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The inclusive top quark pair (¢f) production cross-section o7 has been measured in proton—proton
collisions at v/s = 13 TeV, using 36.1 fb~! of data collected in 2015-16 by the ATLAS experiment at
the LHC. Using events with an opposite-charge eu pair and b-tagged jets, the cross-section is measured
to be:

o7 = 826.4 £ 3.6 (stat) = 11.5(syst) = 15.7 (lumi) + 1.9 (beam) pb,

where the uncertainties are due to data statistics, experimental and theoretical systematic effects, the
integrated luminosity, and the LHC beam energy, giving a total uncertainty of 2.4%. The result is
consistent with theoretical QCD calculations. It is used to determine the top quark pole mass via the
dependence of the predicted cross-section on mP®, giving mP'® = 173.1*39 GeV. It is also combined
with measurements at 4/s = 7TeV and /s = 8 TeV to derive ratios and double ratios of ¢f and Z
cross-sections at different energies. The same event sample is used to measure absolute and normalised
differential cross-sections as functions of single-lepton and dilepton kinematic variables, and the results
compared with predictions from various Monte Carlo event generators.
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1 Introduction

The study of top quark—antiquark (¢7) production forms a cornerstone of the physics programme of the
ATLAS experiment at the CERN Large Hadron Collider (LHC), allowing quantum chromodynamics
(QCD) to be probed at some of the highest accessible energy scales. The large mass of the top quark,
close to the scale of electroweak symmetry breaking, gives it a unique role in the Standard Model of
particle physics and potential extensions, and ¢¢ production also forms an important background in many
searches for physics beyond the Standard Model. Precise measurements of absolute rates and differential
distributions in ¢7 production are therefore a vital tool in fully exploiting the discovery potential of the
LHC.



Predictions for the inclusive ¢7 production cross-section in proton—proton (pp) collisions, o, are available
at next-to-next-to-leading-order (NNLO) accuracy in the strong coupling constant as, including the
resummation of next-to-next-to-leading logarithmic (NNLL) soft gluon terms [1-6], and are in excellent
agreement with measurements from ATLAS and CMS at \/s = 7, 8 and 13 TeV [7-13]. At /s = 13 TeV,
and assuming a fixed top quark mass of m, = 172.5 GeV, the NNLO+NNLL prediction is 832 + 3538 pb,
as calculated using the Top++ 2.0 program [14]. The first uncertainty corresponds to parton distribution
function (PDF) and as uncertainties, and the second to QCD scale variations. The former were calculated
using the PDF4LHC prescription [15] with the MSTW?2008 [16, 17], CT10 NNLO [18, 19] and NNPDF2.3
5f FFN [20] PDF sets. The latter was calculated from the envelope of predictions with the QCD
renormalisation and factorisation scales varied independently up or down by a factor of two from their
default values of ur = ur = m,, whilst never letting them differ by more than a factor of two. The total
uncertainty corresponds to a relative precision of f‘s‘:g%.

The predicted cross-section also depends strongly on m;, decreasing by 2.7% for a 1 GeV increase in the
top mass. The top quark mass parameter used in the cross-section prediction is actually the pole mass

mf()le, corresponding to the definition of the mass of a free particle. This allows o7 measurements to be

interpreted as measurements of mf Ole, free of the theoretical ambiguities linked to the direct reconstruction
of m, from the invariant mass of its decay products [21-24]. Ratios of 77 production cross-sections at
different centre-of-mass energies are also of interest, e.g. Ri’; 7= 04#(13TeV)/0+7(7 TeV). Predictions for
such ratios benefit from significant cancellations in the QCD scale and top quark mass uncertainties, but
are still sensitive to the choice of PDF. The NNLO+NNLL predictions with the same set of assumptions
as given for o;; above, and a 1 GeV uncertainty in m;, are Rgﬁ =4.69 +£0.16 and Rig/g =3.28 +0.08,
i.e. relative uncertainties of 3.3% and 2.5%. Double ratios of 7 to Z production cross-sections allow the
experimental uncertainties to be further reduced, by normalising the ¢7 cross-section at each energy to the

corresponding cross-section for Z boson production [25].

Within the Standard Model, the top quark decays 99.8% of the time to a W boson and b-quark [26], making
the final-state topologies in ¢ production dependent on the decay modes of the W bosons. The channel with
an electron—-muon pair with opposite electric charges, i.e. tf — W*bW~bh — e* u~vvbb, is particularly
clean.! It was exploited to make the most precise ATLAS measurements of o7 at /s = 7, 8 and 13 TeV [7,
9], based on events with an opposite-sign eu pair and one or two jets tagged as likely to contain b-hadrons
(b-tagged). The /s = 13 TeV measurement in Ref. [9] was based on the 3.2 fb~! dataset recorded in 2015.
This paper describes a new measurement of o7 at \/s = 13 TeV using the same final state, but applied
to the combined 2015-16 ATLAS dataset of 36.1 fb~!. The cross-section measurement is further used
to determine the top quark pole mass via the dependence of the prediction on mf()le, complementing the
analogous measurement with the v/s = 7 and 8 TeV data [7]. This paper also updates the 7 cross-section

ratios Ri’; ” and Rig /82 the v/s = 13 TeV tf/Z ratio Rg/ Z, and the double ratios of #7 to Z cross-sections
Rtf/Z

13/7 and Ri;//g, using the new o7 result, superseding those derived from the previous /s = 13 TeV o7
measurement in Ref. [25].

The eu + b-tagged jets sample also allows precise measurements of the differential distributions of the
leptons produced in 77 events to be made. ATLAS has published [27] measurements at /s = 8 TeV of
the absolute and normalised differential cross-sections as functions of the transverse momentum pé and
absolute pseudorapidity |77¢| of the single leptons? (combined for electrons and muons), the pr, invariant

! Charge-conjugate decay modes are implied unless otherwise stated.
2 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the centre of the detector,
and the z axis along the beam line. Pseudorapidity is defined in terms of the polar angle 6 as = — Intan /2, and transverse



mass and absolute rapidity of the eu system (p,er” , m* and |y“#|), the absolute azimuthal angle |A¢|
between the two leptons in the transverse plane (A¢°#), and the scalar sums of the transverse momenta
(Pt + p’T‘) and energies (E¢ + E*) of the two leptons. These distributions were found to be generally well
described by predictions from a variety of leading-order (LO) multileg and next-to-leading-order (NLO) ¢7
matrix-element event generators interfaced to parton showers, and by NLO fixed-order QCD calculations.
The sensitivity of the data to the gluon PDF and to the top quark pole mass was also demonstrated. This
paper measures the same distributions at v/s = 13 TeV, using ¢7 samples which are about six times the size
of those available at /s = 8 TeV. Two-dimensional distributions of |7¢|, |y*#| and A¢° as functions of
meH are also reported. The data are again compared with the predictions of various NLO 7 matrix-element
event generators, but the interpretations in terms of PDF constraints and mfcﬂe are left for future work.

The event selection, measurement methodology and uncertainty evaluations for both the inclusive 7
cross-section and the differential distributions are similar to those used at /s = 7 and 8 TeV [7, 27], with
the exception that the minimum lepton transverse momentum requirement has been lowered from 25 GeV
to 20 GeV, whilst still requiring at least one lepton to be above the lepton trigger threshold of 21-27 GeV.
This increases the fraction of t7 — euvvbb events that are selected by 16%, thus reducing the extrapolation
uncertainties in the modelling of ¢ production and decay. The data and Monte Carlo simulation samples
used in the analyses are described in Section 2, followed by the event reconstruction and selection in
Section 3. The measurement methodology for both the inclusive and differential cross-sections is described
in Section 4, and the evaluation of systematic uncertainties in Section 5. The inclusive cross-section
results are given in Section 6, together with the derivation of the top quark pole mass from o7, and
the corresponding #f and #f/Z cross-section ratios. The differential cross-section results are discussed
in Section 7, and compared with the predictions of several tf event generators. Finally, conclusions are
discussed in Section 8.

2 Data and simulated event samples

The ATLAS detector [28-30] at the LHC covers nearly the entire solid angle around the collision point. It
consists of an inner tracking detector surrounded by a thin superconducting solenoid producing a 2T axial
magnetic field, electromagnetic and hadronic calorimeters, and an external muon spectrometer incorporating
three large toroidal magnet assemblies. The analysis was performed on samples of proton—proton collision
data collected at v/s = 13 TeV in 2015 and 2016, corresponding to total integrated luminosities of 3.2 fb~!
in 2015 and 32.9 fb~! in 2016 after data quality requirements. Events were required to pass a single-electron
or single-muon trigger [31, 32], with transverse momentum thresholds that were progressively raised
during the data-taking as the instantaneous luminosity increased. The electron trigger was fully efficient for
electrons with reconstructed pt > 25 GeV in 2015 and the first 6 fb~! of 2016 data, and for pt > 27 GeV for
the remainder. The corresponding muon trigger thresholds were pt > 21 GeV for 2015 data, py > 25 GeV
for the first 6 fb~! of 2016 data and p > 27 GeV for the rest. Each triggered event also includes the signals
from on average 14 (25) additional inelastic pp collisions in 2015 (2016) data, referred to as pileup.

Monte Carlo simulated event samples were used to develop the analysis procedures, to evaluate signal
and background contributions, and to compare with data. Samples were processed using either the full

momentum and energy are defined relative to the beam line as pt = p sin 6 and E1 = E sin 6. The azimuthal angle around the
beam line is denoted by ¢, and distances in (1, ¢) space by AR = +/(An)? + (A¢)2. The rapidity is defined as y = % In (E”’ = ),

E-p-
where p; is the z-component of the momentum and E is the energy of the relevant object or system. The distance in (y, ¢)

space is given by AR, = v/(Ay)? + (A¢)?.



ATLAS detector simulation [33] based on GEANT4 [34], or with a faster simulation making use of
parameterised showers in the calorimeters [35]. The effects of pileup were simulated by generating
additional inelastic pp collisions with PyTHIA8 (v8.186) [36] using the A2 set of parameter values (tune)
[37] and overlaying them on the primary simulated events. These combined events were then processed
using the same reconstruction and analysis chain as the data. Small corrections were applied to lepton
trigger and reconstruction efficiencies to improve agreement with the response observed in data.

The baseline simulated 77 sample was produced using the NLO matrix-element event generator PowHEG-Box
v2 (referred to hereafter as PowHEG) [38—41] with the NNPDF3.0 NLO PDF set [42], interfaced to PyTHIA8
(v8.210) with the NNPDF2.3 LO PDF set and the A14 tune [43] for the parton shower, hadronisation and
underlying-event modelling. In the PowHEG configuration, the hgamp parameter, which gives a cut-off scale
for the first gluon emission, was set to %mt, and the factorisation and renormalisation scales were set to

UF = UR = A /(mt2 + (p1.1)?), where the top quark pr is evaluated before radiation [44].

Alternative rf simulation samples used to assess systematic uncertainties were generated with PowHEG
interfaced to HErwiG7 (v7.0.4) [45] with the H7UE tune, and the MADGRAPHS_AMC@NLO (v2.3.3.p1)
generator (referred to hereafter as AMC@NLO) [46] with the renormalisation and factorisation scales set in
the same way as for POWHEG, interfaced to PyTHia8 with the A14 tune. Uncertainties related to the amount
of initial- and final-state radiation were explored using two alternative PowHEG + PyTHI1AS samples: one
with Aigamp set to 3m;, ur and ug reduced by a factor of two from their default values, and the A14v3cUp
tune variation, giving more parton-shower radiation; and a second sample with hgamp = %mt, up and uR
increased by a factor of two and the A14v3cDo tune variation, giving less parton-shower radiation [44].
The top quark mass was set to 172.5 GeV in all these samples, consistent with measurements from ATLAS
[47] and CMS [48]. The W — {v branching ratio was set to the Standard Model prediction of 0.1082 per
lepton flavour [49], and the EvTGEN program [50] was used to handle the decays of b- and c-flavoured
hadrons. All the samples were normalised using the NNLO+NNLL inclusive cross-section prediction
discussed in Section 1 when comparing simulation with data. Additional ## samples with different event
generator configurations were used in comparisons with the measured normalised differential cross-sections
as discussed in Section 7.2.

Backgrounds in these measurements are classified into two types: those with two real prompt leptons
(electrons or muons) from W or Z boson decays (including those produced by leptonic decays of 7-leptons),
and those where at least one of the reconstructed leptons is misidentified, i.e. a non-prompt lepton from the
decay of a bottom or charm hadron, an electron from a photon conversion, a hadronic jet misidentified
as an electron, or a muon produced from the decay in flight of a pion or kaon. The background with
two real prompt leptons is dominated by the associated production of a W boson and single top quark,
Wt. This process was simulated using PowHeG v1 [51] with the CT10 NLO PDF set [18], interfaced to
PyTHIAG (v6.428) [52] with the P2012 tune [53]. The ‘diagram removal’ scheme [54] was used to handle
the interference between the 7 and Wt final states that occurs at NLO. The sample was normalised to a
cross-section of 71.7 + 3.8 pb, based on the approximate NNLO calculation [55, 56] using the MSTW2008
NNLO PDF set [16, 17], and taking into account PDF and QCD scale uncertainties. Smaller backgrounds
result from Z — 17(— eu)+jets, and from diboson production (WW, WZ and ZZ) in association with
jets. These backgrounds were modelled using SHERPA 2.2.1 [57] (Z+jets) and SHERPA 2.1.1 (dibosons), as
discussed in Ref. [58]. Production of #f in association with a leptonically decaying W, Z or Higgs boson
gives a negligible contribution to the opposite-sign eu samples compared to inclusive ¢ production, but
is significant in the same-sign control samples used to assess the background from misidentified leptons.
These processes were simulated using AMC@NLO + PyTHIAS8 (¢ + W/Z) or POWHEG + PYTHIAS (¢f + H)



[58].

Backgrounds with one real and one misidentified lepton arise from 7 events with one hadronically
decaying W, simulated with POWHEG + PyTHIAS in the same way as for dileptonic 77; W+jets production,
modelled with SueErpA 2.2.1 as for Z+jets; and ¢-channel single top quark production, modelled with
PowHEG + PyTHIA6 [59] with the CT10 PDF set and P2012 tune. The contributions of these backgrounds
to the opposite-sign samples were determined with the help of the same-sign control samples in data. Other
backgrounds, including processes with two misidentified leptons, are negligible after the event selections
used in the analysis.

3 Event reconstruction and selection

The analysis makes use of reconstructed electrons, muons and b-tagged jets. Electron candidates were
reconstructed from a localised cluster of energy deposits in the electromagnetic calorimeter matched to
a track in the inner detector, passing the ‘Tight’ likelihood-based requirement of Ref. [60]. They were
required to have transverse energy Et > 20 GeV and pseudorapidity |77| < 2.47, excluding the transition
region between the barrel and endcap electromagnetic calorimeters, 1.37 < |n| < 1.52. To ensure they
originated from the event primary vertex, electrons were required to satisfy requirements on the transverse
impact parameter significance calculated relative to the beam line of |dy|/0g, < 5, and on the longitudinal
impact parameter calculated relative to the event primary vertex of |Azg sin 6| < 0.5 mm. The event primary
vertex was defined as the reconstructed vertex with the highest sum of p% of associated tracks. To reduce
background from non-prompt electrons, candidates were further required to be isolated, using pr- and
|7|-dependent requirements on the summed calorimeter energy within a cone of size AR = (0.2 around the
electron cluster, and on the sum of track pr within a cone of variable size AR = min(0.2, 10 GeV/pr(e))
around the electron track direction. The selections were tuned to give a 90% efficiency for electrons of
pt = 25GeV in simulated Z — ee events, rising to 99% at 60 GeV.

Muon candidates were reconstructed by combining matching tracks reconstructed in the inner detector
and muon spectrometer, and were required to have pt > 20GeV, |g| < 2.5 and to satisfy the ‘Medium’
requirements of Ref. [61]. Muons were also required to be isolated using calorimeter and track information
in the same way as it was used for electrons, except that the track-based isolation was calculated with a
cone of size AR = min(0.3, 10 GeV/pt(u)). The selections were again tuned to give efficiencies varying
from 90% at pt = 25 GeV to 99% at 60 GeV on simulated Z — uu events. No requirements were made on
the muon impact parameters relative to the primary vertex, as they do not provide any useful additional
background rejection in this event topology.

Jets were reconstructed using the anti-k, algorithm [62, 63] with radius parameter R = 0.4, starting from
topological clusters in the calorimeters [64]. After calibration using information from both simulation and
data [65], jets were required to have pr > 25 GeV and || < 2.5, and jets with pr < 60GeV and |n| < 2.4
were subject to additional pileup rejection criteria using the multivariate jet-vertex tagger (JVT) [66]. To
prevent double counting of electron energy deposits as jets, the closest jet to an electron candidate was
removed if it was within AR, = 0.2 of the electron. Furthermore, to reduce the contribution of leptons
from heavy-flavour hadron decays inside jets, leptons within ARy, = 0.4 of selected jets were discarded,
unless the lepton was a muon and the jet had fewer than three associated tracks, in which case the jet was
discarded (thus avoiding an efficiency loss for high-energy muons undergoing significant energy loss in the
calorimeters).



Jets likely to contain b-hadrons were b-tagged using the MV2c10 algorithm [67], a multivariate discriminant
making use of track impact parameters and reconstructed secondary vertices. A tagging working point
corresponding to 70% efficiency for tagging b-quark jets from top quark decays in simulated ¢7 events was
used, corresponding to rejection factors of about 400 against light-quark and gluon jets and 12 against jets
originating from charm quarks.

Selected events were required to have exactly one electron and exactly one muon passing the requirements
detailed above, with at least one of the leptons matched to a corresponding electron or muon trigger. Events
where the electron and muon were separated in angle by |Af| < 0.15 and |A¢| < 0.15, or where at least
one jet with pt > 20 GeV failed quality requirements [68], were rejected. Events with an opposite-sign eu
pair formed the main analysis sample, whilst events with a same-sign ey pair were used in the estimation
of background from misidentified leptons.

4 Cross-section measurement

The same technique, employing the subsets of the opposite-sign ey sample with exactly one and exactly two
b-tagged jets, was used to measure both the inclusive ¢f cross-section and the differential distributions. The
measurements are introduced in the following two subsections, followed by a discussion of the background
estimate in Section 4.3 and the validation of the differential measurements using studies based on simulation
in Section 4.4.

4.1 Inclusive cross-sections

The inclusive 7 cross-section o,; was determined by counting the numbers of opposite-sign ey events with
exactly one (V) and exactly two (V,) b-tagged jets. The two event counts satisfy the tagging equations:

N Loyi €q2ep(1 — Cpep) + N, 0

bk
N> LO’,; eeﬂCbebz + N2 &

where L is the integrated luminosity of the sample, €, the efficiency for a ¢ event to pass the opposite-sign
selection, and Cj, is a tagging correlation coeflicient close to unity. The combined probability for a jet from
the quark g in the r — Wgq decay to fall within the acceptance of the detector, be reconstructed as a jet
with transverse momentum above the selection threshold, and be tagged as a b-jet, is denoted by €. If the
decays of the two top quarks and the reconstruction of the two associated b-tagged jets are completely
independent, the probability €, to reconstruct and tag both b-jets is given by €,, = €,°. In practice,
small correlations are present, and are taken into account via the correlation coefficient Cp, = €pp/ €p2, or
equivalently Cp, = 4N£ZN£E / (Nl”_ + 2N£f )%, where Néfl is the number of selected ey 7 events and NI’f and
Nzﬁ are the numbers of such events with one and two b-tagged jets. In the baseline 77 simulation sample,
€eu = 0.9%, including the branching ratio for a #7 pair to produce an ey final state. The corresponding value
of Cp is 1.007 + 0.001 (the uncertainty coming from the limited size of the simulation sample), indicating
a small positive correlation between the reconstruction and b-tagging of the two quarks produced in the top
quark decays. Background from sources other than 7 events with two prompt leptons also contributes to
Ni and N, and is given by the terms N f’kg and N; ke , evaluated using a combination of simulation and data
control samples as discussed in Section 4.3 below. The values of €., and C;, were taken from ¢ event

simulation, allowing the tagging equations (1) to be solved to determine o7 and €.



Sample 2015 2016

Event counts N N, N N>
Data 14239 8351 133977 75853

Wt single top 1329+ 92 261 +£86 | 12490 +870 2430 £ 810
Z(— 11 > eu)+jets 123 +£15 7+2 910+110 379
Diboson 42 +5 1+£0 481 +58 21+7
Misidentified leptons 164 + 54 58 +37 1720 + 520 670 +390
Total background 1660+ 110  327+94 | 15600+1000 3160+ 890

Table 1: Observed numbers of opposite-sign eu events with one (Ny) and two (N;) b-tagged jets in 2015 and 2016
data, together with the estimates of backgrounds and associated uncertainties described in Section 5. Uncertainties
shown as zero are less than 0.5 events.

The selection efficiency €., can be written as the product of two terms: €, = A¢,Geyu. The acceptance
Acu = 1.7% represents the fraction of ¢ events which have a true opposite-sign ey pair fromt — W — e/u
decays, with each lepton having pr > 20GeV and || < 2.5. The contributions via leptonic T decays
(t > W — 7 — ¢/ ) are included. The lepton four-momenta were taken after final-state radiation, and
‘dressed’ by including the four-momenta of any photons within a cone of size AR = 0.1 around the lepton
direction, excluding photons produced from hadron decays or interactions with the detector material. The
reconstruction efficiency G, represents the probability that the two leptons are reconstructed and pass all
the identification and isolation requirements. A fiducial cross-section (Ttﬁfd, for the production of ¢ events
with an electron and a muon satisfying the requirements on pt and 7, can then be defined as O'tﬁfd = Aep0ii,
and measured by replacing o€, with a'fz_dGe,, in Egs. (1). The fiducial cross-section definition makes no
requirements on the presence of jets, as the tagging formalism of Egs. (1) allows the number of 7 events
with no reconstructed and b-tagged jets to be inferred from the event counts Ny and N,. Measurement of the
fiducial cross-section avoids the systematic uncertainties associated with the evaluation of the acceptance,
in particular estimation of the fraction of tf — euvvbb events where at least one lepton has pt < 20 GeV
or |n| > 2.5.

A total of 40 680 data events passed the opposite-sign eu selection in the 2015 data sample, and 358 664
events in the 2016 data sample. They were subdivided according to the number of b-tagged jets, irrespective
of the number of untagged jets. The numbers of events with one and two b-tagged jets in each sample are
shown in Table 1, together with the expected non-¢f contributions from Wt and dibosons evaluated from
simulation, and Z(— 77 — eu)+jets and misidentified leptons evaluated using both data and simulation.
The one b-tag sample is expected to be about 88% pure and the two b-tag sample 96% pure in ¢ events,
with the largest backgrounds in both samples coming from Wt production. The distribution of the number
of b-tagged jets is shown for the 2015 and 2016 data samples together in Figure 1(a), and compared with
the expectations from simulation, broken down into contributions from #7 events (modelled using the
baseline PowHEG + PyTH1A8 sample), and various background processes. The predictions using alternative
tt generator configurations (POwHEG + PyTHIA8 with more or less parton-shower radiation, denoted by
‘RadUp’ and ‘RadDn’, and AMC@NLO + PyTH1A8) are also shown. All expected contributions are
normalised to the integrated luminosity of the data sample using the cross-sections discussed in Sections 1
and 2. The excess of data events over the prediction in the zero b-tagged jets sample (which is not used in
the measurement) was also observed previously [7, 9] and is compatible with the expected uncertainties in
modelling diboson and Z+jets production.

Figures 1(b)-1(f) show distributions of the pr of the b-tagged jets, and the pr and || of the electron
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Figure 1: Distributions of (a) the number of b-tagged jets in selected opposite-sign ey events; and (b) the pt of
b-tagged jets, (c) the pr of the electron, (d) the |n| of the electron, (e) the pr of the muon and (f) the || of the muon,
in events with an opposite-sign ey pair and at least one b-tagged jet. The reconstruction-level data are compared with
the expectation from simulation, broken down into contributions from 77 (PowHEG + PyTH1A8), W1, Z+jets, dibosons,
and events with misidentified electrons or muons. The simulation prediction is normalised to the same integrated
luminosity as the data in (a) and to the same number of entries as the data in (b—f). The lower parts of the figure show
the ratios of simulation to data, using various 7 signal samples and with the cyan shaded band indicating the data
statistical uncertainty. The last bin includes the overflow in panels (b), (c) and (e).



and muon, in opposite-sign ey events with at least one b-tagged jet, a sample which is dominated by #¢
events. The total simulation prediction is normalised to the same number of events as the data to facilitate
shape comparisons. The |n| distributions for electrons and muons reflect the differences in acceptance
and efficiency, in particular the reduction in electron acceptance across the calorimeter transition region,
and the reduced acceptance for muons around || ~ 0. In general, the simulation predictions give a good
description of the data, although the baseline PowHEG + PyTHIA8 simulation predicts a significantly harder
lepton pr distribution than seen in data.

The inclusive cross-section was determined separately from the 2015 and 2016 datasets, and the results were
combined, taking into account correlations in the systematic uncertainties. As the systematic uncertainties
are much larger than the statistical uncertainties, and not fully correlated between the two samples (true in
particular for the uncertainty in the integrated luminosity), this procedure gives a smaller overall uncertainty
than treating the 2015-16 data as a single sample. The selection efficiency €., is about 10% lower in
the 2016 data compared to the 2015 data, due to the harsher pileup conditions and higher-pr trigger
thresholds.

4.2 Differential cross-sections

The differential cross-sections as functions of the lepton and dilepton variables defined in Section 1 were
measured using an extension of Egs. (1), by counting the number of leptons or events with one (Nf ) or two
(N;) b-tagged jets where the lepton(s) falls in bin i of a differential distribution at reconstruction level. For
the single-lepton distributions pé and |n?|, there are two counts per event, in the two bins corresponding to
the electron and muon. For the dilepton distributions, each event contributes a single count corresponding
to the bin in which the appropriate dilepton variable falls. For each bin of each differential distribution,
these counts satisfy the tagging equations:

Ni

I = Lol Gi26(1-Clel)+ N

1 b

2

Ni = Lo’ GLCi(el) + N,

where O'tif is the absolute fiducial differential cross-section in bin i. The reconstruction efficiency Géﬂ
represents the ratio of the number of reconstructed eu events (or leptons for pg and |n?|) in bin i defined
using the reconstructed lepton(s), to the number of true ey events (or leptons) in the same bin i at particle
level, evaluated using ¢# simulation. The true electron and muon were required to have pt > 20 GeV and
|n| < 2.5, but no requirements were made on reconstructed or particle-level jets. The efficiency Giﬂ
corrects for both the lepton reconstruction efficiency and the effects of event migration, where events in
bin j at particle level appear in a different bin i # j at reconstruction level. The integral of any dilepton
differential cross-section is equal to the fiducial cross-section O'Zﬁfd defined in Section 4.1, and the integrals
of the single-lepton p? and |n¢| distributions are equal to 2ogd. The correlation coefficient C l’; depends on
the event counts in bin i analogously to the inclusive Cj, appearing in Eqgs. (1). The values Qf G, were
taken from ¢7 simulation, and are generally around 0.5-0.6. The corresponding values of C; are always
within 1-2% of unity, even at the edges of the differential distribution. The background term N f’bkg varies
from 11% to 23% of the total event count N f in each bin, and Né’bkg varies from 3% to 14% of Né. They
were determined from simulation and data control samples, allowing the tagging equations (2) to be solved

to give the absolute fiducial differential cross-sections O'tif and associated eé values for each bin i of each
differential distribution.
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The bin ranges for each differential distribution were based on those used at /s = 8 TeV [27], adding
an additional bin for 20-25 GeV in the pé distribution and extending the lowest bin down to 40 GeV for
Py + p’T' and E°€ + E# to accommodate the reduced minimum lepton pt requirement of 20 GeV. The
number and sizes of bins were chosen according to the experimental resolution in order to keep the bin
purities (i.e the fractions of events reconstructed in bin i that originate from bin i at particle level) above
about 0.9, and to keep a maximum of around ten bins for the angular distributions (|57¢], |y#| and A¢¢H).
The variations in the angular distributions predicted by different #f models do not motivate a finer binning,
even though the experimental resolution would allow it. The chosen bin ranges can be seen in Tables 13—16
in the Appendix. The last bin of the p'{T}, p?’ , mH, plo+ p’T' and E¢ + E* distributions includes overflow
events falling above the last bin boundary.

The normalised fiducial differential cross-sections gtif were calculated from the absolute cross-sections a'til_
as follows:

i
- g - _ O'nT (3)
Sii = ;T A

21' 07 9t

where a'g_d is the cross-section summed over all bins of the fiducial region, equal to the fiducial cross-section
defined in Section 4.1, or twice that in the case of the single-lepton distributions. The gtif values were then
divided by the bin widths W;, to produce the cross-sections differential in the variable x (x = pf}, I7¢],
etc.):

1 (do\ S @
o dxl._Wl-'

The normalised differential cross-sections are correlated between bins because of the normalisation
condition in Eq. (3). The absolute dilepton differential cross-sections are not statistically correlated

between bins, but kinematic correlations between the electron and muon within one event introduce small
correlations within the absolute single-lepton p‘T) and |n¢| distributions.

The larger number of selected ¢7 events compared to the v/s = 8 TeV analysis allows double-differential
cross-sections to be measured, i.e. distributions that are functions of two variables. Three such distributions
were measured, with ||, |y#| or A¢¢ as the first variable, and m¢* as the second variable, effectively
measuring the |7¢|, |[y®#| and A¢®* distributions in four bins of m¢*, chosen to be m°* < 80GeV,
80 < m* < 120 GeV, 120 < m°* < 200GeV and m®“ > 200 GeV. The excellent resolution in |5¢], |y
and A¢®H results in migration effects being significant only between m# bins. The formalism of Eqs. (2)
was used, with the index i running over the two-dimensional grid of bins in both variables. The normalised
double-differential cross-sections were calculated with the sum in the denominator of Eq. (3) running over
all bins, making the integral of the normalised double-differential cross-section equal to unity over the entire
fiducial region, rather than normalising e.g. the |57¢| distribution to unity in each m* bin separately.

The measured differential cross-sections include contributions where one or both leptons are produced via
leptonic decays of 7-leptons (t — W — 7 — e/u). To enable comparisons with theoretical predictions
which only include direct t — W — ¢/ u decays, a second set of cross-section results was derived with a
bin-by-bin multiplicative correction f! . to remove the T contributions:

ol (no-1) = fi, ol 5)

and similarly for the normalised cross-sections g;f (no-t). The corrections fi . were evaluated from the
baseline PowHEG + PyTHIAS8 #f simulation as the fractions of leptons or events in each particle-level bin
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which do not involve 7-lepton decays. They are typically in the range 0.8-0.9, the smaller values occurring
in bins with a large contribution of low-pr leptons where the T contributions are largest.

Since the uncertainties in most of the differential cross-section bins are dominated by the data statistical
uncertainties, and the luminosity uncertainty largely cancels out in the normalised differential cross-sections,
the 2015-16 data were treated as a single sample in the differential analysis. The varying lepton trigger
thresholds and offline identification efficiencies were taken into account by calculating Giﬂ from an
appropriately weighted mixture of simulated events. Figure 2 shows the reconstructed dilepton distributions
for events with at least one b-tagged jet, comparing data with predictions using various ¢f generator
configurations. As in Figures 1(b)-1(f), the predictions generally describe the data well, although in some
regions there are significant differences between the data and all predictions, which are discussed further in
Section 7.2 below.

4.3 Background estimates

The dominant background from Wt production, and the smaller contribution from diboson events
(dominated by WW production) were evaluated from simulation, using the samples detailed in Section 2.
The production of a Z boson accompanied by heavy-flavour jets is subject to large theoretical uncertainties,
so the background contributions in the one and two b-tag samples predicted by SHERPA (normalised to
the inclusive Z cross-section predictions from FEWZ [69]) were further scaled by factors of 1.10 + 0.12
(one b-tag) and 1.20 + 0.12 (two b-tags) obtained from data. These scale factors were derived from the
ratio of data to simulation event yields for Z — ee/uu accompanied by one or by two b-tagged jets. The
Z — ee/upu yields were obtained by requiring two opposite-sign electrons or muons passing the selections
detailed in Section 3, and performing a template fit to the dilepton invariant mass distribution in the
range 30 < mgy < 150 GeV in order to subtract the contributions from 77 events and misidentified leptons.
The uncertainties are dominated by variations in the scale factors as functions of Z boson pt. Further
uncertainties of 5% in the one b-tag sample and 23% in the two b-tag sample were assigned from the change
in the final background prediction when replacing the SHErRPA sample with one generated using MADGRAPH
[70] interfaced to PyTH1AS8, including re-evaluation of the scale factors. Similar procedures were used to
evaluate the uncertainty in the Z+jets background prediction in every bin of the differential distributions,
including a comparison of the per-bin predictions from SHERPA and MADGRAPH after normalising each
sample to data in the inclusive Z — ee/uu control regions.

The background from events with one real and one misidentified lepton was evaluated with the help of the
same-sign ey control sample. For the inclusive cross-section analysis, the contributions N}nis‘id to the total
numbers N; of opposite-sign ey events with j = 1,2 b-tagged jets are given by:

is-i Si SS
N;ms id  _ Rj (N;iata,SS _ N;lm,prompt, ) ’
N;lm,mls—ld,OS (6)
Rj = Nsim,mis—id,SS ’
J

. . i SS . .
where NJ‘.iata’SS is the number of observed same-sign events, N;mprompt’ is the number of same-sign

events with two prompt leptons estimated from simulation, and R; is the ratio in simulation of the
number of opposite-sign (N;‘m’m“"d’os) to same-sign (I\I;Im’mls"d’ss) events with misidentified leptons, all
with j b-tagged jets. This formalism relies on simulation to predict the ratio of opposite- to same-sign

misidentified-lepton events, and the prompt same-sign contribution, but not the absolute number of
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Figure 2: Distributions of (a) the dilepton p%” , (b) invariant mass m°H, (c) rapidity |y“#|, (d) azimuthal angle
difference A¢g#, (e) lepton pr sum pf + p’T' and (f) lepton energy sum E°¢ + E*, in events with an opposite-sign eu
pair and at least one b-tagged jet. The reconstruction-level data are compared with the expectation from simulation,
broken down into contributions from 7 (PowHEG + PyTHIA8), Wt, Z+jets, dibosons, and events with misidentified
electrons or muons, normalised to the same number of entries as the data. The lower parts of the figure show the
ratios of simulation to data, using various #7 signal samples and with the cyan shaded band indicating the data
statistical uncertainty. The last bin includes the overflow in panels (a), (b), (e) and (f).
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misidentified-lepton events N™s4_ which is calculated using the same-sign event counts in data. The
same formalism in bins i of lépton differential variables was used to estimate the misidentified-lepton
background contributions to N 1‘ Pk and N;’bkg in each bin of the differential cross-section analysis.

Table 2 shows the estimates from simulation of misidentified-lepton contributions to the opposite- and
same-sign event counts in the inclusive cross-section analysis, separately for the 2015 and 2016 selections.
The prompt contributions (corresponding to N;”n’prompt’ss in Eqs. (6)) are about 25% of the one b-tag and
35% of the two b-tag same-sign samples. They include ‘wrong-sign’ contributions, dominated by dilepton
tt events where the electron charge sign has been misidentified, and ‘right-sign’ contributions, with two
genuine same-sign prompt leptons, from t7 + V events (V. = W, Z or H), WZ, ZZ or same-sign WW
production. The misidentified-lepton contributions are dominated by electrons from photon conversions,
shown separately for events where the photon was radiated from a prompt electron in a ¢f dilepton event,
or came from some other background source. These contributions are followed by electrons or muons
from the semileptonic decays of heavy-flavour hadrons, and other sources, such as misidentified hadrons or
decays in flight of pions and kaons. The composition of the same-sign samples is also illustrated in Figure 3,
which shows electron and muon pr and |r| distributions in same-sign data events with at least one b-tagged
jet, and the corresponding simulation predictions, broken down into prompt leptons (combining the right-
and wrong-sign categories of Table 2) and various misidentified-lepton categories (again combining
‘other’ electrons and muons into a single category). Table 2 shows that the simulation reproduces the
observed numbers of same-sign events well, and the distributions shown in Figure 3 demonstrate that
it also reproduces the general features of the lepton kinematic distributions, the largest differences in
individual bins being around 20%. These studies validate the overall modelling of misidentified leptons by
the simulation, even though the background estimates determined via Egs. (6) do not rely on the simulation
providing an accurate estimate of the absolute rates of such events. Additional studies were performed
using same-sign control samples with relaxed electron or muon isolation criteria (increasing the relative
contribution of heavy-flavour decays), and changing the lepton selection to pt > 40 GeV (enhancing the
fraction of photon conversions), and a similar level of agreement was seen both in rates and distribution
shapes.

The ratios R; in Eqgs. (6) were evaluated to be Ry = 1.4 £ 0.3 and R, = 1.7 £ 0.9 for the 2015 data sample,
and Ry = 1.4+ 0.4 and R; = 1.9 + 1.0 for the 2016 sample. The uncertainties encompass the range of R;
values seen for the major sources of misidentified-lepton events; as can be seen from the entries in Table 2,
the opposite- to same-sign event count ratios are different for the main categories, and the uncertainty
allows for their relative contributions to be different from that predicted by the baseline simulation. The
R; values seen in the control samples with loosened isolation, and the predictions from alternative ¢f
simulation samples using PyTa1a6 or HERwiIG7 instead of PyTH1A8 hadronisation were also considered. A
conservative 50% uncertainty in the prompt lepton same-sign contribution was also taken into account,
covering the mismodelling of electron charge misidentification in simulation and the uncertainties in the
predicted cross-sections for 7 + V and diboson processes. The final misidentified-lepton background
estimates for the 2015 and 2016 opposite-sign data samples in the inclusive cross-section analysis are
shown in Table 1.

Figure 4 shows the corresponding same-sign event distributions for the dilepton variables, showing a
similar quality of modelling of these kinematic distributions by the simulation as seen for the single-lepton
variables in Figure 3. The values of R in the binned version of Eqs. (6) vary only slightly across the
differential distributions, and the same relative uncertainties in R; and R, were also used for the differential
analysis, and taken to be correlated across all bins.
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Figure 3: Distributions of (a) the electron pr, (b) the electron ||, (c) the muon pr and (d) the muon ||, in events
with a same-sign eu pair and at least one b-tagged jet. The simulation prediction is normalised to the same integrated
luminosity as the data, and broken down into contributions where both leptons are prompt, or one is a misidentified
lepton from a photon conversion originating from a top quark decay or from background, from heavy-flavour decay
or from other sources. The statistical uncertainty in the total simulation prediction is significant in some bins, and is
shown by the hatching. In the pr distributions, the last bin includes the overflows.
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2015 2016

Component OS 1) SS1b OS2b SS2b OS 15 SS 15 OS 2b SS 2b
t — e — 7y conversion e 59+5 41+4 33+3 21+£3 | 594+15 360+11 33611 191+9
Background conversion e 53+6 35+4 19+£3 15+2 | 424+15 227 +36 185+8 116 £ 6
Heavy-flavour e 27+3 26+3 3x1 2+1 208 £ 8 1888 20+3 11+2
Other e 2+2 0+0 1+1 00 48+9 5+1 19+3 2+1
Heavy-flavour u 50+5 46+5 8+2 2=+l 434+14  335x12 79+6 27+4
Other u 11+2 2+1  4=x1 0+0 54+29 151+126 46=+4 11+2
Total misidentified 201+10 149+8 69+5 40+4 | 1761+41 1266132 684+16 358+12
Wrong-sign prompt - 24+3 - 12+2 - 224 +9 - 113+6
Right-sign prompt - 21+1 - 9+0 - 195+4 - 88+1
Total - 194 +9 - 61+4 - 1685 +132 - 560 + 13
Data - 167 - 55 - 1655 - 551

Table 2: Breakdown of estimated misidentified-lepton contributions in simulation to the one (15) and two (2b) b-tag
opposite- and same-sign (OS and SS) eu event samples from 2015 and 2016 separately. The various misidentified-
lepton categories are described in Section 4.3, and the contributions labelled ‘Other’ include all sources other than
photon conversions and heavy-flavour decays. For the same-sign samples, the estimated contributions of wrong-sign
(where the electron charge sign is misidentified) and right-sign prompt lepton events are also shown, and the total
expectations are compared with the data. The uncertainties are due to the limited size of the simulated samples, and
values or uncertainties shown as zero are less than 0.5 events.

In the opposite-sign sample, the total non-¢¢ background fraction from all sources varies significantly as a
function of some of the differential variables, but remains dominated by Wt events in all bins. It reaches
around 20% in the one b-tag sample and 10% of the two b-tag sample at the high ends of the single-lepton
pL and dilepton p7¥* distributions, but varies little with lepton |n‘|.

4.4 Validation of the differential measurements

A set of tests using pseudo-experiment datasets generated from simulation were used to validate the analysis
procedures for the differential measurements, as documented in detail for the /s = 8 TeV analysis [27].
These tests demonstrated that the method is unbiased and correctly estimates the statistical uncertainties in
each bin of each distribution. Figure 5 shows examples for the p‘;, p?“ , 7’| and |y¢#| distributions. The
filled black points show the relative differences between the mean normalised differential cross-sections
obtained from 1000 pseudo-experiments and the true cross-sections in each bin, divided by the true
cross-sections to give fractional differences. The pseudo-experiments were generated from a reference #¢
sample, and the reference sample was also used to determine the values of G/, ., and C;; in each bin i of
the distributions. The compatibility of the filled black points with zero within the statistical uncertainty
of the reference sample confirms that the method is unbiased for this sample. The open red points and
dotted lines show the mean pseudo-experiment results and true values for an alternative sample with
different underlying distributions, again expressed as fractional deviations from the true cross-sections in
the reference sample, and obtained using G, , and C l‘; values from the reference sample. The alternative
samples were chosen in order to produce a large variation in the distribution under test. An independent
tt simulation sample with m, = 175 GeV was used for the p{f and p?’ distributions, and the baseline ¢7
sample generated with NNPDF3.0 was reweighted to the predictions of the CT14 PDF set [71] for |5
and |y“#|. In all cases, the results are consistent with the true values within the statistical uncertainties of
the alternative samples, demonstrating that the simple bin-by-bin correction procedure correctly recovers
the alternative distributions, without the need for iteration or a matrix-based unfolding technique. Similar
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Figure 4: Distributions of (a) the dilepton p,er” , (b) invariant mass m®, (c) rapidity |y#|, (d) azimuthal angle
difference A¢¥, (e) lepton pr sum pf + p‘T' and (f) lepton energy sum E¢ + E¥, in events with a same-sign ey pair
and at least one b-tagged jet. The simulation prediction is normalised to the same integrated luminosity as the data,
and broken down into contributions where both leptons are prompt, or one is a misidentified lepton from a photon
conversion originating from a top quark decay or from background, from heavy-flavour decay or from other sources.
The statistical uncertainty in the total simulation prediction is significant in some bins, and is shown by the hatching.
In the p7*, m®¥, p¢. + p/ and E€ + EV distributions, the last bin includes the overflows.
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Figure 5: Results of pseudo-experiment studies on simulated events for the extraction of the normalised differential
cross-section distributions for (a) p?, (b) p?’ , (¢) [n¢] and (d) |y°|, shown as relative deviations (0" — Oyef)/Oret from
the reference cross-section values in the PowHEG + PyTHIA6 CT10 (a,b) or PowHEG + PyTHIA8 NNPDF3.0 (c,d)
samples with m; = 172.5 GeV. The black filled points show the mean deviations from the reference values of the
results from pseudo-data samples generated with the reference simulation sample, with error bars indicating the
uncertainties due to the limited number of simulated events. The cyan shaded bands indicate the expected statistical
uncertainties for a single sample corresponding to the data integrated luminosity. The open red points show the mean
deviations from the reference values obtained from pseudo-experiments generated from an alternative simulation
sample with m; = 175 GeV (a, b) or by reweighting the baseline sample to the CT14 PDF (c,d). The red error bars
represent the uncertainty due to the limited size of these alternative samples, and the red dotted lines show the true
deviations from the reference in the alternative samples.

results were obtained for the analogous validation tests performed on the double-differential cross-section
measurements. The various distributions shown in Figure 5 also illustrate the sensitivity of the normalised
differential cross-sections to m, and different PDF sets.
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S Systematic uncertainties

Systematic uncertainties in the measured inclusive cross-section arise from uncertainties in the input
quantities €., Cp, N}’kg, N;’kg and L appearing in Egs. (1), and the corresponding quantities in Egs. (2)
for the differential cross-sections. Each source of systematic uncertainty was evaluated by changing
all relevant input quantities coherently and re-solving the tagging equations, thus taking into account
systematic correlations between the different inputs (and between different bins in the differential analysis).
The sources of systematic uncertainty are divided into the five groups discussed below, and are shown in
detail for the inclusive and fiducial 7 cross-sections in Table 3. The uncertainties are shown in groups for
each bin of the single- and double-differential cross-sections in Tables 13—22, and the uncertainties for the

normalised single-differential cross-sections are also shown in Figure 6.

5.1 tf modelling

The uncertainties in €., Gey, Gé a0 Cpand C }i) (and fnio_T for the T-corrected cross-sections) were evaluated
using the alternative ¢7 samples described in Section 2. The 7 generator uncertainty was determined by
comparing the baseline POWHEG + PyTHIA8 sample with AMC@NLO + Pytr1A8, and the hadronisation
uncertainty by comparing the baseline with PowHtc + HErRwiG7. The initial/final-state radiation uncertainty
was evaluated as half the difference between the PowHEG + PyTH1A8 model variations with more or less
parton-shower radiation. As shown in Table 3, the ¢ generator uncertainty is larger for €, than for G, as
the PowHEG + PyTH1A8 and AMC@NLO + PyTHIA8 samples predict different particle-level acceptances
Aey- In contrast, the differences in A, and G, for the ¢f hadronisation uncertainty have opposite signs,
leading to a smaller shift in €, than in G,,. In the differential analyses, the bin-by-bin shifts in G, and C;
were fitted with polynomial functions to reduce statistical fluctuations. All these comparisons were carried
out without applying the lepton isolation requirements, as the isolation efficiencies were measured in situ
in data as discussed in Section 5.2, and the simulation was only used to predict the lepton reconstruction,
identification and overlap removal uncertainties.

The values of Cp and Cli7 are sensitive to the fraction of ¢7 events with extra bb or ¢é pairs. Such t7
plus heavy-flavour production gives rise to events with three or more b-tagged jets; as can be seen from
Figure 1(a) and also measured in a dedicated analysis [72], this rate is underestimated by the available ¢
models that only produce extra bb or ¢ pairs through the parton shower. The potential effect on Cj, was
studied by reweighting the baseline PowHEG + PyTHIAS #f sample so as to increase the fraction of events
with at least three b-jets at generator level by 40%, an enhancement which reproduces both the rate of
events with three b-tags and the pr and n distributions of the third highest-pt b-tagged jet in these events.
The resulting shifts in Cp, and C li) were assigned as additional systematic uncertainties due to the modelling
of heavy-flavour production in #f events.

Parton distribution function uncertainties were evaluated by reweighting the baseline POWHEG + PyTHIAS
tt sample using generator weights associated with each of the 100 variations (replicas) provided by the
NNPDF3.0 authors [42], and calculating the RMS of the changes induced in €., G, and GZH- The
resulting uncertainties are 0.45% in o;;, but less than 0.1% in O'tﬁfd, as variations of the PDF mainly
affect the acceptance rather than the reconstruction efficiency. Similar uncertainties were found for the
PDF4LHC15_NLO_30 meta-PDF [73], which is based on a Monte Carlo combination of the NNPDF?3.0,
CT14 [71] and MMHT14 [74] PDF sets. The central values from all these PDF sets lie within the
uncertainty band obtained from NNPDF3.0.
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Uncertainty source Aeoy/€ep AGep/Gey ACL/Cp | Aoyi/oys Ao-tﬁfd / O'tﬁfd
(o) (%) (o) (%) (%)
Data statistics 0.44 0.44
tf mod. tf generator 0.38 0.05 0.05 0.43 0.10
tt hadronisation 0.24 0.42 0.25 0.49 0.67
Initial/final-state radiation 0.30 0.26 0.16 0.45 0.41
tt heavy-flavour production 0.01 0.01 0.26 0.26 0.26
Parton distribution functions 0.44 0.05 - 0.45 0.07
Simulation statistics 0.22 0.15 0.17 0.22 0.18
Lept. Electron energy scale 0.06 0.06 - 0.06 0.06
Electron energy resolution 0.01 0.01 - 0.01 0.01
Electron identification 0.34 0.34 - 0.37 0.37
Electron charge mis-id 0.09 0.09 - 0.10 0.10
Electron isolation 0.22 0.22 - 0.24 0.24
Muon momentum scale 0.03 0.03 - 0.03 0.03
Muon momentum resolution 0.01 0.01 - 0.01 0.01
Muon identification 0.28 0.28 - 0.30 0.30
Muon isolation 0.16 0.16 - 0.18 0.18
Lepton trigger 0.13 0.13 - 0.14 0.14
Jet/b Jet energy scale 0.02 0.02 0.06 0.03 0.03
Jet energy resolution 0.01 0.01 0.04 0.01 0.01
Pileup jet veto - - - 0.02 0.02
b-tagging efficiency - - 0.04 0.20 0.20
b-tag mistagging - - 0.06 0.06 0.06
Bkg. Single-top cross-section - - - 0.52 0.52
Single-top/tf interference - - - 0.15 0.15
Single-top modelling - - - 0.34 0.34
Z+jets extrapolation - - - 0.09 0.09
Diboson cross-sections - - - 0.02 0.02
Diboson modelling - - - 0.03 0.03
Misidentified leptons - - - 0.43 0.43
Analysis systematics 0.91 0.75 0.44 1.39 1.31
L/Ey, Integrated luminosity - - - 1.90 1.90
Beam energy - - - 0.23 0.23
Total uncertainty 0.91 0.75 0.44 2.40 2.36

Table 3: Breakdown of the relative systematic uncertainties in €, Gey, and Cp, and the statistical, systematic
(excluding luminosity and beam energy) and total uncertainties in the inclusive and fiducial ¢7 cross-section
measurements. The five groups of systematic uncertainties corresponding to the discussion in Sections 5.1 to 5.5 are
indicated in the leftmost column.
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Figure 6: Relative uncertainties in the measured normalised differential cross-sections coming from data statistics, 7
modelling, leptons, jets and background, as a function of each lepton or dilepton differential variable. The total
uncertainty is shown by the thick black lines, and also includes small contributions from the integrated luminosity
and LHC beam energy uncertainties.
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The prediction for €, is also sensitive to the assumed value of the top quark mass, as a heavier top quark
increases the average lepton pt and makes their |r| slightly more central. This effect was evaluated using ¢7
simulation samples with m, variations from 170 to 177.5 GeV, giving a relative change in €., of 0.3% for a
1 GeV change in m,. The effect is partially counterbalanced by changes in the Wt background prediction,
which decreases with increasing m,. By convention, the inclusive ¢ cross-section o is quoted at a fixed
top quark mass value, but a =1 GeV variation in m; is included in the uncertainties for the lepton differential
distributions.

The total 1z modelling uncertainties also include the small contributions due to the limited size of the
baseline ¢7 simulation sample, and are shown for the differential distributions by the green dotted lines in
Figure 6.

5.2 Lepton identification and measurement

The modelling of the electron and muon identification efficiencies was studied using Z — ee/uu and
J /W — ee/uu events, using the techniques described in Refs. [60, 61]. Small corrections were applied to
the simulation, and the correlations in the associated systematic uncertainties as a function of lepton pt
and n were taken into account and propagated to all differential distributions. Similar procedures were
used to measure the electron and muon trigger efficiencies with Z — ee/uu decays. Since only one
lepton was required to pass the trigger requirements in order to accept the event, the trigger efficiencies
for events passing the offline selection are high, around 97% for 2015 data and 94% for 2016 data.
Most of the efficiency loss comes from events where one lepton has a transverse momentum below the
trigger threshold and the other lepton is above the threshold but fails the trigger selection. The electron
charge misidentification probability was measured as a function of pr and || using the ratio of same- to
opposite-sign reconstructed Z — ee events, and the full difference between data and simulation, which is
only significant for forward electrons with || > 1.5, was assigned as an uncertainty. The electron and muon
energy/momentum scales and resolutions were determined using Z — ee/uu, Z — £y, J /¥ — ee/uu
and ¥ — pu decays [61, 75], and the residual uncertainties are typically much smaller than those associated
with the lepton efficiency measurements.

The lepton isolation efficiencies were measured directly in the tz-dominated eu plus b-tagged jet samples,
by determining the fractions of events where either the electron or muon fails the isolation cut, as functions
of lepton pr and separately for the barrel (|| < 1.5) and forward regions. The results were corrected
for the contamination from misidentified leptons, estimated with the aid of leptons with large impact
parameter significance (|dy|/og, > 5) and the same-sign eu samples. The method was validated by
using the various alternative ¢7 simulation samples (which predict different isolation efficiencies) as
pseudo-data, and by explicitly changing the lepton isolation efficiencies in simulation and verifying that
the measurement procedure recovered the changes. The results using real data show that the baseline 17
simulation sample gives a good modelling of the muon isolation efficiency, but underestimates the electron
isolation efficiency in data by up to 1% at low lepton pr, leading to a total correction of about 0.4% for €.
The residual uncertainties are around 0.2% for both electrons and muons, dominated by the subtraction
of misidentified-lepton background at low pt. For comparison, the differing lepton isolation efficiency
predictions from the various #f simulation samples would lead to differences in €., of up to about 0.4%.
The corresponding corrections as a function of lepton pt and |;7| were propagated to the values of Gfm in
each bin of the differential distributions, and also applied to the estimates for the dominant Wt background.
The total lepton-related uncertainties are shown by the blue dot-dashed lines in Figure 6.
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5.3 Jet measurement and b-tagging

Uncertainties in jet reconstruction and calibration affect the estimates of the background contributions from
Wt and diboson events, and the values of C;, and Cl’;. They also have a very small effect on €, G, and Gi ”
due to the removal of leptons within AR, = 0.4 of selected jets. The jet energy scale was determined using
a combination of simulation, test beam and in situ measurements [65] and the corresponding uncertainties
were evaluated using a model with 20 independent uncertainty components. The jet energy resolution
was measured using Run 1 data [76] and the resulting uncertainties were extrapolated to the /s = 13 TeV
data samples. The modelling of the JVT requirement used to reject jets coming from pileup was evaluated
using jets in Z — uu events [66].

The efficiency for b-tagging jets in 7 events was extracted from the data via Egs. (1), but simulation was
used to predict the numbers of b-tagged jets in Wt and diboson background events. The values of Cj, and
C l‘; also depend weakly on the efficiencies for tagging both heavy- and light-flavoured jets. The modelling
of the b-tagging performance in simulation was corrected using scale factors determined using dileptonic ¢¢
events for b-jets [67], single-lepton 7 events for charm jets [77], and dijet events for light-quark and gluon
jets [78]. The corresponding uncertainties were propagated to the background and correlation coefficient
estimates. The uncertainties related to jets and b-tagging are shown by the purple dashed lines in Figure 6,
and are dominated by the effects of b-tagging uncertainties on the background estimates.

5.4 Background modelling

The normalisation of the Wt background was varied by 5.3%, corresponding to the PDF and QCD scale
uncertainties on the approximate NNLO cross-section prediction discussed in Section 2. The potential
effects of interference between the ¢ and Wt final states were assessed by comparing the predictions of
PowHEG + PyTH1A6 samples with the diagram removal and diagram subtraction approaches to handling this
interference [51, 54, 79]. The corresponding uncertainty in the inclusive cross-section result is small, but
the diagram subtraction method predicts up to 30% less Wt background in the one b-tag sample and 60%
less in the two b-tag sample at the high ends of the lepton pr and dilepton p7*, m*#, pS. + pf and E¢ + E¥
distributions, where interference effects become large and dominate the total uncertainty (see Figure 6).
However, a dedicated study of events with two leptons and two b-tagged jets [80] suggests that the data
lie between the predictions of the models with diagram removal and diagram subtraction in the region
where interference effects are important. Further modelling uncertainties were assessed by comparing the
predictions from the baseline Wt sample with those of AMC@NLO interfaced to HERwiG++ [81], with
PowHEG + PyTH1A6 samples with more or less parton-shower radiation, and with PowHEG + HERWIG7,
in all cases normalising the total production cross-section to the approximate NNLO prediction. The
small background acceptance uncertainties due to variations of the PDFs were evaluated using NNPDF3.0
replicas in the same way as for the ¢7 signal. They were taken to be uncorrelated with the signal PDF
uncertainties, but are included in the ‘Parton distribution functions’ entry in Table 3.

Uncertainties in the diboson background were assessed by varying the cross-sections by 6% based
on calculations with MCFM [82] using the CT10 PDF set [18], and changing the QCD factorisation,
renormalisation, resummation and CKKW matching scales by factors of two up and down within the
SHERPA generator. The combined uncertainties amount to 12% of the diboson contribution to the one b-tag
sample and 33% for the two b-tag sample.
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The backgrounds from Z+jets and events with misidentified leptons were estimated using data control
samples, and the corresponding uncertainties were evaluated as discussed in Section 4.3. The total
background-related uncertainties in the normalised differential cross-sections are shown by the red solid
lines in Figure 6, and are dominated by those in the Wt background.

5.5 Luminosity and beam energy

The uncertainties in the integrated luminosity are 2.0% for the 2015 and 2.1% for the 2016 datasets,
evaluated as discussed in Ref. [83] using a calibration of the LUCID-2 detector [84] obtained from
x—y beam-separation scans in each year. For the inclusive cross-section analysis, the total luminosity
uncertainties were broken down into individual components which were each considered correlated or
uncorrelated between years, as appropriate, in the combination of the cross-section results from the two
datasets [83]. A single luminosity uncertainty of 2.1% in the combined 2015-16 sample was used for the
differential cross-section analysis. In both cases, the luminosity-induced uncertainties in the measured
cross-sections are around 10% larger than the uncertainty in the integrated luminosity itself, as the integrated
luminosity is needed both for the conversion of the #7 event yields to 037, and in order to normalise the
simulation-based estimates of the Wt and diboson backgrounds.

The LHC beam energy is known to be within 0.1% of the nominal value of exactly 6.5 TeV per beam for
v/s = 13 TeV collisions, based on the LHC magnetic model and comparisons of the revolution frequencies
of proton and lead-ion beams [85]. A 0.1% variation in /s corresponds to a 0.23% variation in o7,
according to the NNLO+NNLL predictions of Top++ [14]. Following the approach of previous analyses
[7, 9], this uncertainty is included in the experimental uncertainty of o;;, allowing the measurement to be
compared with theoretical predictions for o7 at exactly 4/s = 13 TeV. The beam energy uncertainty also
affects the predictions for both the absolute and normalised differential distributions, as e.g. the lepton
pr distributions become slightly harder and the |5¢| distributions slightly more forward as /s increases.
These shifts were evaluated by reweighting the AMC@NLO + PyTH1A8 77 sample using PDF weights
calculated using LHAPDF [86] so as to vary the effective /s by +0.1%, and the resulting uncertainties
were included in the differential cross-section results. The combined effects of the luminosity and beam
energy uncertainties on the normalised differential cross-sections are listed in Tables 13—16, and are at most
0.3%, always small compared with the other systematic and statistical uncertainties of the measurements.

6 Inclusive cross-section results and interpretation

The results of the inclusive 77 cross-section analysis are given in Section 6.1, followed by the extraction of
the top quark mass in Section 6.2 and the determination of ratios of cross-sections at different /s values in
Section 6.3. The analyses were initially performed ‘blind’ by multiplying the o7 values by an unknown,
randomly chosen scale factor which was only removed after verifying that consistent results were obtained
from the 2015 and 2016 datasets, and after finalising all systematic uncertainties and stability studies.
As a validation of the analysis procedures, the yields of Z — ee and Z — uu selections relative to the
expectations from POwWHEG + PyTH1a8-based Z — £{ simulation were also compared across all data-taking
periods and trigger selections, and found to be compatible within the assigned systematic and very small
statistical uncertainties.
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Dataset o7 [pb] a'ft_d [pb]

All data 830.7+22+11.6+184+19(22.0) | 14.14+0.04 £0.19 £ 0.31 £ 0.03 (0.37)
2015 data 820.9+69+11.9+18.4+1.9(23.1) | 13.98+0.12+0.19 £ 0.31 +£0.03 (0.39)
2016 data 831.8+23+11.6+19.5+1.9(229) | 14.16 £ 0.04 £ 0.19 £ 0.33 £ 0.03 (0.39)
Combination | 826.4 +3.6 £+ 11.5+15.7+1.9(19.9) | 14.07 £ 0.06 £ 0.18 £ 0.27 = 0.03 (0.33)

Table 4: Measurements of the inclusive total (o;;) and fiducial (o-tﬁt_d) 1f production cross-sections at v/s = 13 TeV
using the full dataset, the 2015 and 2016 datasets separately, and the combination of the 2015 and 2016 measurements.
The fiducial cross-section requires an opposite-sign ey pair, with both leptons having pr > 20 GeV and || < 2.5, as
discussed in Section 4.1. The four uncertainties for each measurement correspond to the statistical, experimental
and theoretical systematic, integrated luminosity, and beam energy uncertainties. The total uncertainty is given in
parentheses after each result.

6.1 Total and fiducial cross-section results

Table 4 shows the results for o7 and O'tﬁl-d from the entire 2015-16 dataset treated as a single sample,
the 2015 and 2016 datasets separately, and the combination of 2015 and 2016 results. The latter was
performed using the best linear unbiased estimator technique [87, 88], taking into account correlations in
the systematic uncertainties. The combination gives the smallest total uncertainty, 9% smaller than that
from all data treated as one sample, and gives the final results:

o = 8264+3.6+11.5+15.7+1.9pb, and
o-tﬁfd = 14.07 +£0.06 + 0.18 + 0.27 + 0.03 pb,

where the four uncertainties are due to data statistics, experimental and theoretical systematic effects
internal to the analysis, the knowledge of the integrated luminosity, and the knowledge of the LHC beam
energy. The total relative uncertainties are 2.4% for both o7 and O'tﬁz-d. The 2015 and 2016 datasets have
relative weights of 0.49 and 0.51. The uncertainties due to the luminosity are only partially correlated
and are similar in magnitude in both datasets, leading to approximately equal weights despite the much
larger data sample from 2016. Other uncertainties are largely correlated between the two datasets, except
for those with data-driven components, such as the electron and muon identification efficiencies, and
the misidentified-lepton background estimate. The y? for the combination of 2015 and 2016 data is
0.23 for one degree of freedom, demonstrating good compatibility of the results. The values of €,
obtained in 2015 data and simulation are very similar, and 1.6% lower in 2016 data than simulation, well
within the expected uncertainties in the modelling of b-tagging performance [67]. The result for oy; is
reported for a fixed top quark mass of m; = 172.5 GeV, and depends on the assumed value according to
(1/oys) doys/dm, = —0.20%/GeV. The m; dependence of a’f‘t_d is negligible. The fiducial cross-section was
also corrected to remove the contribution of events with leptons from leptonic T decays as discussed in
Section 4.2, giving a result of agflno_T =12.05+0.05+0.16 £ 0.23 + 0.03 pb.

The breakdown of statistical and systematic uncertainties in the measurements is given in Table 3, which
also shows the average uncertainty contributions to €., and Cp,, weighted as in the combination. The largest
uncertainties come from the calibration of the integrated luminosity, followed by ¢ modelling (generator,
hadronisation, radiation and PDFs), background modelling (Wt single-top cross-section and misidentified
leptons), and lepton identification efficiencies. The uncertainties due to 7 generator choices and PDFs are
smaller for (Ttﬁt_d than for oz, but are offset by a larger uncertainty due to ¢f hadronisation, such that the total
uncertainties in the two measurements are very similar.
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The results are stable within the statistical uncertainties when increasing the minimum jet pt requirement
from the nominal value of 25 GeV up to 75 GeV, where the tagging correlations become much stronger
(Cp = 1.16). The results are also stable when tightening the jet selection to || < 1.0 and changing the
b-tagging selection to use the 60% or 77% efficiency working points. However, a significant trend was
found when tightening the lepton pr requirement from the nominal pt > 20 GeV in several steps up to
pr > 55GeV, where €., is reduced by a factor 4.4 and o7 changes by —3.9 + 0.7%, the uncertainty
corresponding to the uncorrelated statistical component only. This is caused by the lepton pt spectrum in
data being significantly softer than that in the baseline PowHEG + PyTHIA8 simulation (see Figures 1(c)
and 1(e), and Figure 11(a) below). As discussed in Section 7.2 and shown in Figure 15, the p? distribution
is better described by the alternative AMC@NLO + PyTH1A8 7 sample, or by reweighting the baseline
PownEeG + PyTHI1A8 sample to better describe the measured top quark pt spectrum [89]. Using either of
these tf samples to calculate €., increases the measured o; with a lepton pr > 20 GeV requirement by
about 0.5%, and greatly improves the stability of the result against changes in the lepton pr requirement.
Since this change is similar to the already assigned ¢ modelling uncertainties (in particular from the
AMC@NLO vs PowHEG comparison), no additional uncertainty was included.

The inclusive cross-section result, together with previous measurements at /s = 7 TeV and /s = 8 TeV [7],
is compared in Figure 7 with the NNLO+NNLL QCD prediction described in Section 1. The measurement
agrees with the predictions using the CT10, MSTW2008 and NNPDF2.3 PDF sets combined with the
PDFALHC prescription. It is significantly more precise than this prediction, demonstrating the power
of the measurement to constrain the gluon PDF at high Bjorken-x. The result is also consistent with,
and supersedes, the previous ATLAS measurement using the same technique applied to 2015 data alone,
which had an uncertainty of 4.4% [9]. It is also consistent with results from CMS in the dilepton [13] and
lepton+jets [12] final states, but again has higher precision.

6.2 Extraction of the top quark pole mass

pol
t

exploited to interpret precise measurements of o;; as measurements of mltmle, as discussed in Section 1.
The ATLAS +/s = 7 and 8 TeV measurements in the ey channel were interpreted in this way, giving a

combined value of mf°le = 172.93:2 GeV [7], and similar measurements have been performed by CMS at

Vs =7,8and 13 TeV [10, 12, 13], as well as by DO at the Tevatron pp collider [90].

The strong dependence of the inclusive ¢7 cross-section prediction on the top quark pole mass " can be

The NNLO+NNLL prediction for o7 as a function of mf()le at v/s = 13 TeV was calculated using Top++
[14] with the CT14 NNLO PDF set [71], a recent PDF set which does not use any ¢ cross-section data as
input. The resulting dependence was parameterised using the functional form proposed in Ref. [5]:

ref

I my )
0.;?60(’"?0 e) — a'(mlfef) (W (1 +a1x +axx ) .

t

1 ~
Here, x = (mf o _ mﬁef) / mget, the constant mief = 172.5GeV, and O'(mgef), a; and a; are free parameters.

The resulting function is shown in Figure 8. The measurement of o7 given in Section 6.1 is also shown,
with its small dependence on m, due to variations of the experimental acceptance and Wt background
discussed in Section 5.1. These variations were studied using 7 and Wt simulation samples with several
values of m,, and the corresponding dependencies of €., N Pke and NP*€ on m, were parameterised with

1 2
second-order polynomials. The mass parameter used to characterise the dependence of the measured o7
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Figure 7: Inclusive f cross-section o7 as a function of centre-of-mass energy /s, comparing ATLAS results from
the ey plus b-tagged jets final state at 4/s = 7, 8 and 13 TeV with NNLO+NNLL theoretical predictions [5] calculated
using Top++ [14] using the PDF4ALHC prescription for PDF and ag uncertainties [15], and m; = 172.5 GeV. The
lower plot shows the ratios of the measurements and predictions to the central value of the prediction using PDFALHC.
The total uncertainties when using the individual NNPDF2.3, MSTW and CT10 PDFs are shown as overlapping
hatched or coloured bands, and the dotted lines show the QCD scale uncertainties alone. The /s = 7 and § TeV
results are taken from Refs. [7], with the LHC beam energy uncertainties reduced according to Ref. [85].
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Figure 8: Predicted inclusive ¢ cross-section at vs = 13 TeV as a function of the top quark pole mass m}* e, for

the CT14 PDF set. The cyan band indicates the total uncertainty in the prediction from PDF+ag and QCD scale
uncertainties. The experimental measurement with its uncertainty and dependence on the assumed value of m;
through acceptance and background corrections is shown by the black points with error bars.

on m; represents the top quark mass used in the Monte Carlo event generators rather than m?, but since
the dependence of the measured o7 on m;, is small, this approximation causes negligible blas if m; and

pde differ by only a few GeV. Under these conditions, the intersection of the theoretical and experimental
curves shown in Figure 8 gives an unambiguous extraction of the top quark pole mass.

The mass extraction was performed by maximising the following Bayesian likelihood as a function of mpOIB.

L) = / G(o, | (™), sexp) - G(oy [ 0P, s ) dor, Q)

where G(x | 4, s) represents a Gaussian probability density in the variable x with mean u and standard
deviation s. The ﬁrst Gaussian term in the integral represents the experimental measurement o;; with its
dependence on mf and uncertainty Sexp, and the second term represents the theoretical prediction o-theo
with its asymmetric uncertainty s} = obtained from the quadrature sum of the combined PDF plus as
uncertainty, and the QCD scale uncertalnty, each evaluated as described in Section 1. The likelihood in
Eq. (7) was maximised to obtain mp ° when using the CT14 PDF set to calculate o theo , and also when
using the individual CT10, MSTW and NNPDF2.3 PDF sets to calculate a'theo for comparison with the
v/s = 7 and 8 TeV results. The MMHT and NNPDF3.0 PDF sets were not considered as they include ¢7
cross-section data in order to constrain the gluon PDF, and hence cannot also be used to determine mpole
without introducing a circular dependence [91]. In each case, the value of 0,7 was recalculated using
the corresponding NLO PDF set to calculate the value of €,,. The results from each PDF set are shown
in Table 5, together with the result using the PDF4LHC prescription to combine the CT10, MSTW and
NNPDF2.3 results, keeping the CT10 central value but enlarging the uncertainty to cover the envelope of
the positive and negative uncertainties of each individual PDF set.

Table 6 shows the breakdown of uncertainties in mP”* calculated using the CT14 PDF set, which are
dominated by uncertainties in o-theo through PDF+ag and QCD scale variations. Improving the experimental
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PDFset | m™° [GeV]

CT14 173.1439

2.0
CT10 172.1429
MSTW 172.3+39

NNPDF2.3 | 173.4*19

1.9
PDFALHC | 172.173

Table 5: Top quark pole mass results for various PDF sets, derived from the 7 cross-section measurement at
Vs = 13 TeV. The uncertainties include PDF+as, QCD scale and experimental sources. The PDF4LHC result spans
the uncertainties of the CT10, MSTW and NNPDF2.3 PDF sets.

Uncertainty source Amf ole [GeV]

Experimental 1.0
+1.5

PDF+ag w1
QCD scales f}:g
: +2.0

Total uncertainty 33

Table 6: Uncertainties in the top quark pole mass extracted from the #7 production cross-section measurement at
/s = 13 TeV, using the CT14 PDF set.

measurement of o7 further would therefore have little effect on the determination of mP" via this method.

t
The result is compatible with other measurements of mf()le via lepton differential distributions [27], and
via the reconstruction of top quark differential distributions in inclusive ¢z [92] and ¢ +jet [93] events, as
well as previous measurements using the total ¢f cross-section [7, 10, 12, 13, 90]. The result using the
CT14 PDF improves upon the previous ATLAS result from /s = 7 and 8 TeV data using the CT10, MSTW
and NNPDF2.3 PDFs combined with the PDFALHC prescription [7]. However, using the PDFALHC
prescription with the 4/s = 13 TeV data gives a larger uncertainty of 3:(1) GeV, as the prediction of o7 from
NNPDF2.3 starts to diverge from that of CT10 and MSTW at higher +/s (see Figure 7), leading to a larger

spread in the m; values from the different PDF sets.

6.3 ttf and tt/Z cross-section ratios at different energies

The ratios Rg , and Rig ¢ Were calculated using the Vs = 13 TeV o7 result discussed above and the /s = 7
and 8 TeV results from Refs. [7], corrected to reduce the LHC beam energy uncertainty to 0.1% [85]. As
the nominal ¢7 simulation sample used at 4/s = 7 and 8 TeV was POWHEG + PyTH1A6 with the CT10 PDFs,
the vs = 13 TeV result was rederived using a similar #7 sample to calculate €., and Cp, increasing the
13 TeV o7; value by 0.46%. PDF uncertainties were evaluated for each of the error sets or replicas of the
CT10, MSTW and NNPDF2.3 PDF sets, considering the effect of each individual variation to be correlated
between the numerator and denominator of the o7 ratio. Significant cancellations occur, leading to PDF
uncertainties of about 0.5% in each ratio, significantly smaller than the 1% uncertainties for the /s = 7
and 8 TeV oy measurements. The parton-shower radiation uncertainties were similarly evaluated using
PowHEG + PyTHIAG samples with more and less parton-shower radiation in all datasets, giving residual
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/s values [TeV] Measured cross-section ratio NNLO+NNLL prediction
13/7 4.54+£0.08 £0.10 £ 0.12 (0.18) 4.69 +0.16
13/8 3.42+0.03 £ 0.07 £0.10 (0.12) 3.28 +0.08
8/7 1.33 +0.02 £ 0.02 £ 0.04 (0.05) 1.43 +0.01

Table 7: Ratios of inclusive ¢f production cross-sections measured at v/s = 13, 7 and 8 TeV, together with the
corresponding NNLO+NNLL predictions using Top++ [14] with the PDFALHC prescription for PDF and ag
uncertainties [15]. The three uncertainties in the measured ratios are due to data statistics, experimental and
theoretical systematic effects (including the LHC beam energy uncertainties) and knowledge of the integrated
luminosities of the data samples. The ratio of v/s = 8 and 7 TeV results is taken from Ref. [7]. The total uncertainty
is given in parentheses after each result.

uncertainties of around 0.4% in the ratios. Other #f modelling uncertainties due to the choice of NLO
generator and hadronisation model were conservatively taken to be uncorrelated, due to the different
alternative generators used in the measurements. The uncertainties due to the Wt background cross-section
and 17/Wt interference were assessed in the same way at all /s values and considered correlated. Lepton,
jet and b-tagging uncertainties were mainly considered uncorrelated, due to the changes in detector
configuration and lepton identification algorithms between measurements. The integrated luminosity
measurements were based on different primary detectors at 7-8 TeV and 13 TeV, and the luminosity scale
was calibrated using individual beam-separation scans in each dataset [83, 94, 95] with only a fraction of
the uncertainties being correlated. The total luminosity uncertainties were therefore conservatively taken
to be uncorrelated in the o7 ratio measurements. The beam energy uncertainties are correlated between
/s values, but the varying dependence of o7 on /s (see Figure 7) leads to a small (< 0.1%) residual
uncertainty on the ratios.

The resulting cross-section ratios are shown in Table 7, together with the NNLO+NNLL predictions
calculated using Top++ as described in Section 1, with the uncertainties from the CT10, MSTW and
NNPDF2.3 PDFs combined according to the PDFALHC prescription. The total uncertainties in the

measurements are 3.9% for Rig /7 and 3.6% for Ritz /8 improving on the uncertainties of 4.9% and 4.7%

obtained using the 2015 +/s = 13 TeV dataset alone in Ref. [25]. Figure 9 compares the measurements
with the predictions using the CT10, MSTW and NNPDF2.3 PDF sets, as well as the more recent CT14
[71], ABM12LHC [96], ABMP16 [97], ATLAS-epWZ12 [98], HERAPDF2.0 [99], MMHT14 [74] and
NNPDF3.0 [42] PDF sets, some of which include some LHC data (including ¢ cross-section measurements

in the cases of ABM12LHC, ABMP16, MMHT and NNPDEF3.0). The ratio Rg /7 is lower than all the

predictions, and the ratio Rig /8 higher than all the predictions except ABM12LHC. However, both ratios
are compatible with all the predictions except ABM12LHC within two standard deviations. Some of these
results are also reflected in Figure 7. The behaviour of ABM12LHC is attributed to the lower gluon density
at high Bjorken-x compared to the other considered PDF sets, which leads to a larger relative increase in
the ¢7 cross-section as a function of +/s. This behaviour is less apparent in the more recent ABMP16 PDF
set, which includes more precise constraints from LHC top quark measurements. The current experimental
uncertainties, dominated by the luminosity uncertainties which do not cancel in the ratios, do not allow the

predictions using the other PDFs to be distinguished.

As discussed in Ref. [25], double ratios of ¢7 to Z cross-sections at different energies can be used to reduce
the luminosity uncertainty, potentially enhancing the sensitivity to PDF differences. The ¢ cross-section at

a given energy can be normalised to the corresponding Z — ¢¢ fiducial cross-section O'Sd_) ¢¢ At the same
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Figure 9: Ratios of ¢7 production cross-sections at different energies: (a) Rig 7 (b) Ri‘; s The bands show the

experimental measurements with the statistical (inner yellow bands), statistical plus experimental and theoretical
systematic (middle cyan bands) and total including luminosity (outer green bands) uncertainties. The black triangles
with error bars show the predictions and uncertainties from various PDF sets. The last entry shows the prediction
using the PDF4LHC recipe, encompassing the predictions from the CT10, MSTW and NNPDF2.3 PDF sets.

energy by defining the ratio R""/# as:
Ot

fid fid ’
0.5 (O'Z_)ee + O'Z_)H”)

Rl‘f/Z — (8)

where the use of the unweighted average of Z — ee and Z — ppu cross-sections maximises the potential
cancellation of electron- and muon-related systematic uncertainties when the ¢f cross-section is measured
using events with one electron and one muon. Provided that the 7 and Z cross-sections are measured using
the same data sample, the integrated luminosity uncertainty cancels almost completely in the ratio R’ iz,
Double ratios R;;J/.Z of R/ at two different energies i and j can then be defined:
iz _ RTZ(D)
ilj Rtf/Z(j) ’

which benefit from cancellations of uncertainties between beam energies and production processes. In Ref.
[25], the previous measurement of o7 at 4/s = 13 TeV from Ref. [9] was used together with the /s = 7 and
8 TeV o7 measurements from Refs. [7] and corresponding measurements of (rgd_) (¢ dteach energy to derive
double ratios Rig/ﬁ Rig//g and R;%Z, which were compared with the predictions from various PDF sets.
The Z — {¢ cross-sections were measured in a fiducial volume corresponding to the lepton acceptance

(pr > 25GeV and || < 2.5) with the dilepton invariant mass in the range 66 < mgr < 116 GeV.

The precision of the 7/ Z ratio and double ratios involving v/s = 13 TeV data were limited by the 4.4%
uncertainty in the corresponding o measurement. These ratios have therefore been updated using the
more precise Vs = 13 TeV o7 measurement shown in Table 4. The result from 2015 data alone (with an
uncertainty of 2.8%) was used in order to maintain the cancellation of luminosity uncertainties in Eq. (8),
as the corresponding 0'2‘1_) ;¢ measurements only used the 2015 data sample. Since the o7 result was
derived using reoptimised lepton identification and updated calibrations, the lepton uncertainties were
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+/s value [TeV] tt/Z cross-section ratio CT14 prediction
13 1.062 £ 0.009  0.016 + 0.002 (0.018)  1.132*5-078
/s values [TeV] tt/Z cross-section double ratio
13/7 2.617 +0.049 + 0.060 + 0.007 (0.078)  2.691*0-0%
13/8 2.212 +0.024 + 0.049 + 0.006 (0.055) ~ 2.124*0-03¢

Table 8: Measurements of the ratio of t7/Z cross-sections at /s = 13 TeV, and double ratios of t7/Z cross-sections
at v/s = 13TeV and /s = 7TeV or /s = 8 TeV, compared with predictions using the CT14 PDF set. The three
uncertainties in the measurements are due to data statistics, experimental and theoretical systematic effects (including
the small uncertainty due to the LHC beam energy uncertainties) and knowledge of the integrated luminosities of the
data samples. The total uncertainty is given in parentheses after each result.

conservatively treated as uncorrelated between the /s = 13 TeV 7 and Z measurements. The largest
uncertainties in the double ratio are associated with ¢f modelling, and these were treated in the same way as
for the updated 7 cross-section ratios discussed above, including the 0.46% increase of the /s = 13 TeV
o7 value corresponding to the use of a PowHEG + PyTH1A6 CT10 nominal ¢7 simulation sample. All other
uncertainties were treated according to the correlation model described in Ref. [25], with the LHC beam
energy uncertainties updated according to Ref. [85].

The resulting single and double ratios are shown in Table 8, together with the predictions using the CT14
PDF set, calculated as described in Ref. [25]. The largest uncertainties come from the o7 measurements,

in particular the 1 modelling uncertainties. The total uncertainties are 1.7% for Rg/ % 3.0% for Ri;ﬁ and

2.5% for R;;/ g, which are significant improvements on the corresponding uncertainties of 3.5%, 3.8% and
3.6% in Ref. [25]. The results are compared with the predictions of the ABM12LHC, CT14, NNPDF3.0,
MMHT, ATLAS-epWZ12 and HERAPDF2.0 PDF sets (the same sets as in Ref. [25]) in Figure 10. The
measurement of the ¢7/Z cross-section ratio at v/s = 13 TeV is compatible with all the predictions within
two standard deviations. Although the experimental uncertainty is only 1.7%, the predictions have common
uncertainties of fi:g% from QCD scale and top quark mass variations, limiting the sensitivity to PDF
variations. The pattern for the double ratios is similar to that seen for the ¢7-only ratios in Figure 9; the
normalisation to Z — ¢ cross-sections serves mainly to reduce the luminosity-related uncertainties. The
double ratio Rig/ ? lies below all the predictions, and Ri;//g lies above all the predictions except that of
ABMI2LHC. However, the measurements are consistent with all the predictions within two standard
deviations, with the exception of ABM12LHC for Ri;//f Similar trends were seen in Ref. [25], although
with less separation between PDFs due to the larger uncertainties in the double ratios.

7 Differential cross-section results

The single-lepton and dilepton absolute fiducial differential cross-section results were obtained by solving
Egs. (2) for each bin i of each distribution, using the combined 2015-16 data sample. The normalised
differential cross-sections were obtained from the absolute results using Eqgs. (3) and (4). As in the inclusive
cross-section analysis, the results were found to be stable when varying the jet pr, || and b-tagging
requirements. The single-lepton p? and |n¢| distributions were also measured for electrons and muons
separately, instead of combining them into lepton distributions with two entries per event, and found to be
compatible. The distributions of bin-by-bin differences in the electron and muon differential cross-sections
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Figure 10: (a) Ratio of 7 to Z production cross-sections at /s = 13 TeV, and double ratios of ¢ to Z production
cross-sections at different energies: (b) Rig//f, (c) Rig//g The bands show the experimental measurements with the
statistical (inner yellow bands), statistical plus experimental and theoretical systematic (middle cyan bands) and total
including luminosity (barely visible outer green bands) uncertainties. The black triangles with error bars show the
predictions and uncertainties from various PDF sets. The /s = 13 TeV results use only the 3.2 fb~! data sample

recorded in 2015.
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have y? per degree of freedom of 7/10 for p? and 13/8 for |5¢|, in both cases taking statistical and
uncorrelated systematic uncertainties into account.

7.1 Results for measured distributions

The measured absolute and normalised fiducial differential cross-sections are shown in Table 13 (p? and
In|), Table 14 (p;” and m°"), Table 15 (|y*| and A¢“*) and Table 16 (p7. +p’; and E€ + E*) in the
Appendix. The double-differential cross-sections are shown in Tables 17-18 (|n¢| x m*), Tables 19-20
(|y*| x m*) and Tables 21-22 (JA¢?| x m®*). These tables show the measured cross-section values
and uncertainties, together with a breakdown of the total uncertainties into components corresponding
to data statistics (‘Stat’), tf modelling (‘¢ mod.’), lepton identification and measurement (‘Lept.’), jet
and b-tagging uncertainties (‘Jet/b’), background uncertainties (‘Bkg.”) and luminosity/beam energy
uncertainties (‘L/Ey’), matching the categories described in Sections 5.1-5.5. The rightmost columns
show the cross-sections corrected using Eq. (5) to remove the contributions where at least one lepton
results from a leptonic decay of a 7-lepton. As also visible in Figure 6, the total uncertainties in the
normalised differential cross-sections range from 0.6% to around 10%, and are typically around half those
for the corresponding distributions measured at v/s = 8 TeV [27]. The largest uncertainties are generally
statistical, but background uncertainties (in particular from #£/Wt interference) become dominant at the
high ends of the p{}, p%” , mH, pl+ p"T‘ and E¢ + E* distributions, and #f modelling uncertainties from
the comparison of AMC@NLO + PyTHIA8 and POowHEG + PyTHIA8 are dominant for most of the A¢¥
distribution. Uncertainties related to leptons and jets generally play only a minor role; in particular those
due to jet energy measurement and b-tagging are suppressed due to the determination of €, from data in
Egs. (2). The systematic uncertainties in the normalised differential cross-sections benefit from significant
cancellations between bins, and the uncertainties in the absolute cross-sections are substantially larger. The
latter also suffer from the uncertainties in the integrated luminosity and beam energy, which contribute
2.3-2.8%, depending on the background level in each bin.

The measured normalised differential cross-sections are shown graphically in Figures 11-14. The different
m® bins for the double-differential cross-sections are shown sequentially on the x axes, separated by
vertical dotted lines. The measured cross-sections are compared with the particle-level predictions from
the baseline POWHEG + PyTHIAS ¢f sample, PowHEG + PyTH1A8 samples with more or less parton-shower
radiation, and AMC@NLO + PyTH1A8. The trends seen are similar to those visible in the reconstructed
distributions shown in Figures 1 and 2, and are discussed in the context of comparisons with a larger set of
samples in the following.
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Figure 11: Normalised differential cross-sections as a function of (a) pg, (b) |71€|, (c) p?” and (d) m®*. The measured
values are shown by the black points with error bars corresponding to the data statistical uncertainties and cyan bands
corresponding to the total uncertainties in each bin, and include the contributions via W — 7 — e/u decays. The
data points are placed at the centre of each bin. The results are compared with the predictions from the baseline
PowHEG + PyTH1AS 7 sample, POwHEG + PyTHIA8 samples with more or less parton-shower radiation (RadUp and
RadDn), and an AMC@NLO + PyTH1A8 sample. The lower plots show the ratios of predictions to data, with the
error bars indicating the data statistical uncertainties and the cyan bands indicating the total uncertainties in the
measurements.
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Figure 12: Normalised differential cross-sections as a function of (a) [y*/|, (b) A¢°¥, (¢) pf. + p# and (d) E€ + E*.
The measured values are shown by the black points with error bars corresponding to the data statistical uncertainties
and cyan bands corresponding to the total uncertainties in each bin, and include the contributions viaW — 7 — e/pu
decays. The data points are placed at the centre of each bin. The results are compared with the predictions from
the baseline POWHEG + PyTHIAS tf sample, POWHEG + PyTH1A8 samples with more or less parton-shower radiation
(RadUp and RadDn), and an AMC@NLO + PyTH1a8 sample. The lower plots show the ratios of predictions to data,
with the error bars indicating the data statistical uncertainties and the cyan bands indicating the total uncertainties in
the measurements.
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Figure 13: Normalised double-differential cross-sections as functions of || and m®* (top), and |y°#| and m°*
(bottom). The measured values are shown by the black points with error bars corresponding to the data statistical
uncertainties and cyan bands corresponding to the total uncertainties in each bin, and include the contributions
via W — 1t — e/u decays. The data points are placed at the centre of each bin. The results are compared with
the predictions from the baseline POwWHEG + PyTHIA8 7 sample, POWHEG + PyTHIA8 samples with more or less
parton-shower radiation (RadUp and RadDn), and an AMC@NLO + PytH1a8 sample. The lower plots show the ratios
of predictions to data, with the error bars indicating the data statistical uncertainties and the cyan bands indicating the
total uncertainties in the measurements.
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Figure 14: Normalised double-differential cross-sections as a function of A¢°# and m®#. The measured values
are shown by the black points with error bars corresponding to the data statistical uncertainties and cyan bands
corresponding to the total uncertainties in each bin, and include the contributions via W — 7 — ¢/u decays. The
data points are placed at the centre of each bin. The results are compared with the predictions from the baseline
PowHEG + PyTHIAS 17 sample, POWHEG + PyTHIAS samples with more or less parton-shower radiation (RadUp and
RadDn), and an AMC@NLO + PyTH1A8 sample. The lower plots show the ratios of predictions to data, with the
error bars indicating the data statistical uncertainties and the cyan bands indicating the total uncertainties in the
measurements.

7.2 Comparison with event generator predictions

The measured normalised differential cross-sections are compared to a set of particle-level predictions from
different Monte Carlo #7 event generator configurations in Figures 15-21. These figures show the ratios of
each prediction to the data as functions of the differential variables, with the comparison organised into the
four groups of samples summarised in Table 9. These include samples based on PowneG or AMC@NLO
for the NLO matrix-element generator, interfaced to PyTa1A8, PYTHIAG or HERWIG7, and using various
PDF sets. As well as NNPDF3.0 [42] used for the baseline samples, the global NLO PDF sets CT10 [18],
CT14 [71], MMHT14 [74] and PDFALHC_NLOQO_30 [73] are shown, together with the HERAPDF 2.0 PDF
set, based mainly on deep inelastic scattering data [99]. Furthermore, the POowHEG + PyTHIA8 samples with
more (denoted ‘RadUp’) or less (‘RadDn’) parton-shower radiation described in Section 2 are included,
together with samples which differ from the baseline PowHEG + PyTH1A8 configuration only by changes of
the factorisation and renormalisation scales ur and ur up and down by factors of two.

The baseline PowHEG + PyTH1A8 configuration is known to predict too hard a top quark pr distribution com-
pared to data at /s = 13 TeV [89] and /s = 8 TeV [100], and compared to NNLO QCD calculations [101].
To explore the effect of this mismodelling on the lepton differential distributions, the POWHEG + PyTHIA8
tt sample was reweighted according to the top quark pr in each event, using a linear function whose
parameters were chosen so as to reproduce the measured top quark pr distribution shown in Figure 19
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Matrix element PDF Parton shower/tune = Comments

1 PowHEG NNPDEF3.0 PyTHIAS Al4 hgamp = %mt
PowHEG CTI10 PyTHIA6 P2012 hdamp = my
POWHEG NNPDF3.0  Herwic7 H7UE Rdamp = 3,
PowHEG NNPDF3.0 PyTHIA8 Al4 top quark pt reweighted to Ref. [89]
2 PowHEG NNPDEF3.0 PyTHiA8 Al4v3cDo  hgamp = %mz, 2ugr (RadDn)
PowHEG NNPDEF3.0 PyTtHia8 Al4v3cUp  hgamp = 3my, % urRr (RadUp)
PowHEG NNPDEF3.0 PyTHiA8 Al4 hdamp = %m,, 2UER
PowHEG NNPDF3.0  Pyrmia8 Al4 Rdamp = 3M;, % UER
3 PowHEG NNPDF3.0 ~ Pyrmia8 Al4 Rdamp = 3y
PowHEG PDF4LHC15 PytHIA8 Al4 hdamp = %m,
PowHEG CT14 PytHIAS Al4 hdamp = %m,
PowHEG MMHT PytHiA8 Al4 hdamp = %m,
4 AMC@NLO NNPDEF3.0 PytHia8 Al4
AMC@NLO CTI10 PytHiA8 Al4

AMC@MLO HERAPDF2.0 PytHIA8 Al4

Table 9: Summary of particle-level simulation samples used in the comparison with the corrected data distributions
in Section 7.2, giving the matrix-element event generator, PDF set, parton shower and associated tune parameter set,
and other relevant settings. The top quark mass was set to m, = 172.5 GeV in all samples. The four groups shown
correspond to the four panels for each measured distribution shown in Figures 15-21. The baseline POWHEG + PYTHIAS
configuration appears in both groups 1 and 3.

of Ref. [89]; this sample is included in the first sample group and labelled ‘PowHEG + PY8 pt rew’ in
Figures 15-21.

The compatibility of each prediction with each measured normalised distribution was tested using a x>
calculated as

2 T -1
X = A(n—l)S(n—l)A(n—l) > ©)

where A(,_1) is the vector of differences between the measured and predicted normalised differential
cross-section in each of the »n bins, excluding the last one, and S(‘nl_l) is the inverse of the corresponding
covariance matrix, including both the experimental uncertainties in the measurement and the statistical
uncertainties in the predictions. Correlations between the measurements in different bins were incorporated
via off-diagonal terms in S, and the last bin of each distribution was excluded to account for the degree
of freedom lost to the normalisation condition. The resulting y? values and corresponding probability
p-values (for n — 1 degrees of freedom) are shown for each single-differential distribution and prediction in

Table 10, and for the double-differential distributions and predictions in Table 11.

A number of observations can be made for the modelling of the individual lepton and dilepton distributions.
The single-lepton pr and dilepton pf. + p’T‘ distributions (Figures 15(a) and 18(a)) are softer in the data
than in all the PowHeG-based predictions, irrespective of the choice of parton shower, scale/tune settings or
PDF. The AMC@NLO + PytH1A8 samples agree better with data, especially when using the HERAPDF2.0
PDF set. Reweighting the top quark pt in the PowHEG + PyTHIA8 sample also gives significantly better
agreement. Similar features were seen in the comparisons of the pé and p7. + p’; distributions at /s = 8 TeV
[27], and in the pé distribution measured by CMS at v/s = 13 TeV in a different fiducial region including
requirements on jets [102].
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Figure 15: Ratios of predictions of normalised differential cross-sections to data as a function of (a) pg and (b) |n¢].
The data statistical uncertainties are shown by the black error bars around a ratio of unity, and the total uncertainties
are shown by the cyan bands. Several different ¢7 predictions are shown in each panel, grouped from top to bottom as
shown in Table 9, and the error bars indicate the uncertainties due to the limited size of the simulated samples.
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Figure 16: Ratios of predictions of normalised differential cross-sections to data as a function of (a) p?’ and (b) m®*.
The data statistical uncertainties are shown by the black error bars around a ratio of unity, and the total uncertainties
are shown by the cyan bands. Several different ¢7 predictions are shown in each panel, grouped from top to bottom as
shown in Table 9, and the error bars indicate the uncertainties due to the limited size of the simulated samples.
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Figure 18: Ratios of predictions of normalised differential cross-sections to data as a function of (a) p%. + p‘T' and (b)
E° + EF. The data statistical uncertainties are shown by the black error bars around a ratio of unity, and the total
uncertainties are shown by the cyan bands. Several different ¢ predictions are shown in each panel, grouped from top
to bottom as shown in Table 9, and the error bars indicate the uncertainties due to the limited size of the simulated
samples.

43



MC / data MC / data MC / data

MC / data

1.2
1.15
1.1
1.05

0.95
0.9
0.85

0.8
1.2

1.15
1.1
1.05

0.95
0.9
0.85

0.8
1.2

1.15
1.1
1.05

0.95
0.9
0.85
0.8

1.15
1.1
1.05

0.95
0.9
0.85
0.8

o
—_

T T T T
m®™ < 80 GeV !
TLAS |
13 TeV, 36.1 fb” .

1

1

¢'~.>

f

=I==‘=-O-—0—.
—a— A

—®—  Powheg+PY8
Powheg+PY6

T T T
80 <m™ < 120 GeV

T T T
120 <m™ <200 GeV

—4*—  Powheg+HW7
—&—  Powheg+PY8 p, rew

“'1:

R 3 PPN S5 & JC S SUEE ) Lodhirbd

T T T
m®™ > 200 GeV

£

¢

i

1
- -
g
1
1
—®— Powheg+PY8 RadDn
--G - Powheg+PY8 RadUp

%#?f*&—.g.—fg cratat

1

1

|

1
—h— Powheg+PY8p . x2
--A-  Powheg+PY8 e xO 5

1)
+ l#

*"E"l*

-'-'IK'P
£
—ﬁélllllllllllllllllll I|IIII|IIII|III

1

‘9":62—:9:—‘—‘

—®— Powheg+PY8
Powheg+PY8 PDF4LHC15

=Q=

—&— Powheg+PY8 CT14
—6&—  Powheg+PY8 MMHT

e of A - - - @M?WM = H&ﬁ"—?‘ﬁa&:-—é—-—.---l--l--l#-l%

t

||||||||||||||| I|IIII|IIII|IIII|Igj.|_llll|llll|llll|llll|l Illllllllllllllllllﬂ_ II|IIII|IIII|IIII|I I|IIII|IIII|IIII|I;I'

|
"

_A—A_y

|
T '

1
—o—]
-

o aMC@NLO+PY8

I|IIII|IIII|IIII|II" Ilull

) aMCI@NLOI+PY8 ICT10 )

1
—h—a—
1
1
1

—_—

A e
= -|--|---|--:ff‘-:$:4-:$i_x,>¥ | =b-! S gy —-|-—F—T‘-L;+=
—A- 1
N

aMC@NLO+PY8 HERAPDF2.0

-

ﬁl—
>
£

1
L
I|IIII|III"IIII|III

t

20 1

2 0 1

,_
[0
°
o
Sn
=

Figure 19: Ratios of predictions of the normalised double-differential cross-sections to data as a function of ||
and m®H. The data statistical uncertainties are shown by the black error bars around a ratio of unity, and the total
uncertainties are shown by the cyan bands. The vertical dotted lines indicate the four bins of m®#. Several different 7
predictions are shown in each panel, grouped from top to bottom as shown in Table 9, and the error bars indicate the
uncertainties due to the limited size of the simulated samples.
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Figure 20: Ratios of predictions of the normalised double-differential cross-sections to data as a function of |y°#|
and m®". The data statistical uncertainties are shown by the black error bars around a ratio of unity, and the total
uncertainties are shown by the cyan bands. The vertical dotted lines indicate the four bins of m®#. Several different 17
predictions are shown in each panel, grouped from top to bottom as shown in Table 9, and the error bars indicate the
uncertainties due to the limited size of the simulated samples.
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Figure 21: Ratios of predictions of the normalised double-differential cross-sections to data as a function of A¢H
and m®". The data statistical uncertainties are shown by the black error bars around a ratio of unity, and the total
uncertainties are shown by the cyan bands. The vertical dotted lines indicate the four bins of m®#. Several different 17
predictions are shown in each panel, grouped from top to bottom as shown in Table 9, and the error bars indicate the
uncertainties due to the limited size of the simulated samples.
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Generator P vl s met|yH| AgF pS+pl E°+EF
Ngot 10 8 8 11 8 9 7 9
POWHEG + PY8 43.7 19.5 8.6 443 114 144 325 18.4
PowHEG + PY6 CT10 36.1 7.9 9.3 33.0 162 162 21.9 30.5
PownEG + HW7 34.8 15.9 11.5 62.7 94 173 23.0 14.7
PowHEG + PY8 pr rew. 20.2 14.7 2.3 38.3 84 127 9.4 14.0
PowHEG + PY8 RadDn 40.0 24.2 6.1 44.3 92 163 29.0 20.1
PowHEG + PY8 RadUp 33.0 16.3 21.9 353 123 6.4 26.7 16.5
POWHEG + PY8 upg x 2 46.5 21.6 6.2 42.6 85 165 28.9 17.1
POWHEG + PY8 upg x 0.5 39.8 17.3 11.4 380 107 109 27.6 142
PownEeG + PY8 PDF4LHC15 434 14.6 7.4 39.0 62 135 28.0 15.9
PowHEG + PY8 CT14 44.1 9.3 7.6 37.0 82 135 28.5 18.2
PowHEG + PY8 MMHT 41.2 17.7 6.9 39.0 63 132 26.3 14.3
AMC@NLO +PY8 26.2 25.7 11.4 19.7 167 132 12.5 14.0
AMC@NLO +PY8 CT10 24.9 11.7 10.6 169 100 134 12.0 19.0
AMC@NLO +PY8 HERA2 17.1 96.6 6.9 260 685 125 6.1 38.4
PowHEG + PY8 4.10°° 0.012 037 6-10° 0.18 0.11 3-107 0.030
PowHEG + PY6 CT10 81073 0.45 032 5-10*% 0039 0062 3-102 4-10*
Pownec + HW7 1-107* 0.043 0.18 3-10° 031 0045 2-1073 0.098
PowHEG + PY8 pr rew. 0.028 0.065 097 7-10° 039 0.18 0.23 0.12
PowHEG + PY8 RadDn 2-10° 2-1073 064 6-10° 032 0060 1-107* 0.017
PowHEG + PY8 RadUp 3.10*  0.038 5-10° 2-10* 014 070 4-107* 0.057
PowHEG + PY8 upR X 2 1-10°% 6-1073 062 1-10° 039 0056 1-107* 0.048
PowHEG + PY8 upg % 0.5 2-1073 0.027 0.18 8-10° 022 028 3-10™ 0.12
PowneG + PY8 PDF4LHCI15 | 4-107° 0.067 049 5-107° 062 014 2-10™* 0.068
PowHEG + PY8 CT14 3-107° 0.32 047 1-10* 042 014 2-10™* 0.033
PowHEG + PY8 MMHT 1-107° 0.024 055 5-107° 062 015 5-10™* 0.11
AMC@NLO +PY8 3-103 1-1073 0.18 0.049 0.034 0.15 0.086 0.12
AMC@NLO +PY8 CT10 5.-1073 0.16 0.23 0.11 027 0.15 0.10 0.025
AMC@NLO +PY8 HERA2 0.073 0 054 6-1073 0 0.19 053 1-107

Table 10: y? values (top) and associated probabilities (bottom) for comparison of normalised measured single-
differential fiducial cross-sections with various ¢7 simulation samples. Probabilities smaller than 10~'? are shown as
Zero.

The single-lepton |5¢| distribution (Figure 15(b)) is more forward than the predictions from either
PowHEG + PyTH1A8 or AMC@NLO + PyTH1A8 With the NNPDF3.0 set, and agreement is improved by using
CT10 or CT14. The MMHT and PDF4LHC15 PDF sets lie somewhere in between, but HERAPDF2.0
predicts much too central a distribution. The |y“#| distribution (Figure 17(a)) shows a slightly different
picture; again HERAPDF2.0 is in very poor agreement with the data, but all the other PDFs do reasonably
well. These observations differ from those at /s = 8 TeV [27], where the HERAPDF 1.5 and 2.0 PDF sets
were found to describe the data better than CT10, which was used as the default.

All the generators model the p* distribution well (Figure 16(a)), with the exception of the PowHEG + PyTHIA8
RadUp configuration, and to a lesser extent, POWHEG + PyTH1A8 with reduced QCD scales. This distribution
shows little sensitivity to PDFs. The m®* distribution (Figure 16(b)) is poorly modelled by all PownEec-based
samples. The AMC@NLO + PyTtHiA8 samples do better (except when HERAPDF2.0 is used), but still fail
to describe the data at very low m°¥.

The data have a less steep A¢# distribution than all the predictions (Figure 17(b)), although the
PownEeG + PyTH1A8 RadUp and reduced QCD scale samples come close, as does the sample with
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Generator (7] x meH |y x mH | A@L| x mH
Niof 35 19 39
PowHEG + PYS8 53.1 72.3 654
PowneG + PY6 CT10 45.9 92.9 79.5
Pownec + HW7 493 67.4 63.7
PowHEG + PY8 pr rew. 47.1 56.1 51.4
PownEec + PY8 RadDn 57.1 74.2 69.9
PownEec + PY8 RadUp 50.6 62.5 51.7
PowHEG +PY8 ppRr X 2 60.7 68.4 71.1
PowHEG +PY8 upr % 0.5 50.3 60.0 52.0
Pownec + PY8 PDF4LHC15 51.5 61.5 59.7
Pownec + PY8 CT14 50.6 67.3 60.0
PowHeG + PY8 MMHT 53.7 57.9 58.7
AMC@NLO +PY8 55.0 45.9 58.2
AMC@NLO +PY8 CT10 43.7 50.6 59.5
AMC@NLO + PY8 HERA2 130.3 97.6 58.0
POWHEG + PY8 0.026 4-1078 5-1073
Pownec + PY6 CT10 0.10 0 1-107*
PowHEG + HW7 0.055 21077 8-1073
PowHEG + PY8 pr rew. 0.084 21073 0.088
PowHEG + PY8 RadDn 0.011 21078 21073
PowHEG + PY8 RadUp 0.042 21076 0.083
POWHEG + PY8 upg X 2 5-1073 2-1077 1-1073
PowHEG + PY8 upr X 0.5 0.045 4.10°° 0.079
Pownec + PY8 PDF4LHC15 0.036 2-107° 0.018
Pownec + PY8 CT14 0.042 3-1077 0.017
PowHEG + PYS MMHT 0.023 8-1076 0.022
AMC@NLO +PY8 0.017 5.-107* 0.024
AMC@NLO +PY8 CT10 0.15 1-10™4 0.019
AMC@NLO + PY8 HERA2 0 0 0.026

Table 11: /\{2 values (top) and associated probabilities (bottom) for comparison of normalised measured double-
differential fiducial cross-sections with various ¢7 simulation samples. Probabilities smaller than 1070 are shown as
Zero.

reweighted top quark pt. The tensions between data and predictions are smaller than in the dedicated
ATLAS 1t spin correlation analysis [103], but the latter analysis has a more restrictive fiducial region
definition, with higher lepton pt thresholds and a requirement of at least two jets.

Finally, the E¢ + E* distribution (Figure 18(b)) is reasonably described by the baseline POWHEG + PyTH1A8
prediction except at high E¢ + E#, where agreement is improved by top quark pr reweighting. The
distribution shows some sensitivity to PDFs, with NNPDF3.0 agreeing with data better than CT10, and
HERAPDF2.0 again agreeing very poorly with data.

The comparisons of normalised double-differential cross-section measurements and predictions in Fig-
ures 19-21 reflect those seen in the single-differential results, although generally with reduced significance
due to the larger per-bin statistical uncertainties. The y? and probabilities shown in Table 11 are all poor,
driven by poor agreement of the measured m* distribution and predictions already visible in Figure 16(b).
The largest differences between the models are seen at low m®* for |7¢|, whereas the differences become
more pronounced at high m®* for |y¢*|. Similar trends in A¢* are visible in all m** bins in Figure 21,
despite the shape of the overall A¢# distribution changing significantly across the m®* bins, as shown in
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Generator e pe+or L m LIyl Il Iyl Al
P+ Pl E¢ + E¥ dists.
Nyof 17 26 16 25 70
POWHEG + PY8 52.2 92.8 31.2 51.5 176.5
PowHEG + PY6 CT10 429 87.9 31.0 58.0 176.6
PowHEG + HW7 425 97.4 25.7 41.6 169.8
PowHEG + PYS8 pt rew. 27.5 57.4 25.4 36.5 137.6
PowHEG + PY8 RadDn 49.7 110.8 37.8 58.3 193.9
PowHEG + PY8 RadUp 429 71.8 25.5 44.2 151.8
POWHEG + PY8 upr X 2 54.5 111.1 35.6 54.4 195.0
POWHEG + PY8 upgr X 0.5 50.5 71.3 26.3 42.8 160.4
PowHEG + PY8 PDF4ALHC15 522 89.7 26.7 44.1 167.1
PowHEG + PY8 CT14 52.9 91.5 26.6 44.8 170.2
PowHEG + PY8 MMHT 49.9 89.4 28.7 44.8 167.6
AMC@NLO +PY8 33.2 46.3 37.1 49.6 131.9
AMC@NLO +PY8 CT10 31.6 46.7 26.2 43.0 122.9
AMC@NLO +PY8 HERA2 23.1 51.5 119.0 132.8 229.8
POWHEG + PY8 2-107 2-107° 0.013 1-1073 0
PowHEG + PY6 CT10 5-107* 1-1078 0.014 2-107* 0
PowHEG + HW7 6-107* 3.10°10 0.058 0.020 3.10°10
POWHEG + PY8 pr rew. 0.052 4.107* 0.062 0.064 3-10°°
PowHEG + PY8 RadDn 5.1073 0 2.1073 2.1074 0
PowHEG + PY8 RadUp 5-107* 4107 0.062 0.010 6-1078
POWHEG +PY8 upg X 2 81076 0 3-1073 6-10~ 0
PowHEG +PY8 upg % 0.5 4-1073 4-107° 0.049 0.015 5-107°
PownEec + PY8 PDF4LHC15 2-1073 6-107° 0.045 0.011 7-10710
Pownec + PYS8 CT14 2-1073 3.-107° 0.046 9.103 3.10710
PowHEG + PY8 MMHT 4.107° 7-107° 0.026 9.103 6-1071°
AMC@NLO +PY8 0.011 9.1073 2-1073 2-1073 1-107
AMC@NLO +PY8 CT10 0.017 81073 0.051 0.014 1-107*
AMC@NLO +PY8 HERA2 0.14 2.1073 0 0 0

Table 12: y? values (top) and associated probabilities (bottom) for comparison of combinations of measured
normalised differential fiducial cross-sections with various ¢7 simulation samples. The last column gives the results
for the combination of all eight measured single-differential distributions. Probabilities smaller than 107'% are shown
as zero.

Figure 14. This distribution is again best described by the POwHEG + PyTHIAS predictions with increased
radiation (RadUp), reduced QCD scales, or reweighted top quark pr.

The y? computation of Eq. (9) was extended to consider several normalised distributions simultaneously.
The statistical correlations between distributions were evaluated using pseudo-experiments, and systematic
uncertainties were assumed to be correlated between distributions. Five sets of combined distributions
were considered: p% and pY'; pY', m* and p¢ + ph; In‘| and |y#|; |n°|, |y“#| and E° + E¥; and the
combination of all eight single-differential distributions.

The resulting y? and p-values are shown for each combination and prediction in Table 12. The best
descriptions of py and pf + p"T‘ are achieved by PowHEG + PyTHI1A8 with top quark pt reweighting, or by
AMC@NLO + PytHi1AS, particularly with the HERAPDF2.0 PDF set. Either NLO generator combined

with several PDF sets can describe the |¢| and |y°#| distributions, although only the sample with top quark
pt reweighting provides a reasonable description once E€ + E* is also included. No samples describe the
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combinations including m®#, as this variable is not modelled by any of the generator configurations.

8 Conclusions

The inclusive ¢7 production cross-section o7 has been measured in pp collisions at v/s = 13 TeV using
36.1fb~! of data recorded by the ATLAS experiment at the LHC in 2015-16. Using events with an
opposite-sign ey pair and one or two b-tagged jets, the result is:

o7 = 826.4 +3.6(stat) + 11.5(syst) + 15.7 (lumi) + 1.9 (beam) pb,

where the four uncertainties are due to data statistics, experimental and theoretical systematic effects, and
the knowledge of the integrated luminosity and of the LHC beam energy. The result is consistent with
NNLO+NNLL QCD predictions. Fiducial cross-sections corresponding to the experimental acceptance for
the leptons, with and without a correction for the contribution of leptons from leptonic T decays, have also
been measured. The dependence of predictions for o7 on the top quark pole mass mfmle has been exploited
to determine a mass value of

mP® = 173.1°29 Gev

from the inclusive cross-section, using the predictions derived with the CT14 PDF set. This result
is compatible with other top quark mass determinations using a variety of techniques. The inclusive
cross-section has also been combined with previous measurements at 4/s = 7 and 8 TeV to determine ratios
of tf cross-sections, and double ratios of ¢7 to Z cross-sections, at different energies, which are found to be
compatible with predictions using a range of PDF sets.

The same data sample has been used to measure eight single-differential and three double-differential
cross-sections as a function of lepton and dilepton kinematic variables, with uncertainties as small as 0.6%
for normalised distributions in some parts of the fiducial region. The measured distributions are generally
well described by the NLO matrix-element generators PowHeG and AMC@NLO when interfaced to PyTHIA
or HErwIG for parton shower, hadronisation and underlying-event modelling. However, the PowHEeG-based
predictions give lepton pt spectra that are significantly harder than those observed in data, and none of
the predictions describe the low-mass part of the dilepton invariant mass distribution. These differential
cross-section results have sensitivity to PDFs and can be used as the basis for a precise determination of
the top quark mass based on lepton kinematics.
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Appendix

The measured absolute and normalised differential cross-sections as functions of individual lepton and
dilepton variables are shown in Tables 13—16. The absolute and normalised double-differential cross-
sections as functions of |7¢| and m# are shown in Tables 17 and 18, those as a function of |y°#| and m°*

in Tables 19 and 20, and those as a function of A¢“# and m®* in Tables 21 and 22. More details are given
in Section 7.
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Absolute do/dpl  Stat. tfmod. Lept. Jet/b Bkg. L/E, Total  do/dpL (noT)

Bin [GeV] [fb/GeV] (%) (%) (%) (%) (%) (%) (%) [fb/GeV]
20-25 564 + 17 0.7 0.9 14 0.2 1.0 2.3 3.1 436 + 13
25-30 562 + 16 0.6 0.9 1.1 0.2 0.8 2.3 2.9 456 + 13
30-40 525+ 14 0.4 0.9 0.7 0.2 0.7 2.3 2.7 441 + 12
40-50 428 + 12 0.5 0.9 0.6 0.2 0.7 2.3 2.7 369 + 10
50-60 336.2+9.2 0.5 09 0.6 0.3 0.7 2.3 2.7 2048 +7.8
60-80 220.6 = 6.0 0.4 1.0 0.6 0.2 0.7 2.3 2.7 1959 +5.2
80-100 120.1+3.4 0.6 1.1 0.7 0.2 0.8 2.3 2.9 107.4+3.0
100-120 66.6 +2.0 0.8 1.1 0.7 0.2 1.0 2.3 3.0 59.7+1.7
120-150 30.6 + 1.0 1.0 1.2 0.8 0.3 1.5 2.4 33 27.4+0.9
150-200 10.80 £ 0.45 1.4 1.2 1.0 0.2 2.6 2.5 4.1 9.64 +0.39
200-300+ 2.33+0.20 2.2 1.6 1.5 0.4 7.8 2.6 8.8 2.07+0.18
Normalised Ldo/dpl Stat. tfmod. Lept. Jetb Bkg. L/E, Total <do/dp’ (no7)
Bin [GeV] [102/GeV] (%) (%) (%) (%) (%) (%) (%) [10-2/GeV]
20-25 1.987 + 0.026 0.7 0.4 0.8 0.1 0.6 0.0 1.3 1.796 + 0.023
25-30 1.982 +0.019 0.6 0.4 0.5 0.1 0.5 0.0 1.0 1.876 £ 0.018
30-40 1.852 +0.012 0.4 0.2 0.3 0.1 0.4 0.0 0.7 1.817 £ 0.012
40-50 1.5095 + 0.0096 04 0.2 0.3 0.1 0.3 0.0 0.6 1.5212 +0.0097
50-60 1.1855 + 0.0079 0.5 0.2 0.3 0.1 0.2 0.0 0.7 1.2142 +0.0080
60-80 0.7779 + 0.0047 0.4 0.3 0.3 0.1 0.2 0.0 0.6 0.8067 +0.0047
80-100 0.4234 +0.0035 0.6 0.4 0.3 0.0 0.3 0.0 0.8 0.4423 +0.0035
100-120 0.2348 + 0.0028 0.8 0.5 0.4 0.1 0.6 0.0 1.2 0.2459 + 0.0029
120-150 0.1080 +0.0019 1.0 0.6 0.6 0.1 1.2 0.1 1.7  0.1129 +0.0019
150-200 0.0381 +0.0012 1.3 0.9 1.0 0.2 2.4 0.1 3.0 0.0397 +£0.0012
200-300+ 0.0082 + 0.0007 2.2 1.6 1.6 0.4 7.6 0.3 8.2 0.0085 + 0.0007
Absolute do/djn?| Stat. tfmod. Lept. Jet/b Bkg. L/E, Total  do/d|n%| (no 1)
Bin [unit [7]]  [fbumit|p]] (%) (%) (%) (%) (%) (%) (%) [fb/unit |5]]
0.00-0.25 17270 + 460 0.5 0.8 0.7 0.2 0.7 2.3 2.7 14750 + 390
0.25-0.50 16520 + 440 0.5 0.8 0.6 0.2 0.7 2.3 2.7 14110 = 370
0.50-0.75 15660 + 420 0.5 0.8 0.6 0.2 0.7 2.3 2.7 13390 + 350
0.75-1.00 14320 + 390 0.5 0.9 0.7 0.2 0.7 2.3 2.7 12250 + 330
1.00-1.25 12660 + 350 0.5 1.0 0.7 0.2 0.8 2.3 2.8 10850 + 290
1.25-1.50 10940 + 310 0.7 1.0 0.7 0.2 0.8 2.3 2.8 9370 + 260
1.50-1.75 9090 + 260 0.7 1.1 0.7 0.2 0.9 2.3 2.9 7810 + 220
1.75-2.00 7320 + 220 0.8 1.2 0.8 0.2 1.0 2.3 3.0 6310 + 180
2.00-2.50 4750 + 150 0.7 1.3 0.9 0.2 1.2 2.3 3.2 4100 + 130
Normalised édo- /d|n’| Stat. tfmod. Lept. Jet/b Bkg. L/E, Total #do- /d|n?| (no 1)
Bin [unit [g]] [10° /unit ] (%) (%) (%) (%) (%) (%) (G [10~/unit |5]]
0.00-0.25 6.099 + 0.041 0.4 0.4 0.1 0.1 0.3 0.0 0.7 6.082 = 0.041
0.25-0.50 5.832 +0.035 04 0.3 0.1 0.0 0.3 0.0 0.6 5.816 = 0.035
0.50-0.75 5.531 +0.031 0.4 0.2 0.1 0.0 0.2 0.0 0.6 5.521 +0.031
0.75-1.00 5.056 + 0.028 0.5 0.2 0.1 0.0 0.2 0.0 0.6 5.049 + 0.028
1.00-1.25 4.472 +0.027 0.5 0.2 0.1 0.0 0.2 0.0 0.6 4.473 +0.027
1.25-1.50 3.863 = 0.030 0.6 0.3 0.1 0.1 0.2 0.0 0.8 3.863 +0.030
1.50-1.75 3.211 £ 0.028 0.7 04 0.2 0.1 0.3 0.0 0.9 3.217 £0.028
1.75-2.00 2.584 +0.027 0.8 0.5 0.2 0.0 0.5 0.0 1.0 2.599 + 0.027
2.00-2.50 1.676 + 0.020 0.7 0.6 0.3 0.0 0.7 0.0 1.2 1.690 + 0.020

Table 13: Absolute and normalised differential cross-sections as functions of p% (top) and |77[ | (bottom). The columns
show the bin ranges, measured cross-section and total uncertainty, relative statistical uncertainty, relative systematic
uncertainties in various categories (see text), total relative uncertainty, and differential cross-section corrected to
remove contributions via W — 7 — e/u decays. Relative uncertainties smaller than 0.05% are indicated by ‘0.0’.
The last bin includes overflows where indicated by the ‘+’ sign.
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Absolute do /dp?’ Stat. tfmod. Lept. Jet/b Bkg. L/E, Total do/ dpf}” (no 1)
Bin [GeV] [fb/GeV] (%) (%) (%) (%) (%) (%) (%) [fb/GeV]
0-20 451+14 1.1 1.2 0.7 0.3 0.9 2.3 3.1 36.5+ 1.1
20-40 110.1+3.1 0.7 1.0 0.7 0.3 0.8 2.3 2.9 89.7+2.5
40-60 159.8+4.5 0.6 1.0 0.8 0.3 0.8 2.3 2.8 132.2+3.6
60-80 156.2+4.3 0.6 1.0 0.7 02 07 2.3 2.8 134.8 £3.6
80-100 110.1+3.1 0.7 1.1 0.7 02 07 2.3 2.8 98.2+2.7
100-120 62.6+19 0.8 1.2 0.7 02 09 2.3 3.0 56.9+1.6
120-150 26.67+090 1.1 14 0.8 0.3 14 24 34 24.29 +0.80
150-200 7.15+0.35 1.7 2.0 1.0 03 3.2 2.5 5.0 6.45 +0.32
200-300+ 1.19+£0.17 32 34 1.5 06 132 2.8 143 1.06 £ 0.15
Normalised Ldo/dpl  Stat. timod. Lept. Jetb Bkg. L/E, Total Zdo/dp (no)
Bin [GeV] [1072/GeV] (%) (%) (%) (%) (%) (%) (%) [1072/GeV]
0-20 0.3189 + 0.0051 1.1 0.9 02 02 07 0.0 1.6 0.3011 +0.0049
20-40 0.7776 £ 0.0082 0.6 0.6 02 0.1 0.5 0.0 1.1 0.7402 + 0.0081
40-60 1.1286 £ 0.0088 0.5 04 02 0.1 04 0.0 0.8  1.0905 +0.0089
60-80 1.1035 +£0.0070 0.5 0.2 0.1 0.1 0.3 0.0 0.6  1.1121 £0.0072
80-100 0.7780 £ 0.0058 0.6 04 0.1 0.1 0.2 0.0 0.7  0.8098 +0.0059
100-120 0.4425 £ 0.0051 0.8 0.6 0.3 02 04 0.0 1.2 0.4694 + 0.0054
120-150 0.1884 +0.0035 1.0 1.0 0.5 0.2 1.0 0.1 1.9  0.2003 + 0.0038
150-200 0.0505 £ 0.0020 1.7 1.8 09 03 2.9 0.2 4.0  0.0532 +£0.0021
200-300+  0.0084 £0.0012 3.2 34 1.5 0.5 13.0 0.5 139 0.0087 £0.0012
Absolute do/dme* Stat. tfmod. Lept. Jet/b Bkg. L/E, Total do/dm®* (no 1)
Bin [GeV] [fb/GeV] (%) (%) (%) (%) (%) (%) (%) [fb/GeV]
0-20 19.98+0.74 2.0 1.3 1.0 03 1.2 2.3 3.7 16.57 £ 0.60
20-40 543+16 1.0 1.0 0.9 0.2 1.0 2.3 3.0 45.6 +1.3
40-60 882+2.6 0.8 0.9 0.9 0.2 1.0 2.3 29 73.1+£2.1
60-80 107.0+3.0 0.7 0.8 0.8 02 09 2.3 2.8 88.9+24
80-100 1023+29 0.7 0.9 0.7 0.3 0.8 2.3 2.8 86.4+2.4
100-120 83.8+23 0.8 0.9 06 03 0.7 2.3 2.8 71.7+£2.0
120-150 59.8+1.7 07 0.9 06 02 0.7 2.3 2.8 519+14
150-200 33.80+097 0.7 1.0 06 02 0.9 2.3 29 29.96 + (.84
200-250 15.75 +£0.51 1.1 1.2 06 04 1.3 24 32 14.21 £ 0.45
250-300 7.51+£029 1.6 1.5 0.8 0.2 1.8 24 3.8 6.85 +£0.25
300-400 2.84+0.13 1.8 2.0 0.7 0.2 2.7 24 4.5 2.62+0.11
400-500+ 1.48+0.09 2.7 2.7 0.9 0.3 3.7 24 5.9 1.38 £ 0.08
Normalised %do-/ dme*  Stat. tfmod. Lept. Jet/b Bkg. L/E, Total %do- /dm®* (no )
Bin [GeV] [1073/GeV] (%) (%) (%) (%) (%) (%) (%) [1073/GeV]
0-20 1.408 £0.036 2.0 1.1 04 02 1.0 0.0 2.5 1.364 + 0.034
20-40 3.826 + 0.055 1.0 0.7 0.3 0.2 0.8 0.0 14 3.751 £0.053
40-60 6.218 £0.073 0.7 0.5 0.3 0.1 0.7 0.0 1.2 6.017 £ 0.069
60-80 7.541 £0.068 0.6 0.4 02 0.1 0.5 0.0 0.9 7.315 £ 0.066
80-100 7.210£0.061 0.6 0.3 0.1 0.3 0.3 0.0 0.8 7.108 + 0.060
100-120 5.907+£0.049 0.7 0.3 0.1 0.1 0.2 0.0 0.8 5.898 + 0.049
120-150 4.212+£0.033 0.7 0.3 02 0.1 0.2 0.0 0.8 4.270 £ 0.034
150-200 2.382+0.025 0.7 0.5 02 0.1 0.5 0.0 1.0 2.466 + 0.024
200-250 1.110 £0.019 1.1 0.8 0.3 0.2 1.1 0.0 1.8 1.169 £ 0.019
250-300 0.529 £0.014 1.6 1.2 0.7 0.1 1.6 0.1 2.6 0.564 +0.014
300-400 0.2000 + 0.0071 1.8 1.6 06 0.1 2.6 0.1 3.6 0.2154 + 0.0073
400-500+  0.1041 £0.0053 2.7 24 1.0 02 3.5 0.1 5.1 0.1132 + 0.0055

Table 14: Absolute and normalised differential cross-sections as functions of p?‘ (top) and m®* (bottom). The
columns show the bin ranges, measured cross-section and total uncertainty, relative statistical uncertainty, relative
systematic uncertainties in various categories (see text), total relative uncertainty, and differential cross-section
corrected to remove contributions via W — 7 — e/u decays. Relative uncertainties smaller than 0.05% are indicated
by ‘0.0’. The last bin includes overflows where indicated by the ‘+’ sign.
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Absolute do/d|y#| Stat. (fmod. Lept. Jet/b Bkg. L/E, Total do/d|y*| (no 1)
Bin [unit |y]] [fb/unit |y|]] (%) (%) (%) (%) (%) (%) (%) [fb/unit |y]|]
0.00-0.25 10700 £290 0.6 0.7 0.6 0.2 0.7 2.3 2.7 9150 + 240
0.25-0.50 10160 +270 0.6 0.8 0.6 0.2 0.7 2.3 2.7 8700 + 230
0.50-0.75 9300 +260 0.6 0.9 0.7 0.2 0.7 23 2.8 7970 £ 210
0.75-1.00 8140 +230 0.7 1.0 0.7 0.2 0.8 2.3 2.8 6970 + 190
1.00-1.25 6620+ 190 0.8 1.1 0.7 0.2 0.8 2.3 2.9 5680 + 160
1.25-1.50 5030+ 150 1.0 1.2 0.8 0.3 0.9 2.3 3.0 4320 + 130
1.50-1.75 3460+ 110 1.2 14 0.8 0.2 1.1 2.3 33 2969 + 96
1.75-2.00 2085+76 1.7 1.6 0.9 0.2 1.3 23 37 1790 + 65
2.00-2.50 545+26 2.6 2.1 1.1 0.3 2.2 24 4.8 467 + 22
Normalised Ldo/dy#| Stat. tfmod. Lept. Jetb Bkg. L/E, Total Zdo/dy®|(no 1)
Bin [unit |y|] [107"/unit |y|]] (%) (%) (%) (%) (%) (%) (%) [10~! /unit |y]]
0.00-0.25 7.560 +0.056 0.5 04 0.1 0.0 0.3 0.0 0.7 7.550 + 0.056
0.25-0.50 7.184 £0.050 0.6 0.3 0.1 0.0 0.3 0.0 0.7 7.182 + 0.050
0.50-0.75 6.574 £0.045 0.6 0.3 0.1 0.0 0.2 0.0 0.7 6.574 £ 0.045
0.75-1.00 5.752+£0.042 0.6 0.3 0.1 0.1 0.2 0.0 0.7 5.748 £ 0.043
1.00-1.25 4.679 +0.041 0.8 04 0.1 0.1 0.2 0.0 0.9 4.688 +0.041
1.25-1.50 3.558+0.040 0.9 0.5 0.2 0.1 04 0.0 1.1 3.562 + 0.040
1.50-1.75 2.449 +0.037 1.2 0.7 0.2 0.1 0.6 0.0 1.5 2.449 +0.037
1.75-2.00 1.474 £ 0.031 1.7 0.9 0.3 0.2 0.9 0.0 2.1 1.477 £ 0.032
2.00-2.50 0.385+0.013 2.6 14 0.6 0.1 1.8 0.1 3.5 0.386 +£0.014
Absolute do/dA¢e*  Stat. tfrmod. Lept. Jet/b Bkg. L/E, Total do/dA¢H (no T)
Bin [rad] [fb/rad] (%) (%) (%) (%) (%) (%) (%) [fb/rad]
0.00-0.31 3250+ 110 1.1 2.0 0.8 0.2 0.8 2.3 34 2847 + 90
0.31-0.63 3280+ 110 1.0 1.7 0.8 0.1 0.8 2.3 32 2882 + 87
0.63-0.94 3370 = 100 1.0 1.4 0.8 0.3 0.8 2.3 3.1 2965 + 88
0.94-1.26 3680+ 110 0.9 1.2 0.7 0.2 0.8 2.3 3.0 3219+93
1.26-1.57 4000+ 120 0.9 1.0 0.7 0.2 0.8 2.3 2.9 3476 + 98
1.57-1.88 4460 + 130 0.8 0.9 0.7 0.2 0.8 2.3 2.8 3850+ 110
1.88-2.20 4980+ 140 0.8 1.0 0.7 0.3 0.8 2.3 2.8 4260 + 120
2.20-2.51 5610+ 160 0.7 1.1 0.6 0.3 0.7 2.3 2.9 4740 + 130
2.51-2.83 6030+ 180 0.7 1.3 0.6 0.3 0.8 2.3 3.0 5060 + 150
2.83-3.14 6420 +£200 0.7 1.6 0.6 0.3 0.8 2.3 3.1 5350 + 170
Normalised édo- /dA¢*  Stat. tfmod. Lept. Jet/b Bkg. L/E, Total édo- [/dA@H (no T)
Bin [rad] [107"/rad] (%) (%) (%) (%) (%) (%) (%) [10~! /rad]
0.00-0.31 2.298 +0.050 1.0 1.9 0.1 0.2 04 0.0 2.2 2.345 £ 0.044
0.31-0.63 2316 £0.043 0.9 1.5 0.1 0.2 0.3 0.0 1.8 2.374 + 0.040
0.63-0.94 2.380+0.037 0.9 1.2 0.1 0.2 0.3 0.0 1.6 2.442 +0.036
0.94-1.26 2.600 £ 0.033 0.9 0.9 0.1 0.1 0.3 0.0 1.3 2.651 +£0.034
1.26-1.57 2.823+0.029 0.8 0.5 0.1 0.1 0.2 0.0 1.0 2.864 +0.031
1.57-1.88 3.149+£0.028 0.8 0.3 0.0 0.1 0.2 0.0 0.9 3.172 £ 0.029
1.88-2.20 3.516 £ 0.031 0.7 04 0.0 0.1 0.2 0.0 0.9 3.505 £ 0.030
2.20-2.51 3.960+0.040 0.7 0.7 0.1 0.1 0.2 0.0 1.0 3.908 + 0.038
2.51-2.83 4.255+0.054 0.7 1.0 0.1 0.2 0.3 0.0 1.3 4.164 + 0.052
2.83-3.14 4.533£0.070 0.7 14 0.1 0.1 0.3 0.0 1.6 4.405 £ 0.071

Table 15: Absolute and normalised differential cross-sections as functions of |y#| (top) and A¢“# (bottom). The
columns show the bin ranges, measured cross-section and total uncertainty, relative statistical uncertainty, relative
systematic uncertainties in various categories (see text), total relative uncertainty, and differential cross-section
corrected to remove contributions via W — 7 — ¢/u decays. Relative uncertainties smaller than 0.05% are indicated
by ‘0.0’. The bin boundaries for A¢# correspond to exact multiples of /10 but are quoted to two decimal places.
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Absolute do/d(ps +pf) Stat. rfmod. Lept. Jet/b Bkg. L/E, Total do /d(pS. + p}) (no 1)
Bin [GeV] [fb/GeV] (%) (%) (%) (%) (%) (%) (%) [fb/GeV]
40-80 96.1 +2.8 0.6 09 1.0 0.2 09 2.3 2.9 76.1 £2.2
80-100 148.2 +4.1 0.6 1.0 0.7 0.2 0.8 2.3 2.8 126.3+3.4
100-120 1209+ 3.4 0.6 1.0 0.7 0.2 0.7 2.3 2.8 1059+2.9
120-150 76.5+2.1 0.6 1.0 0.6 0.2 0.8 2.3 2.8 68.1 +1.8
150-200 33.7+1.0 0.7 1.1 0.7 0.3 1.1 2.4 3.0 30.3+09
200-250 11.77 £ 0.43 1.3 1.2 0.8 0.3 2.0 2.4 3.7 10.65 +£0.38
250-300 4.57+£0.23 2.0 1.4 1.0 0.3 3.3 2.5 4.9 4.18 £0.20
300400+ 1.82+0.14 2.4 1.6 1.5 0.6 6.7 2.6 7.9 1.68 +0.13
Normalised Tdo/d(p$ +ph) Stat. t7mod. Lept. Jetb Bkg. L/E, Total Ldo/d(pS+ ph)(mo7)
Bin [GeV] [1072/GeV] (%) (%) (%) (%) (%) (%) (%) [107%/GeV]
40-80 0.6764 + 0.0066 0.5 0.3 0.4 0.0 0.7 0.0 1.0 0.6263 + 0.0063
80-100 1.0429 + 0.0079 0.5 0.2 0.2 0.0 04 0.0 0.8 1.0393 + 0.0080
100-120 0.8512 +0.0062 0.6 0.2 0.2 0.1 0.3 0.0 0.7 0.8717 = 0.0064
120-150 0.5387 +0.0038 0.6 0.3 0.2 0.0 0.2 0.0 0.7 0.5601 + 0.0039
150-200 0.2373 +£0.0027 0.7 0.4 0.4 0.2 0.7 0.0 1.1 0.2490 + 0.0027
200-250 0.0829 + 0.0020 1.2 0.7 0.7 0.1 1.8 0.1 2.4 0.0876 = 0.0020
250-300 0.0322 +£0.0013 2.0 1.1 1.0 0.3 3.2 0.1 4.1 0.0344 = 0.0014
300-400+ 0.0128 + 0.0009 2.4 1.5 1.6 0.5 6.6 0.3 7.3 0.0138 = 0.0010
Absolute do/d(E€ + E*) Stat. tfmod. Lept. Jet/b Bkg. L/E, Total do/d(E€ + E*) (no 1)
Bin [GeV] [fb/GeV] (%) (%) (%) (%) (%) (%) (%) [fb/GeV]
40-80 19.82 +0.63 1.3 0.8 1.2 0.2 1.1 2.3 3.2 14.95 + 0.47
80-100 58.8+1.7 1.0 0.7 0.9 0.2 0.9 2.3 2.9 473+1.4
100-120 71.5+2.0 0.8 0.8 0.8 0.2 0.8 2.3 2.8 594 +1.6
120-150 71.3+2.0 0.7 0.8 0.7 0.2 0.8 2.3 2.8 60.5+1.6
150-200 577+1.6 0.6 0.9 0.7 0.2 0.7 2.3 2.7 498 +1.3
200-250 30.1+1.1 0.7 1.0 0.7 0.3 0.7 2.3 2.8 34.2+0.9
250-300 25.49+0.76 0.9 1.2 0.6 0.2 0.9 2.3 3.0 22.57 £ 0.65
300-400 13.72 +0.44 0.9 1.3 0.6 0.2 1.3 2.4 3.2 12.24 +0.38
400-500 5.92 +0.22 1.4 1.6 0.8 0.2 1.9 2.4 3.8 5.33+0.19
500-700+ 2.66 +0.13 1.5 1.7 1.0 0.3 3.4 2.4 4.9 242 +0.12
Normalised %do-/ d(E€ + E*) Stat. tfmod. Lept. Jet/b Bkg. L/E, Total (irda' JA(E€ + E*) (no 1)
Bin [GeV] [1073/GeV] (%) @) (T) (%) (F) (%) (%) [1073/GeV]
40-80 1.401 = 0.026 1.2 0.8 0.6 0.1 1.0 0.1 1.9 1.234 +0.023
80-100 4.157 + 0.056 0.9 0.6 0.3 0.1 0.7 0.0 1.3 3.905 + 0.053
100-120 5.054 + 0.057 0.8 0.5 0.2 0.1 0.6 0.0 1.1 4.900 + 0.056
120-150 5.039 £ 0.045 0.6 0.3 0.1 0.1 0.5 0.0 0.9 4.995 +0.045
150-200 4.076 + 0.027 0.5 0.2 0.1 0.0 0.3 0.0 0.7 4.107 £ 0.027
200-250 2.765 +0.021 0.7 0.3 0.1 0.1 0.2 0.0 0.8 2.826 +0.022
250-300 1.802 +0.019 0.8 0.5 0.2 0.1 0.4 0.0 1.1 1.863 + 0.020
300-400 0.970 £ 0.014 0.8 0.6 0.3 0.2 0.9 0.0 1.4 1.010 £ 0.014
400-500 0.4187 + 0.0097 1.3 0.9 0.6 0.1 1.5 0.1 2.3 0.4397 + 0.0099
500-700+ 0.1879 = 0.0070 1.5 1.2 0.9 0.1 3.1 0.1 3.7 0.1998 + 0.0074

Table 16: Absolute and normalised differential cross-sections as functions of pf + p’T‘ (top) and E¢ + E* (bottom).
The columns show the bin ranges, measured cross-section and total uncertainty, relative statistical uncertainty, relative
systematic uncertainties in various categories (see text), total relative uncertainty, and differential cross-section
corrected to remove contributions via W — 7 — ¢/u decays. Relative uncertainties smaller than 0.05% are indicated
by ‘0.0’. The last bin includes overflows where indicated by the ‘+’ sign.
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Absolute d?>c/d|nf|dme*  Stat. tfmod. Lept. Jet/b Bkg. L/E, Total d>c/d|p’|dmH
(no 7)
Bin [unit |7] GeV]  [fb/unit || GeV] (%) (%) (%) (%) (%) (%) (%) [fblunit |p] GeV]

0 <m < 80GeV

0.00-0.25 87.2+25 08 0.7 0.8 0.1 1.0 23 2.8 72.3+£2.0
0.25-0.50 82.6+23 0.8 0.8 0.8 0.1 0.9 23 2.8 68.5+1.9
0.50-0.75 782+22 08 0.9 0.8 0.2 0.8 23 29 65.0+1.8
0.75-1.00 702 +£2.1 0.9 1.1 0.9 0.2 0.9 23 3.0 583+1.7
1.00-1.25 60.0£19 09 1.3 0.9 0.2 0.9 23 3.1 50.0+1.5
1.25-1.50 51.5+1.7 1.2 1.5 0.9 0.1 1.0 23 33 429+1.3
1.50-1.75 41.0+1.4 1.3 1.7 1.0 0.2 1.0 23 34 342+1.1
1.75-2.00 3114+ 1.2 1.5 1.8 1.0 0.2 1.2 23 3.7 26.2+0.9
2.00-2.50 18.45 +0.73 1.5 2.2 1.1 0.3 1.5 23 4.0 15.42 £ 0.57
80 < m* < 120 GeV

0.00-0.25 1206 £34 09 0.9 0.7 0.3 0.8 23 29 102.2+£3.0
0.25-0.50 113.5+£32 09 0.9 0.6 0.3 0.7 23 2.8 96.3+2.7
0.50-0.75 105.5+3.0 09 0.8 0.6 0.3 0.7 23 2.8 89.5+2.5
0.75-1.00 93.2+2.7 1.0 0.9 0.7 0.3 0.7 23 29 79.1+£2.3
1.00-1.25 823124 1.1 0.9 0.7 0.3 0.7 23 29 69.9+£2.0
1.25-1.50 69.5+2.1 1.3 1.0 0.7 0.3 0.8 2.3 3.0 589+1.8
1.50-1.75 57.1+1.8 1.4 1.0 0.7 0.3 0.9 23 3.1 484 +1.5
1.75-2.00 450+ 1.5 1.6 1.0 0.8 0.3 1.0 23 3.2 38.4+1.2
2.00-2.50 28.85+0.97 1.5 1.1 0.9 0.3 1.3 23 34 24.53 £0.83
120 < m°* < 200 GeV

0.00-0.25 506+1.6 09 1.7 0.6 0.3 0.8 23 32 445+13
0.25-0.50 484+15 09 1.6 0.5 0.2 0.8 23 3.1 425+13
0.50-0.75 46.7+14 09 1.5 0.6 0.2 0.7 23 3.1 409+1.2
0.75-1.00 440+1.3 1.0 1.4 0.6 0.2 0.7 23 3.0 38.6+1.1
1.00-1.25 380+1.2 1.1 1.3 0.6 0.3 0.8 23 3.1 341+1.0
1.25-1.50 343=+1.1 1.3 1.3 0.6 0.2 0.8 23 32 30.0+0.9
1.50-1.75 28.79 £0.92 1.3 1.3 0.7 0.3 1.0 23 3.2 25.20+0.79
1.75-2.00 23.97+£0.78 1.4 1.3 0.7 0.2 1.0 23 32 20.98 £ 0.67
2.00-2.50 16.46 + 0.54 1.3 1.2 0.8 0.2 1.3 23 33 14.43 £ 0.47
200 < m®* < 500+ GeV

0.00-0.25 4.90 +£0.18 1.6 1.3 0.6 0.3 1.8 24 3.7 4.47+0.17
0.25-0.50 5.09+£0.19 1.5 1.2 0.6 0.3 1.9 24 3.7 4.65+0.17
0.50-0.75 4.95+0.18 1.5 1.2 0.6 0.3 2.0 24 3.7 4.52+0.17
0.75-1.00 4.93+0.18 1.5 1.2 0.6 0.4 1.9 24 3.7 4.50£0.16
1.00-1.25 491 +0.18 1.5 1.3 0.6 0.2 1.9 24 3.7 4.46 £0.16
1.25-1.50 4.42 +£0.18 1.9 1.5 0.7 0.6 2.0 24 4.0 4.01 £0.16
1.50-1.75 4.18 £0.16 1.7 1.5 0.7 0.3 1.8 23 39 3.80+£0.14
1.75-2.00 3.70£0.15 1.9 1.8 0.7 0.3 1.9 23 4.0 3.36+0.13
2.00-2.50 2.71+£0.11 1.6 2.0 0.8 0.3 1.9 23 4.0 2.46+0.10

Table 17: Absolute differential cross-sections as a function of |¢| x m®*. The columns show the bin ranges,
measured cross-section and total uncertainty, relative statistical uncertainty, relative systematic uncertainties in
various categories (see text), total relative uncertainty, and differential cross-section corrected to remove contributions
via W — 7 — e¢/u decays. Relative uncertainties smaller than 0.05% are indicated by ‘0.0’. The last bin includes
overflows where indicated by the ‘+’ sign.
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Normalised Id?0/djn’ldme*  Stat. tfmod. Lept. Jet/b Bkg. L/E, Total Ld20 /din?|dmeH
(no 1)
Bin [unit |7| GeV]  [1073/unit [7] GeV] (%) (%) (%) (%) (%) (%) (%) [10-3/unit || GeV]
0 < m* < 80GeV
0.00-0.25 3.072 £ 0.042 0.8 0.8 0.2 0.1 0.8 0.0 1.4 2.977 £ 0.039
0.25-0.50 2.909 + 0.037 0.7 0.7 0.2 0.1 0.7 0.0 1.3 2.819 +0.034
0.50-0.75 2.757 £ 0.034 0.8 0.7 0.2 0.1 0.6 0.0 1.2 2.675 +0.031
0.75-1.00 2.473 +0.032 0.8 0.8 0.2 0.1 0.6 0.0 1.3 2.398 + 0.030
1.00-1.25 2.115 +0.030 0.9 0.9 0.3 0.1 0.6 0.0 1.4 2.057 £ 0.028
1.25-1.50 1.815 +0.031 1.2 1.0 0.3 0.1 0.6 0.0 1.7 1.765 + 0.029
1.50-1.75 1.444 +0.028 1.2 1.2 04 0.1 0.7 0.0 1.9 1.406 = 0.025
1.75-2.00 1.106 = 0.025 1.5 14 0.4 0.1 0.9 0.0 2.2 1.079 £ 0.023
2.00-2.50 0.650 = 0.016 14 1.6 0.5 0.2 1.2 0.0 2.5 0.635 +0.015
80 < m* < 120 GeV
0.00-0.25 4.248 +0.051 0.9 0.7 0.2 0.1 0.4 0.0 1.2 4.208 + 0.054
0.25-0.50 3.999 +0.045 0.9 0.6 0.2 0.1 0.4 0.0 1.1 3.963 + 0.046
0.50-0.75 3.716 £ 0.043 0.9 0.6 0.1 0.1 04 0.0 1.1 3.685 +0.042
0.75-1.00 3.283 + 0.040 1.0 0.6 0.1 0.2 04 0.0 1.2 3.255 +0.039
1.00-1.25 2.900 + 0.036 1.0 0.6 0.1 0.1 0.3 0.0 1.3 2.878 +0.036
1.25-1.50 2.448 +0.038 1.3 0.7 0.1 0.2 0.4 0.0 1.6 2.425 +0.038
1.50-1.75 2.011 +£0.032 14 0.7 0.2 0.1 0.4 0.0 1.6 1.992 +0.032
1.75-2.00 1.586 = 0.029 1.5 0.8 0.2 0.2 0.6 0.0 1.9 1.581 +0.030
2.00-2.50 1.017 £ 0.019 1.4 0.8 04 0.1 0.8 0.0 1.9 1.010 £ 0.019
120 < m®* < 200 GeV
0.00-0.25 1.783 +£0.028 0.9 1.2 0.2 0.1 0.5 0.0 1.6 1.832 + 0.025
0.25-0.50 1.706 + 0.025 0.9 1.0 0.2 0.1 04 0.0 1.5 1.751 +£0.023
0.50-0.75 1.645 + 0.022 0.9 0.9 0.2 0.1 04 0.0 1.4 1.685 + 0.022
0.75-1.00 1.549 + 0.021 1.0 0.8 0.2 0.1 0.3 0.0 1.3 1.587 + 0.021
1.00-1.25 1.370 £ 0.018 1.0 0.7 0.2 0.1 0.4 0.0 1.3 1.402 +0.019
1.25-1.50 1.208 = 0.019 1.3 0.7 0.2 0.1 0.4 0.0 1.6 1.235+0.019
1.50-1.75 1.014 £ 0.016 1.3 0.7 0.3 0.1 0.5 0.0 1.6 1.037 £ 0.016
1.75-2.00 0.845 +0.015 14 0.7 0.2 0.1 0.6 0.0 1.7 0.863 +0.015
2.00-2.50 0.5801 + 0.0098 1.3 0.6 0.3 0.1 0.9 0.0 1.7 0.5938 + 0.0100
200 < m* < 500+ GeV
0.00-0.25 0.1728 + 0.0047 1.6 1.5 0.5 0.2 1.6 0.1 2.7 0.1840 = 0.0050
0.25-0.50 0.1793 + 0.0047 1.5 1.3 0.6 0.2 1.7 0.1 2.6 0.1914 + 0.0050
0.50-0.75 0.1744 + 0.0046 1.5 1.1 0.5 0.1 1.8 0.1 2.6 0.1859 +0.0048
0.75-1.00 0.1736 + 0.0044 1.5 1.0 0.5 0.2 1.7 0.0 2.6 0.1853 +0.0047
1.00-1.25 0.1729 + 0.0043 1.5 0.9 0.5 0.2 1.7 0.0 2.5 0.1837 = 0.0046
1.25-1.50 0.1559 +0.0045 1.9 1.0 0.6 0.6 1.8 0.0 2.9 0.1652 + 0.0048
1.50-1.75 0.1474 + 0.0039 1.7 1.0 0.5 0.2 1.6 0.0 2.6 0.1563 + 0.0041
1.75-2.00 0.1303 + 0.0037 1.9 1.1 0.5 0.2 1.6 0.0 2.8 0.1382 + 0.0039
2.00-2.50 0.0955 +0.0026 1.6 1.3 04 0.3 1.7 0.1 2.7 0.1012 + 0.0027

Table 18: Normalised differential cross-sections as a function of |57¢| x m*. The columns show the bin ranges,
measured cross-section and total uncertainty, relative statistical uncertainty, relative systematic uncertainties in
various categories (see text), total relative uncertainty, and differential cross-section corrected to remove contributions
via W — 7 — e¢/u decays. Relative uncertainties smaller than 0.05% are indicated by ‘0.0’. The last bin includes
overflows where indicated by the ‘+’ sign.
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Absolute d?c/d|y®#|dm®*  Stat. tfmod. Lept. Jet/b Bkg. L/E, Total d?c/d|y*"|dmH
(no 1)
Bin [unit |y| GeV]  [fb/unit |y| GeV] (%) (%) (%) (%) (%) (%) (%) [fb/unit |y| GeV]

0 < m < 80GeV

0.00-0.50 449+13 0.7 0.8 0.8 0.2 0.9 23 2.8 37.1+ 1.0
0.50-1.00 38.7+1.1 0.8 1.0 0.8 0.2 0.9 23 2.9 32.1+0.9
1.00-1.50 29.48 £ 0.95 1.0 1.4 0.9 0.2 1.0 23 32 24.56 £ 0.74
1.50-2.00 17.38 £ 0.65 1.5 1.9 1.0 0.4 1.3 23 3.8 14.58 £ 0.52
2.00-2.50 4.13+£024 34 29 1.2 0.5 2.5 24 5.8 3.49+£0.20
80 < m < 120 GeV

0.00-0.50 67.4+£19 0.8 0.7 0.7 0.3 0.8 23 2.7 57.0+£1.6
0.50-1.00 56.9+1.6 09 0.8 0.7 0.3 0.7 23 2.8 482+1.4
1.00-1.50 403+ 1.2 1.2 1.2 0.7 0.3 0.7 23 3.0 345+1.1
1.50-2.00 17.92 +0.68 1.9 1.7 0.8 0.3 1.4 23 3.8 15.33 £ 0.60
2.00-2.50 330+£024 53 29 1.2 1.1 2.8 24 7.3 2.86 +£0.21
120 < m®* < 200 GeV

0.00-0.50 33.95+098 0.8 1.2 0.6 0.2 0.7 23 2.9 29.66 + 0.84
0.50-1.00 28.57+0.85 09 1.3 0.6 0.3 0.8 23 3.0 25.02+0.72
1.00-1.50 17.01 £0.56 1.2 1.5 0.6 0.2 1.1 23 33 14.98 + 0.48
1.50-2.00 6.65+0.28 2.1 2.0 0.8 0.3 1.6 23 4.2 5.89+£0.25
2.00-2.50 0.84+0.08 74 3.6 1.6 1.2 4.2 2.5 9.8 0.74 £ 0.07
200 < m®* < 500+ GeV

0.00-0.50 4.85+0.18 1.1 1.7 0.6 0.3 1.8 24 3.6 4.41£0.16
0.50-1.00 3.56+£0.13 1.3 1.2 0.6 0.3 1.9 24 3.6 3.25+0.11
1.00-1.50 1.72+0.07 2.0 L5 0.9 0.3 2.1 24 4.1 1.57 £ 0.06
1.50-2.00 0.43+0.03 4.1 2.6 1.2 0.3 29 24 6.2 0.40 +0.02
2.00-2.50 0.04+0.01 159 7.1 24 1.5 5.2 2.7 18.6 0.04 +0.01

Table 19: Absolute differential cross-sections as a function of |y°#| x m#. The columns show the bin ranges,
measured cross-section and total uncertainty, relative statistical uncertainty, relative systematic uncertainties in
various categories (see text), total relative uncertainty, and differential cross-section corrected to remove contributions
via W — 7 — e/u decays. Relative uncertainties smaller than 0.05% are indicated by ‘0.0’. The last bin includes
overflows where indicated by the ‘+’ sign.
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Normalised Ld%c/d[y#|dm** Stat. timod. Lept. Jet/b Bkg. L/E, Total Ld?c/d[y¥|dmeH
(no 1)
Bin [unit [y| GeV] [1073/unit [y| GeV] (%) (%) (%) (%) (%) (%) (%) [1073/unit |y| GeV]
0 < m* < 80GeV
0.00-0.50 3.165 +£0.044 0.7 1.0 0.2 0.1 0.7 0.0 1.4 3.061 +0.040
0.50-1.00 2.733 £ 0.035 0.8 0.8 0.2 0.1 0.6 0.0 1.3 2.649 +0.032
1.00-1.50 2.080 = 0.032 1.0 09 0.3 0.1 0.6 0.0 1.5 2.024 +0.029
1.50-2.00 1.226 +0.027 1.4 1.3 0.4 0.4 0.9 0.0 2.2 1.202 +0.026
2.00-2.50 0.291 £ 0.014 34 2.3 0.7 0.4 2.2 0.1 4.7 0.287 = 0.013
80 < m* < 120 GeV
0.00-0.50 4.758 = 0.049 0.8 0.5 0.2 0.1 0.4 0.0 1.0 4.696 = 0.048
0.50-1.00 4.017 = 0.044 0.9 0.5 0.1 0.1 0.4 0.0 1.1 3.974 £ 0.045
1.00-1.50 2.846 + 0.041 1.1 0.8 0.2 0.2 0.4 0.0 1.5 2.840 +£0.043
1.50-2.00 1.264 + 0.031 1.8 1.3 0.2 0.1 1.0 0.0 2.5 1.263 +0.033
2.00-2.50 0.233 +£0.015 53 2.6 0.7 1.1 2.5 0.1 6.5 0.236 = 0.016
120 < m* < 200 GeV
0.00-0.50 2.395 +£0.024 0.8 0.5 0.2 0.1 0.3 0.0 1.0 2.444 + 0.025
0.50-1.00 2.016 £ 0.024 0.8 0.7 0.2 0.1 04 0.0 1.2 2.062 +0.023
1.00-1.50 1.200 = 0.021 1.2 1.0 0.2 0.1 0.7 0.0 1.7 1.234 +£0.021
1.50-2.00 0.469 +£0.014 2.1 1.6 0.4 0.3 1.2 0.1 3.0 0.485 +0.015
2.00-2.50 0.0592 + 0.0054 7.4 34 1.3 1.2 3.9 0.2 9.2 0.0611 +0.0056
200 < m®* < 500+ GeV
0.00-0.50 0.3425 +0.0084 1.1 1.5 0.4 0.1 1.6 0.0 2.5 0.3634 +0.0086
0.50-1.00 0.2513 +£0.0058 1.3 0.7 0.5 0.3 1.6 0.0 2.3 0.2676 = 0.0061
1.00-1.50 0.1211 +0.0036 2.0 1.0 0.7 0.1 1.8 0.1 2.9 0.1292 +0.0038
1.50-2.00 0.0306 + 0.0017 4.1 2.3 1.0 0.3 2.5 0.1 54 0.0327 +£0.0018
2.00-2.50 0.0029 +0.0005 159 6.9 2.1 1.5 4.9 0.4 18.2 0.0031 + 0.0006

Table 20: Normalised differential cross-sections as a function of |y#| x m®*. The columns show the bin ranges,
measured cross-section and total uncertainty, relative statistical uncertainty, relative systematic uncertainties in
various categories (see text), total relative uncertainty, and differential cross-section corrected to remove contributions
via W — 7 — e/u decays. Relative uncertainties smaller than 0.05% are indicated by ‘0.0’. The last bin includes
overflows where indicated by the ‘+’ sign.
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Absolute d?o /dA¢*dme*  Stat. tfmod. Lept. Jet/b Bkg. L/E, Total d’o/dA¢dmeH

(no 1)
Bin [rad GeV] [fb/rad GeV] (%) (%) (%) (%) (%) (%) (%) [fb/rad GeV]
0 < m* < 80GeV
0.00-0.31 31.2+1.0 1.2 1.6 0.8 0.1 1.0 2.3 34 27.0+0.9
0.31-0.63 31.13+0.99 1.1 1.4 0.8 0.1 0.9 2.3 32 27.04 +0.82
0.63-0.94 30.34 + 0.95 1.2 1.3 0.8 0.2 0.9 2.3 3.1 26.31 +0.79
0.94-1.26 29.60 + 0.92 1.2 1.1 0.8 0.2 0.9 2.3 3.1 25.31+0.76
1.26-1.57 25.05 +0.80 1.3 1.1 0.9 0.2 1.0 2.3 32 20.89 + 0.64
1.57-1.88 20.21 + 0.66 1.5 1.1 0.9 0.3 1.0 2.3 33 16.31 +0.52
1.88-2.20 15.63 +0.55 1.8 1.3 1.0 0.2 1.1 2.3 35 12.16 £ 0.42
2.20-2.51 12.27 +0.46 2.1 1.4 1.0 0.3 1.1 2.3 3.7 9.27+0.34
2.51-2.83 10.07+040 2.3 1.6 1.1 0.2 1.3 2.3 4.0 7.53+0.29
2.83-3.14 8.38 +0.37 2.6 1.8 1.1 0.6 1.7 2.3 4.4 6.20 £ 0.27
80 < m* < 120 GeV
0.00-0.31 10.11 +0.44 2.8 1.9 0.8 0.4 1.3 2.3 4.3 9.13+0.40
0.31-0.63 10.92 + 0.45 2.6 1.7 0.8 0.4 1.0 2.3 4.1 9.84 +£0.40
0.63-0.94 13.61 +£0.52 2.3 1.5 0.7 0.4 1.0 2.3 3.8 12.28 +0.46
0.94-1.26 19.44 + 0.68 1.9 1.3 0.7 0.2 0.9 2.3 3.5 17.50 + 0.60
1.26-1.57 29.17 +0.94 1.6 1.1 0.6 0.4 0.9 2.3 32 26.19 + 0.83
1.57-1.88 387+1.2 1.4 1.0 0.7 0.2 0.8 2.3 3.1 34.1+1.0
1.88-2.20 446+ 1.4 1.3 0.9 0.7 0.4 0.8 2.3 3.1 379+ 1.1
2.20-2.51 454+ 1.4 1.3 0.9 0.7 0.3 0.8 2.3 3.0 373+ 1.1
2.51-2.83 425+1.3 1.4 0.9 0.7 0.4 0.8 2.3 3.1 34.1+1.1
2.83-3.14 41.8+1.3 1.4 1.1 0.7 0.4 0.8 2.3 3.1 33.1«1.1
120 < m** < 200 GeV
0.00-0.31 3.44 +0.22 33 4.8 0.8 0.3 1.3 2.3 6.5 3.17+0.21
0.31-0.63 333020 33 4.1 0.8 0.2 1.3 2.3 6.0 3.05+0.19
0.63-0.94 3.92+0.21 3.1 34 0.8 0.5 1.5 2.3 5.5 3.59+0.20
0.94-1.26 5.41+0.25 2.6 2.7 0.7 0.2 1.2 2.3 4.6 494 +0.24
1.26-1.57 8.28 +0.32 2.1 2.0 0.7 0.4 1.0 2.3 3.9 7.55+0.31
1.57-1.88 12.70 + 0.44 1.7 1.5 0.6 0.2 1.0 2.4 3.5 11.52 £ 0.40
1.88-2.20 18.44 +0.59 1.4 1.3 0.6 0.2 0.9 2.3 3.2 16.55 +0.52
2.20-2.51 24.92 +0.80 1.2 1.5 0.6 0.3 0.8 2.3 32 21.86 + 0.68
2.51-2.83 28.48 + 0.99 1.2 2.0 0.6 0.4 0.8 2.3 35 24.35 +0.85
2.83-3.14 29.7+1.1 1.1 2.7 0.6 0.2 0.8 2.3 3.8 25.0+1.0
200 < m®* < 500+ GeV
0.00-0.31 0.23+0.03 7.1 6.3 0.9 1.0 5.6 23 114 0.22 +0.02
0.31-0.63 0.30+0.03 6.3 5.6 0.8 0.7 4.3 2.3 9.8 0.28 = 0.03
0.63-0.94 0.29 +£0.03 6.2 4.8 0.8 0.8 5.0 2.4 9.7 0.27 £ 0.03
0.94-1.26 0.36 +0.03 5.6 3.9 0.7 0.8 3.7 2.3 8.2 0.34 +0.03
1.26-1.57 0.54+0.04 453 3.1 0.8 0.5 3.2 24 6.7 0.51 +0.03
1.57-1.88 0.93 +£0.05 3.3 2.4 0.8 0.4 2.7 2.3 5.5 0.87 = 0.05
1.88-2.20 1.60 +0.07 2.4 1.7 0.7 0.5 2.1 2.3 4.4 1.48 £ 0.07
2.20-2.51 2.76 £ 0.11 1.9 1.4 0.7 0.4 1.9 2.4 3.9 2.54+£0.10
2.51-2.83 4.22+0.16 1.5 1.5 0.6 0.3 1.7 2.4 3.7 3.83+0.14
2.83-3.14 5.68 +0.21 1.3 2.0 0.6 0.3 1.3 2.4 3.7 5.08 £0.18

Table 21: Absolute differential cross-sections as a function of |A¢¢| x m®*. The columns show the bin ranges,
measured cross-section and total uncertainty, relative statistical uncertainty, relative systematic uncertainties in
various categories (see text), total relative uncertainty, and differential cross-section corrected to remove contributions
via W — v — e¢/u decays. Relative uncertainties smaller than 0.05% are indicated by ‘0.0’. The bin boundaries for
A¢eH correspond to exact multiples of /10 but are quoted to two decimal places.
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Normalised %dZO'/ dAg¢e#*dme*  Stat. tfmod. Lept. Jet/b Bkg. L/E, Total (irdzo' [dAgHdmH
(no 1)
Bin [rad GeV] [1073/rad GeV] (%) (%) (%) (%) (%) (%) (%) [1073/rad GeV]

0 < m* < 80GeV

0.00-0.31 2.204 £ 0.047 1.2 1.6 0.2 0.2 0.7 0.0 2.1 2.224 £ 0.045
0.31-0.63 2.196 + 0.041 1.1 1.3 0.1 0.2 0.6 0.0 1.8 2.227 +£0.038
0.63-0.94 2.140 £ 0.036 1.1 1.1 0.1 0.1 0.6 0.0 1.7 2.167 £ 0.034
0.94-1.26 2.088 + 0.033 1.2 0.9 0.2 0.1 0.6 0.0 1.6 2.084 +£0.032
1.26-1.57 1.767 £ 0.029 1.3 0.8 0.2 0.2 0.7 0.0 1.7 1.720 £ 0.028
1.57-1.88 1.426 + 0.026 1.5 0.7 0.3 0.1 0.7 0.0 1.8 1.343 £ 0.024
1.88-2.20 1.103 £ 0.023 1.7 0.9 0.3 0.1 0.8 0.0 2.1 1.001 +0.022
2.20-2.51 0.865 +£0.021 2.0 1.0 0.4 0.1 0.8 0.0 2.5 0.763 £ 0.019
2.51-2.83 0.710£0.020 23 1.2 0.5 0.2 1.1 0.1 2.8 0.620 £ 0.018
2.83-3.14 0.591+£0.020 25 1.4 0.5 0.5 1.5 0.0 33 0.511 £0.017
80 < m® < 120GeV

0.00-0.31 0.713+£0.023 2.7 1.4 0.2 0.3 1.0 0.0 33 0.751 £ 0.026
0.31-0.63 0.770 £0.023 2.6 1.3 0.2 0.4 0.7 0.0 3.0 0.810 £ 0.025
0.63-0.94 0.960 £0.026 2.3 1.1 0.1 04 0.6 0.0 2.7 1.011 +£0.027
0.94-1.26 1.371 £ 0.030 1.9 0.9 0.2 0.2 04 0.0 22 1.441 £ 0.031
1.26-1.57 2.057 £ 0.037 1.6 0.7 0.1 0.3 04 0.0 1.8 2.156 £ 0.038
1.57-1.88 2.729 £ 0.042 1.4 0.6 0.1 0.1 0.4 0.0 1.5 2.809 +£0.043
1.88-2.20 3.145 + 0.049 1.3 0.6 0.2 0.3 0.5 0.0 1.6 3.124 + 0.048
2.20-2.51 3.201 £ 0.052 1.3 0.8 0.2 0.2 0.5 0.0 1.6 3.075 £ 0.050
2.51-2.83 2.998 + 0.053 1.4 0.9 0.2 0.3 0.5 0.0 1.8 2.811 £0.051
2.83-3.14 2.948 + 0.056 1.4 1.1 0.2 0.3 0.5 0.0 1.9 2.722 £ 0.058
120 < m°* < 200 GeV

0.00-0.31 0.243 £0.014 33 4.7 0.3 04 1.2 0.1 59 0.261 £0.016
0.31-0.63 0.235+0.012 33 39 0.3 0.3 1.2 0.0 53 0.251 £0.014
0.63-0.94 0.276 £ 0.013 3.1 3.2 0.3 04 1.3 0.0 4.7 0.296 + 0.015
0.94-1.26 0.382+0.014 2.6 24 0.2 0.2 0.9 0.0 3.7 0.407 £ 0.017
1.26-1.57 0.584 £0.016 2.1 1.7 0.3 0.4 0.7 0.0 2.8 0.621 +0.020
1.57-1.88 0.896 +0.018 1.7 1.0 0.2 0.1 0.6 0.0 2.0 0.948 +0.022
1.88-2.20 1.300 + 0.021 1.3 0.7 0.2 0.1 0.5 0.0 1.6 1.363 £ 0.022
2.20-2.51 1.758 £ 0.029 1.2 1.1 0.2 0.2 0.3 0.0 1.6 1.800 + 0.028
2.51-2.83 2.009 £ 0.042 1.1 1.7 0.2 0.2 0.3 0.0 2.1 2.005 +£0.043
2.83-3.14 2.095 + 0.057 1.1 25 0.2 0.1 0.3 0.0 2.7 2.062 £ 0.063
200 < m®* < 500+ GeV

0.00-0.31 0.0164 +£0.0018 7.1 6.0 0.7 1.0 5.5 0.0 109 0.0179 + 0.0020
0.31-0.63 0.0209 £ 0.0019 6.3 53 04 0.7 4.1 0.0 9.2 0.0227 + 0.0021
0.63-0.94 0.0205 +£0.0019 6.1 4.5 0.5 0.8 4.9 0.1 9.1 0.0224 + 0.0021
0.94-1.26 0.0255 +£0.0019 5.6 3.6 0.3 0.8 35 0.0 7.6 0.0279 + 0.0022
1.26-1.57 0.0382 +£0.0023 4.2 2.8 0.6 0.6 3.1 0.0 6.0 0.0416 + 0.0026
1.57-1.88 0.0659 + 0.0031 33 2.0 0.6 0.2 2.5 0.0 4.7 0.0717 + 0.0034
1.88-2.20 0.1130 +£0.0039 24 1.3 0.5 04 2.0 0.0 34 0.1221 + 0.0043
2.20-2.51 0.1949 + 0.0053 1.8 1.0 0.6 0.2 1.7 0.0 2.7 0.2094 + 0.0056
2.51-2.83 0.2974 + 0.0075 1.5 1.3 0.5 0.3 1.5 0.1 25 0.3154 + 0.0075
2.83-3.14 0.401 £0.011 1.3 2.0 0.4 0.1 1.0 0.1 2.6 0.418 £0.010

Table 22: Normalised differential cross-sections as a function of |A¢’| x m®*. The columns show the bin ranges,
measured cross-section and total uncertainty, relative statistical uncertainty, relative systematic uncertainties in
various categories (see text), total relative uncertainty, and differential cross-section corrected to remove contributions
via W — v — e¢/u decays. Relative uncertainties smaller than 0.05% are indicated by ‘0.0’. The bin boundaries for
AgeH correspond to exact multiples of /10 but are quoted to two decimal places.
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