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Abstract Drell–Yan lepton pair production processes

are extremely important for Standard Model (SM) pre-
cision tests and for beyond the SM searches at hadron

colliders. Fast and accurate predictions are essential to

enable the best use of the precision measurements of

these processes; they are used for parton density fits, for

the extraction of fundamental parameters of the SM, and

for the estimation of background processes in searches.

This paper describes a new numerical program, DYTurbo,

for the calculation of the QCD transverse-momentum

resummation of Drell–Yan cross sections up to next-

to-next-to-leading logarithmic accuracy combined with

the fixed-order results at next-to-next-to-leading order

(O(α2
S)), including the full kinematical dependence of

the decaying lepton pair with the corresponding spin
correlations and the finite-width effects. The DYTurbo

program is an improved reimplementation of the DYqT,

DYRes and DYNNLO programs, which provides fast and

numerically precise predictions through the factorisation

of the cross section into production and decay variables,

and the usage of quadrature rules based on interpolating

functions for the integration over kinematic variables.
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1 Introduction

The Drell–Yan process denotes massive lepton-pair pro-

duction in hadron-hadron collisions at high energies,

as proposed by Sidney D. Drell and Tung-Mow Yan in

1970 [1], and first observed at the Alternating Gradient

Synchrotron [2]. At the Large Hadron Collider (LHC) [3],

the Drell–Yan process continues to play a fundamental

role in probing the proton parton distribution functions

(PDF), thereby providing valuable information on the

u- and d-quark valence PDFs [4] and insight into the

light-quark sea decomposition, in particular on the s-

over d̄-quark ratio [5]. This process is also used to meas-

ure fundamental electroweak parameters such as the

mass of the W boson [6], the weak-mixing angle [7, 8],

and the W -boson width [9]. An accurate modelling of

the Drell–Yan process is of paramount importance for

searches of new physics phenomena beyond the Standard

Model (SM) in final states with high dilepton invariant

mass [10–13]. These experimental measurements need to

be compared to accurate predictions based on high-order

perturbative QCD and electroweak corrections. The

Drell-Yan production total cross section and the vector

boson rapidity distribution have been analytically com-

puted up to the next-to-next-to-leading order (NNLO)

in powers of the QCD coupling αS in Refs. [14, 15] and

[16], respectively. Fully exclusive parton-level NNLO

calculations, which include the leptonic decay of the vec-

tor boson, have been implemented in publicly available

Monte Carlo codes [17–20]. The transverse-momentum

(qT) distribution of the lepton pair at large (formally,

non-vanishing) values of qT can be evaluated at O(α3
S)
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from the parton-level calculations of W/Z/γ∗+ jet pro-

duction that have been performed in Refs. [21–25]. Vari-

ous calculations that combine the QCD resummation

formalism of logarithmically enhanced contributions at

small-qT [26–29] with fixed-order perturbative results

at different levels of theoretical accuracy have been
performed in Refs. [30–38]. Analogous resummed calcu-

lations have been performed by applying Soft Collinear
Effective Theory methods [39–43] and transverse-mo-

mentum dependent factorisation [44–52]. Electroweak

(EW) [53–61] and mixed QCD-EW [62–68] radiative

corrections have also been considered. A reliable es-
timate of the theoretical uncertainties requires various

procedures, which also include variations of PDFs, renor-

malisation and factorisation scales, and SM parameters.

It is thus necessary to rely on computing codes that

allow fast calculations of these variations with small

numerical uncertainties. The DYTurbo program, which

is presented in this paper, aims at providing fast and

numerically precise predictions of the Drell–Yan produc-

tion cross sections, for phenomenological applications
such as QCD analyses and extraction of fundamental

parameters of the SM. The enhancement in perform-

ance over original programs is achieved by overhauling

pre-existing codes, by factorising the differential cross

section into production and decay variables, and by

introducing the usage of one-dimensional and multi-di-

mensional numerical integration based on interpolating

functions. The DYTurbo program is a reimplementation

of the DYRes [36] and DYqT [33] programs for qT re-

summation, and of the DYNNLO [19] program for the

finite-order perturbative QCD calculation up to NNLO.

The DYRes [36] and DYqT [33] programs encode the qT
resummed cross sections up to next-to-next-to-leading-

logarithmic (NNLL) accuracy by using the resummation

formalism proposed in Refs. [69–71]. The W+jet and

Z/γ∗+jet predictions at O(αS) and O(α2
S) are reimple-

mented from the analytical calculations of Refs. [72–74],

as encoded in DYqT, for the case of the triple-differential

production cross sections as a function of rapidity y,

invariant mass m, and transverse momentum qT of the

lepton pair, and from the MCFM program [75], as en-

coded in DYRes and DYNNLO, for the full kinematical

dependence of the decaying leptons. Software profiling

was employed to achieve code optimisation. The most

successful optimisation strategies leading to significant
performance improvement were hoisting loop-invariant

expressions out of loops, removing conditional state-

ments from loops to allow the compiler performing auto-

matic loop vectorisation, and manual loop unrolling. The

DYTurbo software is based on a modular C++ structure,

with a few Fortran functions wrapped and interfaced to

C++. Multi-threading is implemented with OpenMP,

and through the Cuba library by means of fork/wait
system calls [76]. A flexible user interface allows setting

the parameters of the calculation through input files

and command line options. The results are provided

in the form of text files and ROOT histograms [77].

Preliminary versions of the DYTurbo program were used

by the ATLAS Collaboration in Refs. [6, 78, 79]. The

DYTurbo program is publicly available [80].

2 Predictions with DYTurbo

The DYTurbo program provides predictions for W and

Z/γ∗-boson (collectively denoted as V -boson) produc-

tion cross sections, fully differential in the four momenta

of the decay leptons, and inclusive over final-state QCD
radiation. The cross sections can be computed by per-

forming the resummation of logarithmically-enhanced

contributions in the small-qT region of the leptons pairs

at leading-logarithmic (LL), next-to-leading-logarithmic
(NLL), and NNLL accuracy, and also including the cor-

responding finite-order QCD contributions at next-to-

leading order (NLO) and NNLO. The logarithmically-

enhanced terms are resummed by using the resummation

formalism of Ref. [70] in impact-parameter space. The

structure of the cross section calculations is summar-

ised in Eqs. (1) and (4), and we refer the reader to the

discussion in Refs. [19, 33, 36] for details on the theor-

etical formulation. Upon integration of final-state QCD

radiation, the fully-differential Drell–Yan cross section

is described by six kinematic variables corresponding

to the momenta of the two leptons. To the purpose of

reducing the complexity of the calculation, it is useful to

reorganise the fully-differential Drell–Yan cross section

by factorising the dynamics of the boson production,

and the kinematics of the boson decay. The cross section

is therefore expressed as a function of the transverse mo-

mentum qT, the rapidity y and the invariant mass m of

the lepton pair, and three angular variables correspond-

ing to the polar angle θℓ and azimuth φℓ of the lepton

decay in a given boson rest frame and to the azimuth φV

of the boson in the laboratory frame. However, the cross

section does not depend on φV , since in unpolarised had-

ron collisions the initial-state hadrons, i.e. the incoming
beams, are to very good approximation azimuthally

symmetric. Therefore the dependence of the cross sec-

tion on φV is not considered further. In the following a

distinction will be made between fiducial cross sections,

where kinematic requirements are applied on the final

state leptons, and total or full-lepton phase space cross

sections. The former requires the evaluation of the five-

fold differential cross sections, the latter are (qT,m,y)-

dependent triple-differential cross sections integrated

over cos θℓ and φℓ. At NLL+NLO and NNLL+NNLO,
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the qT-resummed cross section for V -boson production

can be written as

dσV
(N)NLL+(N)NLO = dσres

(N)NLL − dσasy
(N)LO + dσf.o.

(N)LO ,(1)

where dσres is the resummed component of the cross-

section, dσasy is the asymptotic term that represents the

fixed-order expansion of dσres, and dσf.o. is the V +jet

finite-order cross section integrated over final-state QCD

radiation. All the cross sections are differential in q2T.

The resummed component dσres is the most important

term at small qT. The finite-order term dσf.o. gives

the larger net contribution at large qT. The fixed-order

expansion of the resummed component dσasy embodies

the singular behaviour of the finite-order term, providing

a smooth behaviour of Eq. (1) as qT approaches zero.

The two finite-order terms of Eq. (1) and the finite-order

factor HV
(N)NLO in dσres (see Eq. (2)) are calculated up

to the same power in αS. The resummed component

and its fixed-order expansion are given by 1

dσres
(N)NLL = dσ̂V

LO(qT)×HV
(N)NLO × exp{G(N)NLL} (2)

dσasy
(N)LO = dσ̂V

LO(qT)×ΣV(qT/Q)(N)LO , (3)

where Q denotes the auxiliary resummation scale [70]

that is introduced in dσres and, consistently, in dσasy.

The term dσ̂V
LO(qT) is the leading-order (LO) cross sec-

tion evaluated for non-vanishing values of qT according

to a given qT-recoil prescription [36], namely, with values
of θℓ and φℓ that correspond to a chosen dilepton rest

frame. The factor HV is the hard-collinear coefficient

function. The term G is the exponent of the Sudakov

form factor and it is originally expressed as a function of

the impact parameter b, which is the Fourier-conjugate

variable to qT. This term embodies the resummation
of the logarithmically-enhanced contributions at LL,

NLL or NNLL accuracy in b space. In order to paramet-

erise non-perturbative QCD effects, the Sudakov form

factor includes a non-perturbative contribution, whose

simplest form is a Gaussian form factor. The b space ex-

pression of the Sudakov form factor is then evaluated in

qT space by numerically performing the (inverse) Fourier
transformation. The function ΣV(qT/Q) arises from the

finite-order expansion of HV × exp{G}, and it matches

the singular behaviour of dσf.o. in the region qT → 0.

An additional feature of the DYTurbo program is the

possibility of computing finite-order cross sections at

LO, NLO and NNLO without the resummation of loga-

rithmically-enhanced contributions. At NLO and NNLO,

the finite-order cross section for V -boson production is

1 The convolution with PDFs and the sum over different
initial-state partonic contributions are implied in the short-
hand notation of Eqs. (2), (3) and (5). Analogously, the inverse
Fourier transformation from b space to qT space is implied in
Eq. (2).

computed by using the qT-subtraction formalism [81],

and it is expressed as the sum of three components:

dσV
(N)NLO = HV

(N)NLO × dσV
LO

+
[

dσV+jet
(N)LO − dσCT

(N)LO

]

, (4)

with dσCT
(N)LO given by

dσCT
(N)LO = dσV

LO ×
∫ ∞

0

d2q′T ΣV(q′T/m)(N)LO . (5)

The LO cross-section term dσV
LO = dσ̂V

LO(qT)δ(q
2
T) is

evaluated at qT = 0, and dσV+jet is the V +jet cross

section. A unitarity constraint is implemented in the

resummation formalism [70] so as to recover exactly

the finite-order result upon integration over qT of the
full-lepton phase space resummed cross section. The

unitarity constraint leads to the following relation:
∫ ∞

0

dq2T dσres
(N)NLL+(N)NLO = HV

(N)NLO × dσ̂V
LO(0) . (6)

The terms dσres
(N)NLL and dσasy

(N)LO can be, in general, mul-

tiplied by a switching function w(qT,m) above a given qT
threshold, to the purpose of reducing the contribution of

the resummed calculation in the large-qT region, where

small-qT resummation cannot improve the accuracy of

the finite-order calculation. The switching function can

spoil the unitarity constraint of Eq. (6) by an amount

which is smaller when the chosen qT threshold is larger.

The default choice in DYTurbo is a Gaussian switching

function, as used in DYRes. The Drell–Yan cross sec-

tion predictions are obtained by integrating over the

kinematic variables of the two leptons, and over addi-

tional variables related to QCD radiation, convolutions

and integral transforms, as described in the following

Sections. The integral transformations are evaluated by

means of one-dimensional quadrature rules based on in-

terpolating functions. The numerical integration over the
other variables is performed with two different methods.

The first method is based on the Vegas algorithm [82]

as implemented in the Cuba library [83]. The second

method employs a combination of one-dimensional and

multi-dimensional numerical integrations based on in-

terpolating functions. The one-dimensional integrations

are performed by means of Gauss–Legendre quadrature

rules, with nodes and weights evaluated with the Elhay–

Kautsky method [84, 85]. The multi-dimensional integ-

rations are evaluated with the Cuhre algorithm [86, 87]

as implemented in the Cuba library [83] and in the

Cubature package [88], and with a tensor product of

Clenshaw–Curtis quadrature rules as implemented in
the Cubature package. The Vegas integration method is

available for all terms of the resummed and fixed-order

calculations, and allows evaluating predictions for any
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arbitrary observable, for total and fiducial cross sec-

tions. The numerical integration based on interpolating

functions is available for all the terms in the case of

total cross sections, and for all the terms except the

finite-order term at O(α2
S) in the case of fiducial cross

sections. This integration method allows calculating only
the cross sections as functions of qT, m, and y. Of these

two methods, the former is the most versatile, whereas

the latter allows reaching relative uncertainties in the

predicted cross sections well below 10−3 in a time frame

that is significantly shorter than that required by the
DYNNLO and DYRes programs. The EW parameters GF,

α(mZ), mW , mZ and sin2 θW of the Drell-Yan LO cross

section are set by choosing three parameters as input,

and calculating the others according to tree-level rela-

tions. In the following the Gµ scheme is used, in which

GF, mW , mZ are set to GF = 1.1663787 · 10−5 GeV−2,

mW = 80.385 GeV, mZ = 91.1876 GeV, and sin2 θW
and α are calculated at tree level. The default values

of the renormalisation (µR), factorisation (µF ) and re-

summation scales are fixed to µR = µF = 2Q = m. The

prescriptions necessary to obtain the resummed results

(i.e. the qT-recoil prescription, the switching function

w(qT,m) and the prescription to avoid the Landau singu-

larity) have been chosen following Ref. [36]. Figure 1(a)

shows results for Z-boson production in proton–proton

collisions at
√
s = 8 TeV with the CT10nnlo set of par-

ton density functions [89], and default choices of QCD

scales and EW parameters. The relative contributions

of the various terms to the Z-boson total cross section

are illustrated in Figure 1(b). The evaluation of each

term is described in the following subsections.

2.1 Resummed component

The resummed component of the qT-resummed cross sec-

tion (see Eq. (2)) can be factorised as the product of the

LO cross section dσ̂V
LO and the term W = HV× exp{G}.

In these two terms, only the LO cross section depends

on the lepton angular variables, and their integration

is factorised as follows. The dependence of the cross

section on cos θℓ is dσ(cos θℓ) ∝ (1 + cos2 θℓ) + a cos θℓ,

whereas an explicit dependence on φℓ enters only in

the case of fiducial cross sections, due to the kinematic

requirements on the final-state leptons. In the case of

full-lepton phase space cross sections, the integration
over the angular variables is obtained through the fol-

lowing substitutions:

1 + cos2 θℓ →
∫

dΩ (1 + cos2 θℓ) = 16/3π , (7)

cos θℓ →
∫

dΩ cos θℓ = 0 , (8)

where dΩ = d cos θℓ dφℓ. In the more general case of

fiducial cross sections, the integrals in Eqs. (7) and (8)

are as follows

θ0 =

∫

dΩ (1 + cos2 θℓ)ΘK , θ1 =

∫

dΩ cos θℓ ΘK , (9)

where ΘK is the acceptance function of the kinematic

requirements. The integrals in Eq. (9) are evaluated by

first searching all the values of cos θℓ corresponding to

the extremities of the region defined by the kinematic

requirements at fixed values of φℓ. For each pair of cos θℓ
extreme values, the integrals are evaluated analytically

in d cos θℓ. In a second step, the integration along dφℓ is

performed by means of Gauss-Legendre quadrature. In

the case of the full-lepton phase space cross sections, the
expressions in Eqs. (7) and (8) do not depend on qT and

y, which allows further simplifications. In contrast, for

the fiducial cross sections, the ΘK acceptance function

in Eq. (9), and so the integrals, depend in general on

qT and y. Such a dependence varies between different

qT-recoil prescriptions and it is of O(qT/m) at small

qT. The W term is expressed through the Sudakov from

factor exp{G} in b space. The qT-dependent cross sec-

tion is obtained by means of a two-dimensional inverse
Fourier transformation, which is expressed as a zeroth-

order inverse Hankel transformation by exploiting the

azimuthal symmetry of the W function in the transverse

plane:

W(qT,m, y) =
m2

s

∫ ∞

0

db
b

2
J0(bqT) W̃(b,m, y) , (10)

where W̃ is the expression of W in b space, J0(x) is

the zeroth-order Bessel function and s is the centre–of–

mass energy. The integral transformation of Eq.(10) is

computed by means of a double-exponential formula

for numerical integration [90–92]. The convolution with

PDFs is more efficiently performed by considering double

Mellin moments of the partonic functions Ŵab, defined

as

ŴN1,N2

ab =

∫ 1

0

dz1z
N1−1
1

∫ 1

0

dz2z
N2−1
2 Ŵab(z1, z2) , (11)

where z1,2 = m/
√
ŝe±ŷ, ŷ = y − 1/2 ln(x1/x2), ŝ =

x1x2s, and a, b denote the initial-state partons. The

Mellin moments ŴN1,N2

ab are calculated with ANCONT [93],

a software library for the analytic continuation of Mellin

transformations. The function W̃ is then obtained by

means of a double inverse Mellin transformation:

W̃(b,m, y) =

(

1

2πi

)2

∫ c+i∞

c−i∞
dN1 x

−N1

1

∫ c+i∞

c−i∞
dN2 x

−N2

2 FN1

a FN2

b ŴN1,N2

ab ,

(12)

where x1,2 = m/
√
s e±y, c is a real number which lies at

the right of all the poles of the integrand, and FN
i , with
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Figure 1 (a) DYTurbo results for the Z-boson full-lepton phase space cross section at
√
s = 8 TeV as a function of the boson

transverse momentum qT at various orders of the calculation (NLO, NLL+NLO, NNLO, and NNLL+NNLO). The bottom
panel shows ratios of results at various orders to the NNLL+NNLO result. (b) DYTurbo results at NNLL+NNLO accuracy for
the Z-boson total cross section at

√
s = 8 TeV as a function of the boson transverse momentum and the separated contribution

of various terms: resummed component, asymptotic term, finite-order term, sum of asymptotic and finite-order terms.

i = a, b, are Mellin moments of PDFs, fi(x), defined as:

Fi(N) =

∫ 1

0

dxxN−1fi(x) . (13)

The integral transformation of Eq. (12) is computed by

means of Gauss-Legendre quadrature, and the PDFs are

evolved [33, 36] from the factorisation scale µF to the
scale b0/b (b0 = 2e−γE , and γE is the Euler number)

by using the program Pegasus QCD for the evolution

of PDFs in Mellin space [94]. To perform the Mellin

inversion, it is necessary to calculate the Mellin moments

Fi(N) at values of N along a contour of integration in

the complex plane. Parameterising the PDFs in a simple

form such as

f(x) = xα(1− x)βP (x) , (14)

where α, β are constants and P (x) is a polynomial, Mel-

lin moments for arbitrary complex N can be calculated

through a simple formula involving the Γ function:
∫ 1

0

dxxα(1− x)β =
Γ (α+ 1)Γ (β + 1)

Γ (α+ β + 2)
. (15)

Thanks to the analytic continuation of Eq. (15) in the

region of the complex plane with Re(N) < 0, when

PDFs are expressed with this form, the integration con-

tour in Eq. (12) can be optimised by bending towards

negative values of Re(N), as depicted schematically in

Figure 2, allowing for a faster convergence of the Mellin

inversion integral. Such a strategy is adopted in DYRes

and in Refs. [94, 95]. As a drawback, PDFs need to
be parameterised as in Eq. (14), or an approximation

Figure 2 Standard and optimised integration contours in the
complex plane for the inverse Mellin transform. The two con-
tours intersect the real axis at the point c, and the optimised
contour is bent by an angle φ > π/2 with respect to the real
axis. The crosses represent the poles of PDF parameterisation
in Mellin space.

of the PDFs that follows this form has to be evalu-

ated, which is significantly time consuming. In DYTurbo,

the Mellin moments of PDFs are evaluated numerically,

by using Gauss-Legendre quadrature to calculate the

integrals of Eq. (13). However these integrals can be

evaluated numerically only for Re(N) > 0. As a con-

sequence the integration contour of the inverse Mellin
transform cannot be bent towards negative values of
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Re(N), and a standard contour along the straight line

[c− i∞, c+ i∞] is used (see Figure 2). This procedure

results in a slower convergence of the integration in

Eq. (12), for which about twice as many function evalu-

ations are required, but it has the great advantage of

allowing usage of PDFs with arbitrary parameterisation,

without requiring knowledge of their functional form,

and without requiring any time consuming evaluation of

an approximation of PDFs in the form of Eq. (14). The

integration over the V -boson rapidity, y, is factorised as

follows. In the case of total cross sections, the values of
the angular integrals in Eqs. (7) and (8) do not depend

on y. The only dependence on the rapidity in Eq. (12)

is in the expression

x−N1

1 x−N2

2 = e− ln(m/
√
s) (N1+N2)e−y (N1−N2) , (16)

and the integrals of Eq. (16) are evaluated analytically

using the following relation:
∫ y1

y0

dy e−y (N1−N2) =
e−y1(N1−N2) − e−y0(N1−N2)

N1 −N2
, (17)

where y0 and y1 are the lower and upper y-bin bound-

aries. In the case N1 = N2, Eq. (17) further simpli-
fies to y1 − y0. When the y-bin boundaries are lar-

ger than the allowed kinematic range |y| ≤ ymax, with

ymax = ln(
√
s/m), Eq. (17) simplifies to 2πi δ(N1−N2),

and the double Mellin inversion is reduced to a single

Mellin inversion [71] by setting N1 = N2 = N . In the

case of fiducial cross sections, the values of θ0 and θ1 in

Eq. (9) also depend on y, and the integrals
∫ y1

y0

dy e−y (N1−N2) θ0,1(y) , (18)

are evaluated numerically for all pairs of N1 and N2 by

means of Gauss-Legendre quadrature. The integration

over the V -boson transverse momentum, qT, can be per-

formed analytically in the case of the full-lepton phase

space cross sections, since the expressions in Eqs. (7)

and (8) do not depend on qT, and the only term that

depends on qT is J0(bqT) of Eq. (10). By using the rela-

tion
∫

dxxJ0(x) = xJ1(x), the integration over qT in a

bin of boundaries q0T and q1T can be evaluated as

∫ q1T

q0
T

dqT 2qT W(qT,m) =

m2

s

∫ ∞

0

db
[

q1TJ1(bq
1
T)− q0TJ1(bq

0
T)

]

W̃(b,m) .

(19)

Similarly to Eq. (10), the integral of Eq. (19) is computed

by means of a double-exponential formula for numerical

integration, and by performing two separate integrations

corresponding to the terms J1(bq
1
T) and J1(bq

0
T). The

information of the one-loop (two-loop) virtual correction

to the LO subprocess is contained in the HV function.

In the computation of the fixed-order cross section of

Eq. (4), the HV function is evaluated in x-space, i.e.
without performing a Mellin transformation, and the

convolution with PDFs is performed by integrating over

the variables z1,2 = e±ŷ m/
√
ŝ. The corresponding in-

tegrals are calculated with Gauss–Legendre quadrature.

2.2 Asymptotic term and counter-term

The asymptotic term of Eq. (3) and the counter-term

of Eq. (5) are computed using the function ΣV(qT/Q),

which embodies the singular behaviour of dσf.o. in the

limit qT → 0. In the finite-order case the counter-term
contributes at qT = 0. Accordingly, the LO cross sec-

tion is evaluated at qT = 0 and the function ΣV(q′T/Q)

is integrated over the auxiliary variable q′T. At vari-
ance, in the resummed case the asymptotic term is a

function of qT, and the LO cross section is evaluated

for nonzero values of qT according to a given qT-recoil

prescription. As for the resummed term, the integra-

tion over the angular variables is factorised in the LO

cross section by using Eqs. (7) and (8) or Eq. (9). The
function ΣV(qT/Q) is evaluated in x-space, i.e. without

performing a Mellin transformation, and the convolu-

tion with PDFs is performed by integrating over the

variables z1,2 with Gauss–Legendre quadrature. In the

case of full-lepton phase space cross sections, the qT
dependence of the asymptotic term and of the function

ΣV(qT/Q) is fully embodied in a set of four functions
Ĩn(qT/Q) with n = 1, ..., 4 [70]. The integration over qT
of the asymptotic term is performed by integrating the

Ĩn(qT/Q) functions with Gauss–Legendre quadrature.

In the case of fiducial cross sections, the values of θ0
and θ1 of Eq. (9) also depend on qT, and the integrals
∫ q1T

q0
T

dqT 2qT Ĩn(qT/Q) θi(qT) , i = 0, 1 , (20)

where q0T and q1T are the lower and upper qT-bin bound-

aries, are evaluated numerically by means of Gauss–

Legendre quadrature.

2.3 Finite-order term

The real-emission corrections are embodied in the (N)LO

finite-order term of Eq. (1) and in the V +jet term of

Eq. (4) for the resummed and fixed-order predictions,

respectively. Since DYTurbo provides results that are

inclusive over final-state QCD radiation, the two terms

are fully equivalent 2. Two independent calculations of

2 Resummed predictions can be computed only inclusively
with respect to final-state QCD radiation, whereas fixed-order
predictions could be evaluated differentially.
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this term are implemented. The first calculation, which

is based on the code MCFM [75], is fully differential with

respect to the lepton angular variables and the final-

state QCD radiation. The second calculation, which

is inclusive over the lepton angles and the QCD radi-
ation, implements the analytic results of Refs. [72–74],

and it relies in part on the code taken from DYqT [33].

The MCFM implementation of the lowest-order term
dσV+jet

LO can be evaluated by using either the Vegas in-

tegration method or the numerical integration based

on interpolating functions. The MCFM implementation
of the next-order term dσV+jet

NLO is the most complex

part of the calculation, and it can be evaluated only
with the Vegas algorithm. The reason is that this NLO

calculation is based on the Catani–Seymour dipole sub-

traction scheme [96], in which for each point in the

phase space where the real radiation is evaluated, a

set of counter-term dipoles are computed corresponding

to various different phase-space points. As in any local

subtraction procedure, the resulting integrand presents

discontinuities and it cannot be efficiently approximated

by interpolating functions. The implementation of the

analytic calculation of Refs. [72–74] yields the triple-

differential production cross sections as a function of qT,

m, and y of the lepton pair, and it is used only for cross

sections inclusive over the lepton decay, evaluated with

numerical integration based on interpolating functions.

3 Tests of numerical precision

In order to validate the numerical precision of the re-

summed calculation, three closure tests are performed:

the comparison of the fixed-order expansion of the re-

summed component (asymptotic term) and the finite-

order term at small qT, the comparison of the term

HV × dσV
LO and the resummed component upon qT

integration, and comparisons of the integration meth-

ods available in DYTurbo, namely the Vegas algorithm

and the multi-dimensional numerical integration based

on interpolating functions, referred to as Quadrature
integration in the plots. The numerical tests of this

section are performed in full-lepton phase space, using

the CT10nnlo set of parton density functions and with

default values of the QCD scales and EW parameters.

As discussed in Section 2, the function dσasy embodies

the singular behaviour of dσf.o. when qT → 0, yielding

the relation

lim
qT→0

dσasy/dσf.o. = 1 . (21)

Computing such a relation at small values of qT provides

a stringent test of the numerical precision of the asymp-

totic and finite-order terms. The triple-differential cross

sections dσasy and dσf.o., as functions of qT, m and y, are

evaluated at the fixed values y = 0 and m = mV , with

V = W,Z, for proton–proton collisions at
√
s = 13 TeV.

The result of the test is shown in Figure 3 for the

NLL+NLO and NNLL+NNLO calculations. In all the

cases, the relation of Eq. (21) is verified at values of qT
as low as qT = 0.01 GeV, with deviations from unity that

are smaller than 10−5. As a second closure test, the unit-
arity constraint of Eq. (6), which relates the HV ×dσV

LO

and dσres terms, is tested. Computing such a relation

provides a stringent test of the numerical precision of

the procedure. The triple-differential cross sections dσres

as a function of qT, m, and y are integrated in qT from

zero to infinity, and in the range of rapidity |y| ≤ ymax,

and they are compared with the HV × dσ̂V
LO(0) double

differential cross sections as a function of m and y, in-

tegrated in the same range of rapidity. The switching

function w(qT,m), which reduces the contribution of the

resummed calculation in the large-qT region, is not used

in this test. Figure 4 shows the result of such a compar-

ison at LO, NLO and NNLO for Z/γ∗-boson production

in proton–proton collisions at
√
s = 13 TeV, for 180

equally-spaced bins of m in the range [20, 200] GeV. In

all cases the relation
(∫∞

0
dq2T dσres

)

/
(

HV × dσ̂V
LO

)

= 1

is verified, with deviations from unity that are smaller

than 10−6. The terms HV × dσV
LO and dσres are evalu-

ated in x-space and Mellin-space, respectively. Therefore,

computing such a relation also provides a test of the

numerical precision of the Mellin inverse transformation

in Eq. (12). Similar level of agreement is observed by

performing this closure test as a function of the rapidity.

The results at NNLL+NNLO from DYTurbo using the

numerical integration based on interpolating functions
and the Vegas algorithm are compared for the Z-boson

differential cross section in proton–proton collisions at√
s = 8 TeV. The Z-boson invariant mass range is re-

quired to be 80 GeV < m < 100 GeV. Ratios of these

results are shown in Figure 5. The scatter in the central
values of the points is at the permille level, except for
the points at the very edges of the kinematic phase

space, and for the finite-order term at high qT where

deviations of two permille are observed.

4 Benchmark results

This section provides benchmark results of DYTurbo to

DYRes at NNLL+NNLO for cross sections differential

in qT, and benchmark results of DYTurbo to DYRes and

DYNNLO for fully-integrated fiducial cross sections at

NNLL+NNLO and NNLO.
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Figure 3 Closure test of the relation dσasy ∼ dσf.o. when qT → 0 for (a) Z/γ∗-boson, (b) positively-charged W -boson, and
(c) negatively-charged W -boson production at

√
s = 13 TeV.
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Figure 4 Closure test of the relation
∫
∞

0
dq2T dσres = HV × dσ̂V

LO for Z/γ∗-boson production at
√
s = 13 TeV: (a) LO, (b)

NLO, and (c) NNLO result.

4.1 Benchmark of DYTurbo to DYRes differential results

Predictions at NNLL+NNLO for Z-boson and W -boson

cross sections in proton–proton collisions at
√
s = 7 TeV

using the CT10nnlo set of parton density functions
were evaluated with DYRes [36] and compared to the

corresponding predictions in DYTurbo. The W -boson

predictions are in the full-lepton phase space, whereas

the Z-boson predictions are fiducial, and match the kin-

ematic definition of Ref. [97]. Careful attention is paid to

exactly match in DYTurbo the settings used to produce

the DYRes predictions, such as QCD scales choice, EW

scheme and input parameters, switching function at high

qT, qT-recoil prescription, and the prescription for avoid-

ing the Landau pole in b-space. All these parameters are

set to the default values of DYRes. Figures 6 and 7 show

the comparisons to DYRes of DYTurbo results for the Z-

boson and positively-charged W -boson production cross

sections. The Z-boson fiducial phase space is defined

by the lepton transverse momentum pℓT > 20 GeV, the

lepton pseudorapidity |ηℓ| < 2.4, and invariant mass of

the lepton pair in the range 66 GeV < m < 116 GeV.

All comparisons of predictions for the resummed term

are validated at the better than 1 terms are validated
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√
s = 8 TeV as a function of Z-boson transverse

momentum as evaluated with the Quadrature and Vegas integration methods of DYTurbo. From left to right: resummed
component, asymptotic term, finite-order term, and total differential cross section.

at the ∼2 particular, the positively-charged W -boson

predictions show well that the sum of the asymptotic

and finite-order terms converges to zero at low qT, as

expected (it is also consistent with zero for the Z-boson

predictions, within the Vegas uncertainties, which are

highly correlated bin-to-bin). The DYTurbo and DYRes

results are compared in Figure 8 after summing all terms.

Also in this case good agreement is observed between

the two codes, within the numerical uncertainty of the

Vegas integration.

4.2 Benchmark of fully-integrated cross-section results

Benchmark results for fully-integrated fiducial cross sec-

tion at NNLL+NNLO from DYRes [36] and at NNLO

from DYNNLO [19] are shown in Table 1 and compared

with the corresponding results calculated with DYTurbo 3.

The predictions are evaluated for proton–proton colli-

sions at the centre–of–mass energy
√
s = 8 TeV, and

according to the fiducial definition and QCD and EW

settings of Ref. [99]. The Z- and W -boson fiducial phase
space is defined by the charged lepton and neutrino trans-

verse momentum pℓ,νT > 25 GeV, the charged lepton

pseudorapidity |ηℓ| < 2.5, and invariant mass of the

lepton pair larger than 50 GeV for Z-boson production

and larger than 1 GeV for W -boson production. The

3 The NNLO results in Table 1 are obtained with a min-
imum value of r = qT/m fixed to rcut = 0.002 and their
corresponding numerical uncertainties do not include the sys-
tematic uncertainty from the rcut → 0 extrapolation. A more
accurate NNLO result and an estimate of such uncertainty
can be obtained by evaluating the cross section at different
values of rcut and carrying out the limit rcut → 0 [98].

results for DYNNLO shown in the table are taken from

Table 12 of Ref. [99]. The results of DYTurbo are in agree-
ment with the results of the other programs considered

in Ref. [99].

5 Time performance

In this section various tests of time performance are

discussed. The computation time requested to calculate

cross-section predictions for DYTurbo and DYRes is com-

pared and used to assess the performance improvement

of DYTurbo. The amount of time required to perform

a calculation as a function of threads provides a test

of the scaling behaviour of the multi-threading imple-

mentation. The time-performance tests are run on a
server mounting two AMD Opteron 6344 CPUs with 12

cores each. The fully-integrated fiducial cross section of

Z-boson production, as defined for the results shown
in Table 1, is computed with DYRes and DYTurbo at

NNLL+NNLO. The DYRes calculation took 40 hours for

an uncertainty of 0.4 DYTurbo took 8 hours, yielding a

factor of 5 in the improvement of the time performance.

Figure 9 shows the speedup factors for cross-section cal-

culations as a function of the number of threads, where

the speedup is defined as the ratio of elapsed time of

the multi-threaded calculation divided by the reference

elapsed time of the one-thread calculation. Assuming

that the one-thread calculation has a parallelisable time

fraction and a non-parallelisable time fraction, and the

multithreading process has an overhead time propor-

tional to the number of threads N , the speedup curve
can be parameterised as (1+s)/(1/N+s+o·N). where s
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Figure 6 Comparison of differential fiducial cross sections computed with DYRes and DYTurbo at
√
s = 7 TeV as a function of the

Z-boson transverse momentum. The Z-boson fiducial phase space is defined by the lepton transverse momentum pℓT > 20 GeV,
the lepton pseudorapidity |ηℓ| < 2.4, and the invariant mass of the lepton pair 66 GeV < m < 116 GeV. (a) Comparison of
resummed component between DYRes and DYTurbo with Vegas integration. (b) Comparison of resummed component between
DYRes and DYTurbo with Quadrature integration. (c) Comparison of the sum of asymptotic and finite-order terms between
DYRes and DYTurbo with Vegas integration. The top panels show absolute cross sections, and the bottom panels show ratios of
DYTurbo to DYRes results.

Table 1 Comparison of NNLO and NNLO+NNLL cross-section results at
√
s = 8 TeV. The results for DYNNLO are taken from

Ref. [99].

Program DYNNLO DYTurbo DYRes DYTurbo

Order NNLO NNLO NNLO+NNLL NNLO+NNLL

σ(pp → W+ → l+ν) [pb] 3191± 7 3176± 3 3149± 8 3155± 3

σ(pp → W− → l−ν) [pb] 2243± 6 2234± 2 2214± 4 2213± 2

σ(pp → Z/γ∗ → l+l−) [pb] 502.4± 0.4 502.8± 0.5 500.7± 0.9 500.5± 0.6

is the ratio between non-parallelisable and parallelisable
times, and o is the overhead time per thread. The meas-

ured speedup factors are well described by this model,

with overhead times compatible with zero, and with frac-

tions of non-parallelisable time which are smaller when

the target precision is higher. Indeed most of the non-

parallelisable time is spent in the program initialisation,

which becomes negligible for long runs with high target

precision. We conclude this section reporting typical

running times for fast and numerically precise DYTurbo

predictions with the numerical integration based on in-

terpolating functions. Figure 10 shows NLL+NLO and
NNLL+NNLO predictions for the Z-boson production

at 13 TeV in full-lepton phase space, integrated in the

range of invariant mass [66, 116] GeV and in the range of

rapidity |y| ≤ ymax ∼ 5.3. The predictions are computed

in 100 equally-spaced qT bins from zero to 25 GeV. The

predictions are evaluated with a target in the relative

numerical uncertainty of 10−4 for each term, and using

simultaneously 20 parallel threads. The computation

time required to perform the full calculation is 4 min at

NLL+NLO and 3.4 hours at NNLL+NNLO. The com-

putation of the resummed component required 6 seconds

at NLL+NLO and 10 seconds at NNLL+ NNLO, the
computation of the asymptotic term required 0.2 sec-

onds at NLL+NLO and 0.7 seconds at NNLL+NNLO,

the computation of the finite-order term required 4 min

at NLL+NLO and 3.4 hours at NNLL+ NNLO. In

these examples, as in all other time-performance tests,

the great majority of the computation time is spent

to evaluate the finite-order term. For applications as
PDF fits, where very fast predictions are required, this

part of the calculation could be computed by using

APPLGRID [100].



DYTurbo 11

50

100

150

200

250

c
ro

s
s
 s

e
c
ti
o

n
 [

p
b

] DYTurbo Benchmark

+
 W→pp 

7 TeV, resummed component

DYTurbo (Quad. Int.)

DYRes

1 10
 [GeV]

T
q

0.99

1

1.01

D
Y

T
u
rb

o
 /
 D

Y
R

e
s

(a)

2000−

1000−

0

1000

2000

3000

c
ro

s
s
 s

e
c
ti
o

n
 [

fb
] DYTurbo Benchmark

+
 W→pp 

7 TeV, asy.+f.o. terms

DYTurbo (Quad Int.)

DYRes

1 10
 [GeV]

T
q

0.5

1

1.5

D
Y

T
u
rb

o
 /
 D

Y
R

e
s

(b)

Figure 7 Comparison of full-lepton phase space differential cross sections computed with DYRes and DYTurbo (Quadrature
integration method) at

√
s = 7 TeV as a function of the transverse momentum of the positively-charged W -boson: (a) resummed

component, (b) sum of asymptotic and finite-order terms. The top panels show absolute cross sections, and the bottom panels
show ratios of DYTurbo to DYRes results.
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Figure 8 Comparison of DYRes and DYTurbo cross sections at
√
s = 7 TeV as a function of the boson transverse momentum

for full-lepton phase space W+ and W− production, and fiducial Z-boson production.

6 Conclusions

The DYTurbo program provides fast and numerical pre-

cise predictions of Drell–Yan processes, through a new

implementation of the DYqT, DYRes and DYNNLO numer-

ical codes. The cross-section predictions include the

calculation of the QCD transverse-momentum resumma-

tion up to next-to-next-to-leading logarithmic accuracy

combined with the fixed-order results at next-to-next-

to-leading order (O(α2
S)). They also include the full kin-

ematical dependence of the decaying lepton pair with

the corresponding spin correlations and the finite-width

effects. The enhancement in performance over previous

programs is achieved by code optimisation, by factorising

the cross section into production and decay variables,
and with the usage of numerical integration based on

interpolating functions. The resulting cross-section pre-

dictions are in agreement with the results of the original

programs. The great reduction of computing time for

performing cross-sections calculation opens new possib-

ilities for the usage of Drell–Yan processes for PDF fits,

for the extraction of fundamental parameters of the SM,

such as the mass of the W boson and the weak-mixing
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Figure 9 Computing time as a function of the number of threads for Z-boson production at
√
s = 8 TeV with different target

precision: (a) NNLO results with the Vegas integration method, and (b) NNLL+NNLO results with the Quadrature integration
method.
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angle, and for the estimation of background processes

in searches for physics beyond the SM.
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