. This approach allows for a consistent study
of cycle-to-cycle variability and for performing stacked anal-
yses (see Sect. 4.3) of all available H.E.S.S. observations of
the source in the aforementioned mode. A total observation
time of 57.1 h, 93.9 h and 4.8 h for the 2004, 2007 and 2011
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2004 2007 2011 2014 2017

Start Date Feb 27 Apr 09 Jan 10 Mar 07 Aug 10
End Date Jun 15 Aug 08 Jan 16 Jul 21 Aug 20

CT5 Mono

NRuns - - - 141 12
tL / [h] - - - 62.2 6
Θ̄ / [◦] - - - 41.8 57

CT1–5 Stereo

NRuns - - - 151 -
tL / [h] - - - 63.4 -
Θ̄ / [◦] - - - 41.8 -

CT1–4 Stereo

NRuns 138 213 11 163 -
tL / [h] 57.1 93.9 4.8 68.1 -
Θ̄ / [◦] 42.5 45.1 47.6 41.9 -

Table 1: Summary of H.E.S.S. observations from 2004 to 2017 used in this paper. NRuns is the number of runs pass-
ing quality selection cuts. The acceptance corrected observation time is referred to as tL, and Θ̄ indicates the mean
observational zenith angle of observations.

data sets, respectively, is used in this paper, with corre-
sponding zenith angle ranges of 40◦ to 51◦, 40◦ to 60◦ and
44◦ to 52◦. A summary of those values is given in Table
1. These data sets can differ slightly from the ones used
in previous publications, as improved quality selection cri-
teria are applied. In particular, more restrictive values of
the atmospheric transparency coefficient and a minimum
of three participating telescopes per run are required for
the analysis reported here.

The phase bin coverage for these years is rather inhomo-
geneous. In 2004, observations took place mainly at t & tp,
while in 2007, most of the data corresponds to t . tp. A
minor overlap between the two exists at tp − 10 d ≤ t ≤
tp + 15d. The smaller 2011 data set was recorded around
tp+25d, with no phase-folded overlap with either the 2004
or the 2007 observations.

3. H.E.S.S. data analysis

Regardless of the analysis mode, data were analysed with
two different analysis pipelines, each using distinct calibra-
tion methods (Aharonian et al. 2006) and independent, ad-
vanced gamma-ray reconstruction techniques. The first re-
construction pipeline, used to obtain the results reported in
this paper, is based on the Image Pixel-wise fit for Atmo-
spheric Cherenkov Telescopes method (ImPACT, Parsons
& Hinton 2014). This pipeline is based on a likelihood fit-
ting of camera pixel amplitudes to image templates gener-
ated by Monte Carlo simulations. The standard cut con-
figuration was used. The second pipeline, used as a cross-
check analysis in this paper, is based on the Model Analysis
method (de Naurois & Rolland 2009), in which the camera
images are compared with a semi-analytical model using
a log-likelihood minimisation technique. Both pipelines can
be used to analyse data in CT5 mono mode, not taking into
account information from CT1–4 even if they participated
in the data taking, in CT1–4 stereo mode, even if CT5 par-
ticipated in the data taking, or in CT1–5 stereo mode. The
choice of an analysis mode is usually based on the telescope
participation, but also on the goal of the analysis.

Observation runs were selected for both the main and in-
ternal cross-check analyses, based on independent run qual-

ity selection cuts (Aharonian et al. 2006). Only runs passing
cuts in both pipelines were used in this analysis.

Background emission produced by hadrons, electrons
and diffuse gamma-ray emission, for example from the
nearby Galactic plane, is calculated from source-free regions
close to the source under study. For morphological studies
and the production of significance maps, the background is
estimated for each pixel from a ring around the pixel po-
sition (Ring Background method, Berge et al. 2007). An
adaptive algorithm is applied to optimise the size of the
ring to avoid artificial excesses.

The background for spectral analyses is derived from
OFF regions with a similar offset with respect to the cam-
era centre as the source ON region (Reflected Background,
Berge et al. 2007). This ensures that a similar acceptance
for background events in the source and background control
regions is obtained. Similar to the morphological analysis,
regions with known sources are excluded a priori in the
background estimation for spectral analyses.

Systematic uncertainties for stereo analyses reported in
this paper are based on the procedure described in Aha-
ronian et al. (2006). The systematic uncertainty on the
flux is estimated to be at a level of ∆φstereo ≈ 20%,
whereas the uncertainty on the spectral slope is taken to
be ∆Γstereo ≈ 0.1. For the mono analysis, the studies of
PKS 2155–304 and PG 1553+113 (Abdalla et al. 2017) are
used as reference. Systematic uncertainties on the flux are
similar to the stereo case (∆φmono ≈ 20%), whereas sys-
tematic uncertainties on the photon index are estimated to
range from about 0.17 (for PKS 2155–304) up to 0.65 (for
PG 1553+113). While the photon index of PSR B1259–
63/LS 2883 is more similar to the one of PKS 2155–304,
the observation conditions are more similar to those of PG
1553+113 (higher zenith angle). To be conservative, a value
of ∆Γmono = 0.3 is adopted for the results presented here.

4. H.E.S.S. analysis results

4.1. Sky map and source statistics

The nominal position of PSR B1259–63/LS 2883 is RA
= 13h02m47s.65, Dec = −63◦50′8.6′′). A cut on θ2 =
0.016 deg2, optimised for point-like source analyses, is used
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Fig. 1: Significance map of the region around PSR B1259–63/LS 2883 (white cross) obtained from the analysis of the
2014 data set in CT1–5 stereo mode. The pulsar wind nebula HESS J1303–631 (best-fit ellipse centre (Aharonian et al.
2005) indicated by a grey dot) is also detected to the north of PSR B1259–63/LS 2883. The bins in the map are correlated
within a circle of radius 0.14◦. Significance contours are shown at the 5, 10, and 15σ levels. Some artefacts in the map
are visible, occasionally exceeding the 5σ level, and are discussed in the text (see Sect. 4.1). In the inset, the point-spread
function of the analysis is shown together with the respective contour lines.

to evaluate the statistics obtained on PSR B1259–63/LS
2883. A total of 15959 gamma-ray candidate events are
collected from the ON region around the source, whereas
75429 such events are recorded from the OFF background
regions. After correcting for the ON to OFF exposure ratio
(α = 0.16), a total of 3619 excess events is obtained, yield-
ing a detection of the source at a statistical significance of
36.5σ.

A significance map of the region around PSR B1259–
63/LS 2883 is shown in Fig. 1. This sky map is the first
one produced for the source with the H.E.S.S.-II array, and
corresponds to the analysis of the 2014 data set. The sig-
nificance map corresponds to a total acceptance corrected
observation time of 63.4 h, considering events at energies
above Eth = 348GeV. The image and corresponding con-
tours were smoothed with a top-hat function on a scale
similar to that of the PSF, which has a 68% containment
radius of 0.1◦. In addition to PSR B1259–63/LS 2883, the
extended pulsar wind nebula HESS J1303–631 (Aharonian
et al. 2005) is also apparent in the map, roughly one de-
gree to the north from PSR B1259–63/LS 2883. Residuals
in the map are apparent and mostly related to background
fluctuations. Close to the two gamma-ray sources, towards
the west in Fig. 1, an additional feature is visible at statis-
tical significances of up to 5σ (significances here and there-
after are computed following Li & Ma 1983). This feature is
caused by a block of sixteen adjacent pixels in the CT5 cam-
era that was faulty during a large part of the observations
conducted in 2014. Furthermore, a gradient in the gains of
the PMTs across the camera of CT5 was present during the
first part of the observation campaign, which contributes to
the features visible in the sky map. The influence of this fea-
ture on derived fluxes is estimated based on the variation of

the number of gamma-ray candidate events in each of the
OFF regions as a function of the declination of the centre
of the respective OFF region. It is found that the effect on
flux levels measured at the position of PSR B1259–63/LS
2883 is approximately 1.5%. This systematic effect is ac-
counted for in the analysis of the 2014 data, although it is
noted that it is much lower than the commonly assumed
level of systematic uncertainties of 20% (Aharonian et al.
2006) and thus negligible.

The data set recorded in 2017 is much smaller, as indi-
cated in Table 1. The analysis of this data set results in a
detection with a statistical significance at the level of 3.0σ.

4.2. Spectral analysis results

Spectra derived from the 2014 data set have been computed
for the mono and CT1–5 stereo configurations. Figure 2
(left panel) displays the spectral energy distributions for
both configurations. In mono mode, the spectral analysis
covers the energy range ∼ 0.18TeV–10TeV, whereas the
stereo spectrum covers a range of 0.32TeV–26TeV. Energy
ranges for spectral analyses are defined such that the energy
reconstruction bias, determined from Monte Carlo simula-
tions, is lower than 10% of the energy, and in addition the
effective area calculated for each data set individually is
required to exceed 10% of the maximum value. The en-
ergy binning for the 2014 mono and stereo spectra shown
in Fig. 2 has been chosen such that every flux point has
a statistical significance of at least 2σ. In case of the data
taken in 2017, no spectrum can be reconstructed due to the
low number of gamma rays recorded.

Power-law models describe well both the mono and
stereo spectra. Photon indices of Γmono = 2.70 ±
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Data Set Γ φ(1TeV) /
[

10−12 TeV−1 s−1 cm−2
]

E95%
C

/ [TeV]

2004 2.64± 0.06stat ± 0.10sys 0.97± 0.05stat ± 0.19sys 22.4
2007 2.84± 0.08stat ± 0.10sys 0.93± 0.05stat ± 0.19sys 18.0
2011 2.7± 0.1stat ± 0.1sys 2.4± 0.3stat ± 0.5sys 1.5
2014 2.84± 0.05stat ± 0.10sys 1.89± 0.07stat ± 0.38sys 39.0

2014: CT1–5 Stereo 2.88± 0.05stat ± 0.10sys 1.93± 0.07stat ± 0.38sys 10.1

Table 2: Spectral properties derived from the CT1–4 stereo (2004–2014) and CT1–5 stereo analyses (2014). The photon
index Γ, the differential flux φ at an energy of 1TeV and the derived lower limits on the cut-off energies E95%

C
are given.

Limits are placed at the 95% confidence level.

curves shown in Fig. 3 and are therefore not reported in
this paper.

For the 2017 data set, an energy threshold of the CT5
mono analysis of 348GeV is obtained. Although the signifi-
cance is less than the 5σ threshold for detection in this time
period, a light curve has been computed assuming that the
source emits VHE gamma rays, as observed in previous ob-
servation campaigns at the same orbital phase. A photon
index of Γ = 2.7 is assumed (see Sect. 4.2). The resulting
light curve for integral fluxes above 400 GeV is shown for
night-by-night integration time scales in the inset of Fig. 3,
where the results for the 2014 data set in CT5 mono con-
figuration for the same energy threshold are also included
for comparison.

At the 3σ level, no evidence for short-term (night-by-
night) variability is found when comparing adjacent bins
within statistical uncertainties in the 2014 and in the 2017
light curves. Light curves have also been produced using
weekly integration time scales for the H.E.S.S.-I configura-
tion including observations from 2004 to 2014 (see Fig. 4).
These light curves have been computed by assuming pho-
ton indices obtained from annual averages. Energy thresh-
olds, defined here according to the aforementioned criterion
on the energy reconstruction bias only, are below 400GeV
in all cases. Hence this energy was adopted as a common
threshold for the calculation of the light curves. For the
2017 data set, results from the CT5 mono analysis are in-
cluded in Fig. 4. Fluxes are compatible with the those ob-
served at similar phases in previous years.

4.4. Stacking analysis results

Assuming that the processes responsible for the VHE emis-
sion from PSR B1259–63/LS 2883 close to periastron re-
peat periodically, a phase-folded stacking analysis includ-
ing all H.E.S.S. data sets available for PSR B1259–63/LS
2883 has been performed. The analysis is restricted to the
CT1-4 stereo configuration for all observations, and a com-
mon energy threshold Eth = 400GeV is applied. In Fig. 4,
weekly binned phase-folded light curves from individual pe-
riastron passages (coloured flux points) are shown together
with the all-year stacked light curve (grey flux points). For
the stacked light curve, a fixed photon index of Γ = 2.7 has
been assumed.

Fitting the resulting light curve assuming a con-
stant flux yields an average value of (2.8 ± 0.4) ×
10−12 ph s−1 cm−2. The value χ2/Ndf = 533/25, describing
the fit probability given the number of degrees of freedom
Ndf, implies that the fluxes are incompatible with a con-
stant at a level greater than 5σ. Thus it is confirmed that

PSR B1259–63/LS 2883 is a variable source of VHE gamma
rays.

Week-to-week variability is observed in different regions
of the stacked light curve, in particular close to the time
of the disc crossings. The most significant flux variation is
found at a level greater than 3σ at the second disc crossing
between neighbouring bins centred at 11.5 d and at 17.8 d
after periastron. A flux increase by a factor of at least 2.9
is derived at the 95% confidence level.

A stacked light curve has also been produced with a ded-
icated time binning that was derived from a Bayesian Block
analysis (Scargle et al. 2013) on the phase-folded nightwise-
binned light curve for energies above 400GeV. The imple-
mentation in the astropy Python package (version 2.0.12)
was used, and a false alarm probability of 1% was chosen.
The aim is to identify flux states of the source that could be
linked with the physical processes taking place in the sys-
tem. The intervals found by the algorithm are illustrated
in Fig. 5 and reported in Table 3. The identified intervals
match the current knowledge of the orbital behaviour of
the system near the periastron and track the newly identi-
fied high state between −45 d and −30 d from periastron.
Distinct low flux states before the disc crossings, high flux
states after the disc crossings and a low state around peri-
astron are identified.

The photon index in each interval is derived from a ded-
icated spectral analysis per bin. Spectral energy ranges are
defined according to the procedure described above. Photon
indices for these spectra are shown in Fig. 5.

5. Fermi-LAT data analysis and results

Observations of PSR B1259–63/LS 2883 have also been
performed in HE gamma rays with the large area tele-
scope (LAT) onboard the Fermi satellite. As part of its
full-sky coverage pointing strategy, the LAT monitored
PSR B1259–63/LS 2883 during its last three periastron
passages in 2010/11, 2014 and 2017 (see e.g. Abdo et al.
2011; Caliandro et al. 2015; Tam et al. 2018). The source
was clearly detected by the LAT, displaying low to moder-
ate fluxes around the disc crossings and at the periastron
passage itself. In addition, bright HE gamma-ray flaring
episodes starting about 30–40 d after periastron and last-
ing for roughly 30 d have been detected after each of these
three periastron passages. The nature of these flares is still
unknown.

A re-analysis of the data of the 2010/11, 2014 and
2017 periastron passages using the software provided by the
Fermi-LAT Collaboration (Science Tools v10r0p5, and the
instrument response functions (IRFs) PASS8) is reported.
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to 39TeV for the analysis of the 2014 data set. Being deep
in the KN regime, with 4ǫ0Γ ≫ 1 and ǫ0 = hν⋆/mec

2 (Mod-
erski et al. 2005), the energy of the emitting parent elec-
tron population reaches at least values similar to that of
the IC up-scattered photon, ∼ 40TeV. This corresponds
to a lower bound on the maximum electron Lorentz factor
of Γ & 8× 107. In addition, the absence of a downturn of
the VHE spectrum in this regime implies that no transition
from IC scattering to synchrotron emission as dominant en-
ergy loss processes occurs in the energy range 0.2–40TeV.

The spectral profile plotted in Fig. 5 does not show a
significant variability of the photon index of PSR B1259–
63/LS 2883 within errors (statistical and systematic). This
is in contrast to what is observed in the X-ray spectrum
(Chernyakova et al. 2015), where a hardening of the emis-
sion can be observed when the source approaches the peri-
astron passages, with softer emission observed at the disc
crossings and at periastron itself. A hint for a softening of
the spectral index at VHEs is observed right before peri-
astron, but statistical and systematic errors prevent a firm
conclusion on this. It is worth noting that a hardening of
the synchrotron X-ray emission would be expected in the
transition to the KN regime as a consequence of an excess at
the high-energy end of the parent electron population. The
looser KN cross-section dependency on the electron energy
would, however, compensate the IC contribution, such that
the effect would be limited in the VHE gamma-ray domain.

During the second disc crossing and during the HE flar-
ing period, compatible photon indices of ΓVHE ∼ 2.7–2.8
are observed. Together with the smooth evolution of the
VHE flux for t & tp +20d (see below), the evolution of the
VHE spectral parameters around the time of the HE flar-
ing period does not provide support for a distinct emission
component emerging at this orbital phase. It is worth not-
ing, however, that in the HE regime the photon index of the
spectrum of PSR B1259–63/LS 2883 is also unchanged for
the whole periastron passage period and during the gamma-
ray flare. A spectral analysis of the stacked pre-flare data
sets (see black data points in Fig. 6) provides a photon in-
dex ΓHE = 3.06± 0.16, well compatible with that obtained
during the flaring periods (e.g. 2.93± 0.15 in 2014; see also
Tam et al. 2018). If the flare originated from a separate
component showing up only after t & tp + 30d in the HE
regime, this cannot be distinguished based solely on the
analysis of the photon index.

6.3. The HE gamma-ray flare observed at VHEs

The phase-folded VHE light curves reported in Figs. 3 and
4 (see also Fig. 5) display a pronounced high level of emis-
sion at t & tp + 30d, lasting for at least three weeks. The
flux transition from the orbital phases, in which the system
is assumed to cross the circumstellar disc of the companion
star for the second time, is smooth. Furthermore the spec-
tral properties remain unchanged (see Fig. 5). This suggests
that the processes taking place in the system and respon-
sible for the VHE emission after this second disc crossing
are related and seem to extend to longer timescales than
previously expected. A sudden increase by a factor of a
few at these orbital phases, as seen in the HE gamma-ray
band (see Fig. 6), is not observed at VHEs. Following the
procedure in Abramowski et al. (2013), a flare coefficient
can be introduced and constrained to quantify this state-
ment. Based on the fluxes above 200GeV shown in Fig. 3,

a flux increase by a factor κ > 2.1 can be excluded at the
95.4% confidence level when comparing the monthly bins
just before and during the time of the GeV flare. At en-
ergies above 1TeV, the flare coefficient can be constrained
to κ < 2.0 based on the fluxes observed at the time of the
second disc crossing and at the time of the HE gamma-
ray flare (Fig. 5, Table 3). Systematic uncertainties have
been taken into account in the calculation of these limits.
At HEs, instead, a flux increase from the last point before
the flare to the first bin belonging to the flare of a factor
≈ 4 is observed. Furthermore, the VHE emission shows only
moderate variability at the time of the HE gamma-ray flare.
This is in contrast to the HE variability observed in PSR
B1259–63/LS 2883 in 2011, 2014 and 2017, when large flux
differences down to variability time scales of days and even
hours (Tam et al. 2018; Johnson et al. 2018) were observed.

From Fig. 7 it also becomes apparent that distinct com-
ponents are responsible for either the HE or the VHE emis-
sion during the flare. The SED shows that an extrapolation
of the power-law fit to the Fermi-LAT data is incompati-
ble with the emission observed at VHEs by several orders
of magnitude. Similar conclusions were derived from the
analysis of the limited VHE data set in 2011 (Abramowski
et al. 2013). Contrary to the case of other gamma-ray bi-
naries (Hadasch et al. 2012), the sub-GeV emission is not
accompanied by multi-GeV emission in PSR B1259–63/LS
2883. Finally, it is noted that at other orbital phases, the
HE flux of PSR B1259–63/LS 2883 is too low for a similar
spectral constraint.

The analysis of the Fermi-LAT data reported in Sect. 5
shows in addition that significant HE gamma-ray emission
is detected between the times when the compact object
crosses the circumstellar disc. It is considered unlikely that
the mechanism responsible for this baseline emission is also
responsible for the emission during the HE gamma-ray flare.
The true anomaly of the pulsar changes by 180◦ in this time
range (see e.g. Aharonian et al. (2009) for a sketch), and
the emission observed during the flaring period is thought
to have a strong geometric dependence.

Whether or not the HE and VHE gamma-rays (and
X-ray and radio emission, if they are also correlated) at
tp > 30 d are produced by the same particle population,
acceleration mechanism, or in the same physical regions, is
still unclear. There are no theoretical predictions of high
VHE fluxes for such a remarkably long (& 30 d) time scale
after the second disc crossing.

The HE and VHE gamma rays emitted between the disc
crossings could have the same origin. The significant differ-
ences of the flux profiles and spectral properties measured
during the gamma-ray flare in these two energy bands sug-
gest that different processes are responsible for the emission
in the two domains at this part of the orbit.

7. Conclusions

The observations of the periastron passages of PSR B1259–
63/LS 2883 in 2014 and 2017 at VHEs with H.E.S.S. to-
gether with a reanalysis of data obtained in previous obser-
vations reveals a complex VHE gamma-ray light curve that
remains repetitive over years. A double-peak profile around
tp encompassing the two disc crossing times emerges when
all light curves are shown or stacked together, displaying a
clear asymmetry between the pre- and post-periastron or-
bital phases. Additional features in the light curve are also
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apparent, in particular those derived from the rich data
set obtained in 2014. A high flux is observed ∼15 d before
the first disc crossing. Subsequently, high flux levels are
also observed during the HE flaring events. Contrary to the
HE case, however, there is a smooth continuation of the
VHE flux from previous orbital phases. The Fermi-LAT
analysis reveals that these HE flares exhibit a significant
cycle-to-cycle variability. In particular for 2017, the onset
of the flare is delayed by ∼ 10 d with respect to 2011 and
2014. The analysis shows that HE gamma rays are pro-
duced also before the flare, during the times of the disc
crossing by the compact object and at tp itself. Therefore,
any theoretical interpretation correlating the emission at
radio wavelengths, X-rays and VHE gamma-rays at orbital
phases around tp should account as well for this emission.

There is no evidence for variability of the photon index
at VHEs, therefore an hypothesis in which distinct emission
components dominate at different orbital phases around tp
is not supported by the presented spectral results. PSR
B1259–63/LS 2883 does not show spectral variability in our
analysis at HE either.

A lower limit on the energy at which a hypothetical
spectral cut-off could be found is placed at an energy of
39.0TeV. Therefore, it is concluded that PSR B1259–63/LS
2883 is a very efficient particle accelerator.

The next passage is expected in early 2021 (tp occurring
on February 9). The source will be observable in excellent
conditions from the H.E.S.S. site in Namibia. Further obser-
vations of periastron passages of PSR B1259–63/LS 2883,
in particular with the Cherenkov Telescope Array (CTA)
(Acharya et al. 2013; The CTA Consortium 2019), are ex-
pected to substantially improve the VHE characterisation
of the source.
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