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To assess the properties of the quark—gluon plasma formed in heavy-ion collisions, the ATLAS
experiment at the LHC measures a correlation between the mean transverse momentum and the
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collisions obtained at the centre-of-mass energy per nucleon pair of 5.02 TeV, corresponding
to total integrated luminosities of 22 ub~! and 28 nb~!, respectively. The measurement is
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In the proton—lead collisions, the modified Pearson correlation coefficient measured for the
second harmonics shows only weak centrality dependence. The data is qualitatively described
by the predictions based on the hydrodynamical model.
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1 Introduction

The large azimuthal anisotropy observed for particles produced in heavy-ion collisions at RHIC [1-4] and the
LHC [5-8] is one of the main signatures of the formation of strongly interacting matter called quark—gluon
plasma (QGP). A standard picture of an ultrarelativistic heavy-ion collision is that the initial, asymmetric
‘almond’ shape of the colliding nuclei’s overlap region leads to the formation of pressure gradients in the
QGP. These pressure gradients transform the initial shape into an azimuthal anisotropy of the final-state
particle distributions through a nearly ideal hydrodynamic evolution and subsequent QGP hadronisation
process [9]. The azimuthal anisotropy is customarily decomposed into Fourier components with the
amplitude of the n'" term denoted by v,, and known as a flow harmonic [10]. Theoretical hydrodynamical
models successfully describe observed flow phenomena at low particle transverse momenta [11]. The
properties of QGP were recently studied with measurements of correlations between flow harmonics of
different order [12-16] as well as with analyses of event shapes [16-20]. It is expected that the magnitudes
of the azimuthal flow harmonics [6, 7] should be correlated with the mean transverse momentum [pr] of
the particles on an event-by-event basis [21]. In this paper, that correlation is called the v,,—[pr] correlation.
In proton—lead (p+Pb) collisions, the measurements of multi-particle correlations [22] show evidence
of collective phenomena. The spectra of identified particles in p+Pb collisions are consistent with a
presence of the radial flow [23] while the nuclear modification factor at high pt approaches unity [24]. It
is predicted [25] that in p+Pb collisions the v,—[pt] correlation could provide constraints on the initial
geometry of the particle source, thereby reducing the overall hydrodynamical modelling uncertainty.
Simultaneous measurements of v,—[pr] correlations in small and large systems may help disentangle the
role of initial conditions and subsequent dynamical QGP evolution in final-state particle distributions.

To measure the strength of the v,—[pr] correlation, the Pearson correlation coefficient (PCC) R [25] is used

where
__ cov(vy {2}2 [p1]) .
Var(v,{2}2)+/Var([pr])

The term v, {2} is the square of the nM-order flow harmonic obtained using the two-particle correlation
method [26], cov(v, {2}, [pr]) is the covariance between v, {2} and [pr], and Var(v, {2}?) and Var([pr])
are the variances of the v, {2}? and [pr] distributions, respectively. Experimentally, however, the finite
event-by-event charged-particle track multiplicity results in an additional broadening of the v,{2}> and
[pr] distributions due to statistical fluctuations. Thus, the values of the respective variances are increased,
especially for [pr]. The magnitude of this broadening depends on the choice of kinematic region and
on detector performance, making direct comparisons between experimental results and with theoretical
calculations difficult. To overcome this problem, a modified correlation coefficient p, less sensitive to the
charged-particle multiplicity than R, was suggested in Ref. [25]. To reduce the auto-correlation effects
and those due to the finite charged-particle multiplicity in an event, the variances of the v,{2}? and [pr]
distributions are replaced by corresponding dynamical variables, which are more sensitive to intrinsic
initial-state fluctuations. The variance of v, {2} is replaced by its dynamical counterpart [27]

Var (v {2)?) gy = vad2}* = va{4}* = (corr, {4}) = (corr,{2})?, 2

where corr, {2} and corr, {4} are the values of two- and four-particle correlations [26] and where angular
brackets denote that they are averaged over events. These correlations are described in detail in Section 4.
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The variance of [pr] is replaced by the dynamical pr fluctuation magnitude [28, 29] ¢ defined as
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where ([pr]) is the average [pt] over the all analysed events. The modified PCC p is thus defined as

o= COV(Vn{Z}Z’ [p1]) ‘ 4)

Var(v"{z}z)dyn\/a

It was demonstrated in Ref. [25] that the p coefficient calculated using realistic and finite multiplicities
provides a reliable estimate of the true value of R found in the limit of infinite multiplicity, whereas the
coeflicient R, calculated using Eq. (1) for finite multiplicity underestimates the true value.

The ALICE experiment measured [20] that the charged-particle pt spectrum is correlated with the
magnitude of the elliptic flow. It is measured to be harder in collisions with the higher second flow
harmonics and softer in collisions where the elliptic flow is smaller. The magnitude of spectra modification
is observed to increase with pr, starting to be significant at around 1 GeV and reaching a few percent at
around 5 GeV. The modification is found to be most significant in the mid-central collisions, decreasing in
the most central ones. The ALICE results suggest that the value of the correlation coeflicient should be
significant in mid-central and central collisions and that its magnitude and centrality dependence should
be sensitive to the scale of intrinsic fluctuations of v, and pr. Including particles of higher pr in the
measurement is expected to result in increased values of the p(v2{2}?, [pr]). The [pr] correlations with v,
in peripheral Pb+Pb collisions, v3 and v4 in wide centrality range as well as for the v, in high multiplicity
p+Pb are unexplored by measurements.

This paper reports on the first measurement of the p coefficient with the ATLAS detector in Pb+Pb and
p+Pb collisions at a centre-of-mass energy per nucleon pair of 5.02 TeV. The Pb+Pb data sample with a
total integrated luminosity of 22 ub~! was collected in 2015, and the p+Pb sample with 28 nb~! in 2013.

This paper is organised as follows. Section 2 gives a brief description of the ATLAS detector. Details of
the event selection and charged-particle reconstruction are provided in Section 3. Section 4 describes the
analysis procedure for calculating the p coeflicient. Systematic uncertainties are described in Section 5.
Results are presented in Section 6, followed by a summary in Section 7.

2 Experimental setup

The ATLAS experiment [30] at the LHC is a multipurpose particle detector with a forward—backward
symmetric cylindrical geometry and a near 4 solid angle coverage. The inner detector (ID) covers the
pseudorapidity! range || < 2.5 and is surrounded by a thin superconducting solenoid providing a 2 T axial
magnetic field. The ID consists of silicon pixel, silicon microstrip (SCT), and straw tube tracking detectors.
After the 2013 p+Pb run, an additional pixel silicon layer, the insertable B-layer [31, 32], was installed
prior to the 5.02 TeV Pb+Pb data-taking to attain more precise tracking. Lead/liquid-argon (LAr) sampling
calorimeters provide electromagnetic (EM) energy measurements with high granularity. A steel/scintillator
tile hadronic calorimeter covers the central pseudorapidity range (|| < 1.7). The endcap and forward
regions are instrumented with LAr calorimeters for EM and hadronic energy measurements up to || = 4.9.
The forward calorimeter (FCal) covers 3.2 < || < 4.9 and is used for centrality estimation [10]. The
minimum-bias trigger scintillators (MBTS) are located on each side of the detector at z = £3.6 m and

I ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector
and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points
upward. Cylindrical coordinates (r, ¢) are used in the transverse plane, ¢ being the azimuthal angle around the z-axis. The
pseudorapidity is defined in terms of the polar angle 6 as = —Intan(9/2).



detect charged particles with 2.07 < || < 3.86. The zero-degree calorimeter (ZDC), located in the LHC
tunnel and covering |n7| > 8.3, is used for triggering on collision events and pile-up event rejection. It is
calibrated to resolve an individual neutron originating from the collision spectators.

A two-level trigger system selects events [33, 34]. The level-1 trigger is implemented in hardware
and preselects up to 107 events per second for further decisions by the high-level trigger (HLT). The
software-based HLT tuned for Pb+Pb collision data selects up to 1000 events per second for recording.
This analysis primarily uses charged-particle tracks in the ID, but information from the central calorimeters
and the ZDC is also used for triggering, event selection, and analysis.

3 Event and track selection

The Pb+Pb data in this analysis were selected using two mutually exclusive minimum-bias triggers. Events
with semi-central and central collisions were selected if the scalar sum of transverse energy in the entire
ATLAS calorimeter system exceeded 50 GeV. Peripheral events, i.e. those with large impact parameter
of the colliding Pb nuclei, fail the 50 GeV selection and were instead selected by requiring a deposition
in the ZDC corresponding to at least one neutron and by requiring at least one track reconstructed in the
HLT. Data in this analysis are required to come from periods when the entire detector was functioning
normally. The events are required to have a reconstructed vertex within 100 mm of the nominal interaction
point. The contribution from events containing more than one inelastic interaction (pile-up) is studied by
exploiting correlations between the transverse energy measured in the FCal (EE?CZ‘I) with the estimated
number of neutrons in the ZDC, and with the number of tracks associated with a primary vertex [22, 35].
The distribution of EEgcal and the distribution of the number of neutrons in events with more than one
collision are broader than the corresponding distributions in events with only one collision. Pile-up events
are suppressed by rejecting events with abnormally large values of either ZE¥Call or the number of neutrons
in the ZDC compared with the charged-particle multiplicity in the event. Approximately 0.2% of the events
are rejected by these requirements.

The p+Pb data in this analysis were selected using minimum-bias triggers and high-multiplicity triggers
(HMT). The minimum-bias trigger required signals in both sides of the MBTS system with a timing
difference of less than 10 ns to eliminate non-collision backgrounds. The HMT required the total transverse
energy in the calorimeter at level-one and the number of ID track candidates reconstructed in the HLT
to be above predefined thresholds. Six combinations of thresholds were used to optimise data-taking
during periods with different luminosities. Samples of events collected by these triggers are combined by
applying event weights to reproduce the charged-particle multiplicity distribution of the minimum-bias
trigger. Further details of the data selection are given in Refs. [22, 36]. The average pile-up probability in
the p+Pb dataset is approximately 3% but can be significantly larger in high-multiplicity events. Events
with more than one reconstructed vertex are removed from the sample. Similarly to the Pb+Pb dataset, to
remove events where the two interaction vertices are too close to resolve as independent ones, the ZDC
signal on the Pb fragmentation side is used. The distribution of the number of neutrons, which is broader in
events with pile-up than that for the events without pile-up is exploited for that purpose [36]. The fraction
of rejected events varies with the event activity and reaches a maximum of 10% for events with the highest
multiplicities.

The analysis for both collision systems is performed in narrow bins of event activity defined by the charged-
particle multiplicity N, (described in Section 4), which estimates the collision centrality. In addition,
the Pb+Pb results are presented as a function of collision centrality expressed by the average number of



nucleons participating in the collision, Ny, to allow comparison with theoretical predictions [37]. The
centrality is estimated from the EEEC"‘1 distribution [6, 10] using the Glauber model [38]. The number of
events passing the selection requirements is 1.3 x 108 for Pb+Pb within the 0-80% centrality interval. For
the p+Pb system, about 0.64 x 10% events enter the analysis.

The charged-particle tracks reconstructed in the ID are required to satisfy selection criteria in order to
suppress the contribution of incorrectly reconstructed tracks and secondary products of particle decays.
The selection criteria include the requirement that the number of hits in the pixel and SCT detectors should
greater than two and eight, respectively, for the Pb+Pb data and greater than one and six for the p+Pb
data. The track impact parameters relative to the collision vertex in the transverse direction, |dy|, and
longitudinal direction, |z sin 8|, are required to be less than 1 mm for tracks in the Pb+Pb data sample
and less than 1.5 mm in the p+Pb sample. In addition, in p+Pb collisions, the track impact parameter
significances must satisfy |dy/og,| < 3 and |z9sin#/0| < 3, where o, and o, are the uncertainties in
dp and z( sin 8 determined from the covariance matrix of the track fit. The different selection criteria for
Pb+Pb and p+Pb optimise the performance of the track reconstruction in differing running conditions.

Corrections needed due to track reconstruction effects are evaluated using 4x10° Pb+Pb and 107 p+Pb
minimum-bias Monte Carlo (MC) events generated by the HIJING v1.38b [39] event generator. After the
generation, an azimuthal flow is implemented using the afterburner technique [40], and the pr spectrum is
reweighted to match the data. Generated events were simulated in the detector by the GEANT 4-based [41]
ATLAS detector simulation programs [42] and reconstructed using the same procedures and detector
conditions as the data. Track reconstruction corrections are applied to each selected track using weights to
account for the tracking efficiency € and the fake-track fraction f. The efficiency is defined as the fraction
of primary MC charged particles that are matched to reconstructed tracks, and f is the fraction of tracks
that are not matched to primary MC particles or are produced from random combinations of hits in the ID.
A similar analysis procedure is described in Refs. [10, 16]. The fake-track fraction and tracking efficiency
are determined as functions of the track pt and 1 and of the track multiplicity in the event. Tracks included
in the analysis are weighted with the factor (1 — f)/e. An additional multiplicative weight evaluated from
data is applied to the data to correct for detector non-uniformity in the azimuthal angle. These weights are
obtained by requiring the tracks to be distributed uniformly in azimuth in all pseudorapidity slices of width
0.1.

In the Pb+Pb data, the contribution of fake tracks is largest in central collisions at the lowest analysed track
pr of 0.5 GeV and at the largest |r|, reaching up to 20%. The fake-track rate is below 1% for tracks with pr
above 2 GeV and || < 1.5. The tracking efficiency depends weakly on centrality, and in the most central
events it is about 3% less than in more peripheral events. The efficiency increases with the track pr from
about 50% at the lowest analysed pt to 70% above 2 GeV. It is highest at mid-rapidity and drops by about
15% for |n| > 1. For p+PDb collisions, with pt increasing from 0.3 to 1 GeV the efficiency increases from
about 75% (60%) to 83% (70%) atn ~ 0 (|| > 2). The p+Pb tracking efficiency is independent of the
event’s multiplicity for N, > 10, i.e. in the multiplicity range used in the analysis. The fake rate in p+Pb
collisions is very low, below 1% (3%) at n =~ 0 (|n| > 2).

4 Correlation coeflicient p

In each event, charged-particle tracks are grouped into three regions of subevents based on their pseudorapid-
ity: region A with —2.5 < 5 < —0.75, central region B with || < 0.5 and region C with 0.75 < n < 2.5.
The v2 for the n = 2—4 harmonics are calculated by correlating charged-particle tracks from subevents A and



C, which are separated in pseudorapidity to suppress non-flow contributions. Tracks in central region B are
used to obtain the mean value of the charged-particle transverse momentum in the event, [pt], defined as

[p1] ! Z WbDTb

2p Wb 4

where the summation is over tracks in region B, labelled by index b. The variable cx (Eq. (3)) is also
calculated using tracks from region B. Here, and in following formulas, the weights w include the fake-track
fraction, efficiency, and azimuthal non-uniformity corrections, as discussed in Section 3.

The covariance term from the numerator of Eq. (4) is defined as

S e ([pr] — ([prD) ) )

Za,c WaWe a.c

cov(va{2}2 [pr]) = Re(<

where ¢ is the azimuthal angle and indices a and ¢ span the tracks in regions A and C, respectively.

The two- and four-particle correlations used to define the dynamical variance in Eq. (2), which enters the
denominator of Eq. (4), are calculated as in Ref. [26]

(corr, (2)) = Re({ e 3" waweee ")) = Re((gnads)) ©)
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where the g, and g, are the complex flow vectors of subevent A and subevent C, respectively, and the
asterisk denotes the complex conjugate. The flow vectors are
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The four-particle correlation is obtained from the expression
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and similarly for subevent C. Equation (7) represents the sum Y, e"(¢1 ¥ =3 ~¢5) over all particles from
subevents A and C normalised by the number of quadruplets without auto-correlations in each subevent.

The second factor in the denominator of Eq. (4), the mean pt fluctuation in the event class c, is defined by
Eq. (3) and in this analysis it is calculated as

S 2 3 walins = e =)

(Zb Wb)2 - Zb Wb b'+b

The summation indices b and &’ run over all charged particles in region B.

The correlation coefficient expressed by Eq. (4) is evaluated for the range 0.5 < pr < 2 GeV in Pb+Pb
collisions and 0.3 < pr < 2 GeV in p+Pb collisions. These intervals, called ‘main’, contain a large number



of soft particles and constitute the main result of the analysis which can be compared with hydrodynamical
models. For each system, two additional pt ranges are considered: 0.5 < ptr <5GeV and 1 < pt <2 GeV
in the analysis of Pb+Pb collisions, and 0.3 < pt <5 GeV and 0.5 < pt < 2 GeV in p+Pb collisions. These
ranges facilitate the study of the sensitivity of p(v,,{2}2, [pr]) to the high pr part of the particle spectrum
and to the lower charged-particle multiplicity from the higher minimum pt value. The charged-particle pr
range 0.5 < pr < 2 GeV is common to both systems and can be used to compare the p(v2{2}?, [pr]) results
from Pb+Pb and p+Pb collisions.

The quantities of interest, i.e. cov(v,{2}% [p1]), Var(vn{2}2) dyn® Ck and p(v,{2}2, [pr]), are determined
in bins of reconstructed track multiplicity Mac measured in the combination of regions A and C. This is
done to avoid a negative correlation between the multiplicity in subevents A+C and B that occurs if the
analysis is binned in multiplicity in the entire ID. Narrow Mxc bins are also chosen due to the sensitivity to
multiplicity fluctuations of the multi-particle correlations that are used to obtain the Var(v,{2}?) dyn [271-
The events are grouped in fine bins with a width of ten in Mc for 0.5 < pt < 5 GeV in the Pb+Pb analysis
and 0.3 < pr < 5 GeV in the p+Pb analysis. It was cross-checked that the variables of interest obtained
with a finer binning in Mac are consistent with the measurement with the nominal binning.

To enable comparisons with the theoretical predictions and with future experimental results, measurements
obtained in Mc are presented as a function of the ATLAS ID multiplicity Ng, of 0.5 < pt < 5 GeV and
|n] < 2.5. They are projected from the Mac values taking into account tracking efficiency and fake-track
production as described in the previous section. A similar analysis procedure is described in Ref. [22].
For the Ny« dependencies in the Pb+Pb system, the results measured in Mac multiplicity intervals are
averaged, with weights equal to the probabilities to find any given Mc value in the centrality intervals.

The formulation of the modified PCC p(v,{2}>, [pr]) requires that there should be at least two tracks in
each region (A, B, and C). Further, Var(vn{Z}z) dyn calculated according to Eq. (6) can be negative at low

multiplicities due to statistical fluctuations, which renders Eq. (4) invalid because of the \/Var(vn{Z}z) dyn
term. For each Mac bin, pr interval, and harmonic, a criterion is applied that Var(vn{2}2) dyn needs to be
positive at a level of at least one standard deviation of its statistical uncertainty. Results presented as a
function of Ny, are produced only for those Mac intervals. For the Ny, dependencies in the Pb+Pb system,
it is additionally required for each centrality interval that the fraction of rejected events due to this criterion

does not exceed 1%.

5 Systematic uncertainties

The systematic uncertainty is estimated by varying individual aspects of the analysis. The systematic
uncertainties for the main pr interval are discussed for each collision system. Systematic uncertainties for
the other pr intervals behave consistently with the ones for the main pr interval. Since the modified PCC
p(v,{2}2, [pr]) is a ratio of quantities which are calculated using tracks, many variations largely cancel
out and the resulting systematic uncertainties are small. To suppress the statistical fluctuations and to
get more robust estimation of systematic uncertainties, they are averaged over several, wide ranges of the
charged-particle multiplicity. For each uncertainty source and for each measurement point, the maximum
variation from the baseline measurement is used. The total resulting uncertainty is the sum of the individual
contributions combined in quadrature. The following sources of systematic uncertainties are considered.

Track selection. The tracking performance has a relatively small impact on v, {2}, but it directly affects the
[pr] and cx via the admixture of the fake tracks, especially at low pr. To assess the impact on p(v, {2} [p1]),



the measurement is repeated with tracks selected with looser and tighter track quality criteria, thus increasing
and decreasing the fake-track rate, respectively. The weights used in the evaluation of measured quantities
take the modified selection into account. The loose track selection in the Pb+Pb analysis relaxes requirements
on the number of pixel and SCT hits to at least one and six, respectively. Additionally, the requirements on
the transverse and longitudinal impact parameters of the track are relaxed to 1.5 mm. The tighter selection
in the Pb+Pb analysis tightens the requirement on the transverse and longitudinal impact parameters of
the track to 0.5 mm. For the p+Pb analysis, the loose selection relaxes the requirements on the transverse
and longitudinal impact parameters of the track to 2 mm and on the impact parameter significances to
less than 4. In the tight selection, the impact parameter values and their significances must be less than
1 mm and 2, respectively. The largest absolute difference |o(v,.{2}2 [p1])°*¢ — p(v,{2}% [p1])'°°¢| or
oV {2}2, [p1T])P%° = p(v,. {2}2, [pr])1&M| is taken as the systematic uncertainty.

Detector material. Since the tracks that are used in the calculation of p(v, {2} [pr]) are weighted by the
inverse of the tracking efficiency, a bias in its estimation due to inaccurate modelling of the material in the
detector may change the balance between low- and high-pr tracks in the sums. Based on simulations, the
estimated uncertainty in the detector description is obtained [43, 44]. The resulting pt- and n-dependent
uncertainties in the track efficiency of up to 4% are used to determine the systematic uncertainty.

Tracking azimuthal uniformity. In this analysis, the weighting factors w correct for any non-uniformity
in the azimuthal angle distribution of reconstructed tracks. The weights are obtained from the data by
requiring azimuthal uniformity over the two-dimensional distribution of reconstructed tracks in the n—¢
plane. The effect of that correction on the result is conservatively estimated by comparing the baseline
measurement and the measurement obtained without applying this weight.

Reaction plane asymmetry. The imaginary part associated with the cov(v,{2}% [pt]) term defined in
Eq. (5), and thus the imaginary part associated with p(v,,{2}2, [pr]), referred to as the sine term, quantifies
the detector resolution for measuring flow harmonics [6, 27]. In an ideal detector, the sine term should be
zero due to symmetry of the collision zone with respect to the reaction plane. Its deviation from zero is
considered as an estimate of the systematic uncertainty on the real part, used to measure the variables of
interest.

Residual pile-up events. The selection criteria discussed in Section 3 suppress the fraction of pile-up
events accepted for analysis to almost zero in central collisions. To estimate the systematic uncertainty
related to pile-up, the measurement is conservatively repeated without this event rejection, resulting in at
most a 1% difference in the most central events for the p(v2{2}?, [pr]) coefficient. The p+Pb data were
taken with higher pile-up than the Pb+Pb data. To estimate the impact of contamination by residual pile-up
events, results were obtained with only the vertex criteria applied. The variation covers the estimated
residual pileup fraction in events of the highest track multiplicity [36].

Centrality selection. The minimum-bias trigger is fully efficient for the 0—85% centrality interval.
However, the total fraction of inelastic Pb+Pb events selected is known only to 1% accuracy due to trigger
inefficiency and possible sample contamination in more peripheral interactions. Centrality selection
requirements are altered to account for Ny, dependencies of this uncertainty. The centrality selection
contributes mainly to uncertainties for peripheral collisions.

Figure 1 shows the magnitude of the systematic uncertainties dp(v,{2}2, [pr]) for n = 2—4 in Pb+Pb
collisions as a function of N¢,. In Pb+Pb collisions, the systematic uncertainty of the measured correlation
coeflicients across different order harmonics and centralities is not dominated by a single source. One
of the largest uncertainties comes from restoring the azimuthal uniformity, and dominates for the second
and the third harmonics in the most central collisions. A sizeable contribution to the uncertainty for all
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Figure 1: The systematic uncertainty of p(v,{2}2, [pr]) as a function of Ny, measured with tracks from main pr
intervals for each collision system for the (a) second, (b) third, and (c) fourth harmonics in Pb+Pb collisions, and for
(d) p(v2{2}? [pr]) in p+Pb collisions. The total uncertainty is also shown.

three harmonics in central collisions is due to the reaction plane asymmetry. The residual pile-up in Pb+Pb
collisions gives a negligible contribution. Figure 1(d) shows systematic uncertainties for p(v2{2}2, [prt])
coefficients in p+Pb collisions for the main interval of 0.3 < pr < 2 GeV as a function of event activity. In
p+Pb interactions the largest uncertainty in the most active collisions (Ng, > 150) originates from pile-up.
Sources of sizeable uncertainties for this collision system are the track selection and the reaction plane
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asymmetry, while the azimuthal uniformity correction procedure has a marginal impact.



6 Results

6.1 The constituents of the modified PCC

The constituents of the modified PCC include ¢ , Var(v,{2}?) dyn and cov(v,.{2}2, [pr]) and are combined,
using Eq. (4), to obtain p. Figure 2 shows the dynamical pr fluctuation coeflicient c; as a function of
charged-particle multiplicity in Pb+Pb and p+Pb collision systems for tracks in three different pr intervals.
A strong decrease of ¢ with increasing N, is observed in all measured results. A similar decrease was
observed in Au+Au and Pb+Pb data at lower centre-of-mass energies [28, 29]. For the same N, the cx
values differ by an order of magnitude for different pt ranges of tracks used in the analysis. For the intervals
with the same lower pr limit, the ¢; values are higher for the interval with the larger upper pr limit.
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Figure 2: The variable ¢ for three pr ranges as a function of the charged-particle multiplicity N, of (a) Pb+Pb
and (b) p+Pb collisions. The statistical and systematic uncertainties are shown as vertical error bars (smaller than
symbols) and boxes, respectively.

Figure 3 shows Var(v,{2}?) ayn for n = 2-4 as function of Ney for Pb+Pb collisions. After increasing
with N, for low multiplicities a maximum is reached at Ny, approximately 500 or 1000 for n = 2 and
n = 3, respectively. At higher N, values the variances decrease with multiplicity. The dynamical variance
for n = 4, measured for Ny, % 500, decreases with increasing Ng,. The ordering Var(vz{Z}z) dyn >
Var(v3{2}?) 4, > Var(va{2}?),,, and the multiplicity dependence of Var(v,{2}?), are similar to the
ordering and centrality dependence of v, {2} measured by ATLAS [10]. Also shown in Figure 3 is

Var(vz{Z}z) dyn for p+Pb collisions as a function of Ny,. The dependence is monotonic, similarly to
v2{2} [45]. In both collision systems and for all harmonics, the same ordering of Var (v, 21?) dyn depending
on the pt interval is observed. The largest variances are observed for the pt intervals with an increased
lower limit. This is expected as the v, {2} value increases strongly with pt below 3 GeV [10]. Additionally,
the interval in which the upper limit on pr is set to 5 GeV integrates the region with the highest values of
vn{2} (which occur around 3 GeV) and thus the values of the variance are expected to be larger than that
for the main pr range.

In Figure 4, the covariances cov(v,{2}2, [pr]) are shown for the 2"-, 37 and 4™-order harmonics in
Pb+Pb collisions and for the second-order harmonics in p+Pb collisions. They are presented as a function
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Figure 3: The variance Var(v,{2}?) ayn for 1 =2-4 for (a)~(c) Pb+Pb collisions and Var(v2{2}?) ayn for (d) p+Pb
collisions for the three pr intervals as a function of charged-particle multiplicity N¢,. The statistical and systematic
uncertainties are shown as vertical error bars and boxes, respectively.

of Ny, for three pr intervals. Significant positive correlations between v, {2} and [pr] are observed in the
Pb+Pb events. The measured covariances depend on the charged-particle multiplicity and the p range of
the charged particles. In Pb+Pb collisions, a strong dependence on the multiplicity is observed for n = 2
and 4. The cov(v3{2}2 [pr]) depends only weakly on Ng. A negative cov(v2{2}2 [pr]) is measured at
multiplicities Ng, < 200 and a negative cov(v3 {2} [pr]) for 1 < pr < 2 GeV below Ny, < 1800. The
covariances cov(v2{2}2, [pr]) in p+Pb events are negative in the entire measured N, range and show weak
N, dependence. Unlike in Pb+Pb events, the cov(v,{2}2, [pr]) in p+Pb events have similar magnitudes
for different pt intervals.
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Figure 4: The covariance cov(v,{2}2, [pr]) for n = 2—4 in (a)~(c) Pb+Pb collisions and cov(v2{2}2, [pr]) in (d) p+Pb
collisions for three p ranges as a function of the charged-particle multiplicity N¢,. The statistical and systematic
uncertainties are shown as vertical error bars and boxes, respectively.

6.2 The modified PCC

The modified PCC p(v,{2}? [pr]) for n = 2—4 in Pb+Pb collisions and for n = 2 in p+Pb collisions is
shown in Figure 5. In Pb+Pb collisions, the behaviour of p(v2{2}? [pr]) is similar for all pr intervals.
It starts at negative values for Ny, < 200 and rapidly increases with multiplicity up to ~1500 particles
where the increase slows down and reaches the maximum of 0.24-0.3, depending on the pr interval, at
Nen = 4500. At even higher Ny, the p(vz{2}2, [pr]) value decreases rapidly. The significant correlation
observed for mid-central events suggests a connection between anisotropic and radial [46] flows which
might be attributed to stronger hydrodynamic response (larger pressure gradients) to the large initial-state
eccentricities [47]. The decrease observed in central collisions, for N, = 5000, could be related to the
increased role of initial-state fluctuations in anisotropic flow [27]. The correlation coefficients calculated
with the upper pr limit of 2 GeV are 10-20% smaller than the values obtained with a pt limit of 5 GeV.

12



= F T \ 3 = 1 \

& T ATLAS 1 1 & ATLAS 1 1
= I Pb+Pb, 5.02 TeV, 22 ub ] = Pb+Pb, 5.02 TeV, 22 ub’ 1
% 0.3- * I e * Y
Al a = QA L i

= - =k ox 3w, % . ¥
> - . > = 4
R r » * . . * 1 -~ L L + il
Q 027 - . = QU i ] * + i
- s 0.05- . -F,
0.1 g ] . t 1
T \ i . ¢ 1 1

-
i\\\\
o
e
o=
- =
[
*> =
e
1o

«05<p <2GeV i ++ -o.5<pT<2Gevf
l0.5<pT<5GeV 4 = + "r l0.5<pT<5GeV B
-0.1 *1<pT<2GeV 7: i *1<pT<2GeV i
P L e _ P P
0 2000 4000 0'050 2000 4000
Nch Nch
(a) (b)
T [ amas | 1F T Tamas
- i Pb+Pb, 5.02 TeV, 22 ub™ ] - i p+Pb, 5.02 TeV, 28 nb! ]
N 0.2 “' «05<p <2GeV | o 0?? 77777777777777777777777777777777777 '
> r n Q. GeV ] >
> r + 05<pT<5 ] = | 8 + i
Q0.15} u} . ¥1<p <2GeV ] SO ¢ ! ; 7 ; |
- * P 1 0.1 ? ft .
01? ¥ 7 L * 1% il
: bybyd 4 z | :
0.05j # ] L ‘ 00.3< p, < 2GeV |
= ; + 4 _027 DO.3<pT<5GeV7
r | +‘ ] ) | | | #05<p <2G‘eV i
I I I I I Lo Lo T S S IR L
00 2000 4000 50 100 150 200 250
Nch Nch
(© (d)

Figure 5: The PCC p(v, {2} [pr])) for n = 2—4 in (a)—(c) Pb+Pb collisions and (d) p+Pb collisions as a function of
the charged-particle multiplicity N, for three pr ranges. The statistical and systematic uncertainties are shown as
vertical error bars and boxes, respectively.

The correlation coefficient p(v3{2}2, [pr]) is evaluated in Pb+Pb collisions for the same three pr ranges.
All three curves generally show the increase with Ny, in the entire range of the measurement. However,
for the main interval of 0.5 < pt < 2 GeV, this increase starts at N, ~ 1500, and below it the PCC is
consistent with zero. At around the same multiplicity the 1 < pr < 2 GeV interval curve crosses zero.
Above this value, the curves for the two intervals with the same maximum pt are consistent with each
other and are below the curve for the interval which uses tracks with pt up to 5 GeV. The magnitudes
measured for p(v3{2}?, [pr]) are significantly smaller than those measured for p(v2{2}? [pr]) and similar
to the magnitudes of p(v4{2}% [pr]). The largest values of p(v4{2}> [pr]) are observed at Ng, ~ 1000.
For high Nu,, p(v4{2}2, [pr]) decreases with N, up to about N, ~ 4000 and rises slowly at higher values.
The decrease for N, < 4000 is expected due to a contribution to v4 from a non-linear term containing vg,
decreasing with increasing centrality [13]. Similarly to the p(v3{2}?, [pr]), the p(v4{2}2 [pr]) correlations
measured with the larger upper pr limit have larger magnitudes. The results for the larger upper pr
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limit show the sensitivity of the p(v,{2}> [pr]) coeflicients to the high pr part of the particle spectrum
contaminated with non-flow correlations from jets. On the other hand, the correlations measured for the
intervals with fixed upper pt limit (2 GeV) and varied lower pr limits are similar, demonstrating insensitivity
of the modified PCC coefficients to a significant change of the event charged-particle multiplicity as
expected [25]. The fourth-order correlations are weaker than those for the second-order flow harmonic and
for Ne, > 4000 are comparable to p(v3{2} [pr]). The results for all harmonics indicate a change in the
trend in events with high Ny, around 4500, which suggests a change in the nature of the correlations in
those events [47]. In p+Pb collisions, p(v2{2}% [pr]) exhibits weak N, dependence and is negative in
the whole range of measured N,. Values for different lower pr limits are similar, and the p(v2{2}? [pr])
magnitudes for the larger upper pt limit are smaller.

6.3 Comparison of p+Pb and Pb+Pb results

Figure 6 shows a comparison of p+Pb and Pb+Pb results shown in Figs. 2—5 for the common pr interval
of 0.5 < pr < GeV. The values of the ¢ (Figure 6(a)) are similar for p+Pb and Pb+Pb collisions in this
pr interval, while the behaviour of the dynamical variance Var(vz{2}2) dyn (Figure 6(b)) is very different
due to the different overlap regions in Pb+Pb and p+Pb collisions. Only a small rise with the multiplicity is
observed for p+Pb collisions, which is in agreement with a slow increase of v,{2} with growing event
activity [22, 36, 45]. For N, = 50, the dynamical variances are comparable between Pb+Pb and p+Pb
collisions. The N, dependence of cov(v,{2}2, [pr]) is significantly different for Pb+Pb and p+Pb collisions.
A steady rise from negative to positive values with N, is observed for peripheral Pb+Pb collisions, and
approximately constant values are obtained for p+Pb collisions. The N, dependence of p(v2{2}2, [pr])
is different for the two collision systems. In p+Pb collisions, the modified PCC assumes a value of
approximately —0.1 and is constant within uncertainties. For Ny, < 100 the values of p(v,{2}?, [pr]) are
consistent between Pb+Pb and p+Pb collisions. The negative p(v2{2}? [pr]) coefficients for the small
systems in p+Pb and Pb+Pb collisions may suggest a more compact source model [25]. The comparison of
the systems underlines the importance of the initial stage in the correlations described by the p(v2{2}2 [p1])
coefficient.

6.4 Comparison to theoretical predictions

To compare the Pb+Pb results with a theoretical prediction in Ref. [25], the p(v, {2}, [pr]) coefficients
for 0.5 < pt < 2 GeV are obtained as a function of centrality intervals expressed by Np, using the
procedure described in Section 4. Figure 7 shows the Ny, dependence of p(v, {2} [pr]) for n = 2—4 in
Pb+Pb collisions. The N, dependence resemblances the trends observed in Fig. 5, showing the PCC
as a function of event activity N.. The p(v2{2}?, [pr]) increases with collision centrality for Npa < 100
starting from negative values at Ny, < 40, and the strongest correlations of p(v2{2}?, [pr]) are observed at
Npare = 320. The p(v3{ 2}2, [pr]) correlations are negative or consistent with zero for Npare < 100, otherwise
they are positive. The PCC p(v4{2}>, [pr]) is positive over the full Npare range, and the largest values are at
Npart = 100. For more central collisions, p(V4{2}2, [pr]) decreases with Npar up to about Npae = 300 and
rises slowly at higher values. The theoretical predictions of the p(v, {2}2, [pr]) coefficient are based on a
model in which the initial conditions were generated with nucleon positions by a MC Glauber model [48].
The initial conditions are evolved using the pressure-driven 3+1D hydrodynamical simulations with viscous
effects followed by the statistical particle emission to match multiplicities observed experimentally [37].
The modified Pearson correlation coefficient is then extracted from the final-state particles. The predictions

14



[\Y)

& L I L L IR B © L L L L IO B
2 i ATLAS ] 2 L ATLAS 1
0] i Pb+Pb, 5.02 TeV, 22 ub™ i X | Pb+Pb, 5.02 TeV, 22 ub™ .
= L p+Pb, 5.02 TeV, 28 nb™! 7 = p+Pb, 5.02 TeV, 28 nb’*
% 15-° 0.5<p_<2GeV . > 100 05<p_<2Gev . ¥
% i o Pb+Pb ] S [ e PosPb J 1
& P o p+Pb 1 \i/ I o p+Pb ¢ i
i , = | |
1 . ] > L ¢ i
: L : 507 + 1
0.5~ e 04 o - L ]
L o O o o e}
L i L + o 6 © o i
[ 4 L ¢ i
07\ | | | T RN R \7 O I | | I |
50 100 150 200 250 50 100 150 200 250
ch Nch
(a) (b)
= 20— T = 0. T
) L ATLAS ] o [ ATLAS .
o, Pb+Pb, 5.02 TeV, 22 ub™ - L Pb+Pb, 5.02 TeV, 22 ub™ g
N " p+Pb,5.02TeV, 28 nb” ) ™~ L p+Pb,5.02TeV, 28 nb” i
— F 05<p_<2GeV 1 = L 05<p_<2GeV ]
% T + + 3 T # +
= Op-rmmmmmmmmmmm oo [ . S + I .
R | i
Q * t 1
o | . + b g | " . + ]
c“:a - %’ 0 ¢ ? 7 1 L % + |
S 20 4? 4 ot | ]
(e} L e i
S IS S U
i e Po+Pb | = T % e Pb+Pb |
r o p+Pb 1 + o p+Pb B
Y S RS S g ] A A
50 100 150 200 250 = 50 100 150 200 250
Nch Nch
(©) (d)

Figure 6: Comparison of (a) ¢, (b) Var(vz{Z}z)dyn, (c) cov(v2{2}2, [pr]), and the (d) p(v2{2}?, [pr]) for the range
0.5 < pr < 2 GeV as a function of the charged-particle multiplicity Nc,. The statistical and systematic uncertainties
are shown as vertical error bars and boxes, respectively.

for all harmonics are consistent with the data within the large model uncertainties except for the most
central collisions where the predictions underestimate the measured p(v2{2}? [pt]).
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three pt ranges. The statistical and systematic uncertainties are shown as vertical error bars and boxes, respectively.
A comparison with model predictions [37] is also shown with a line added to guide the eye.

7 Summary

The first measurement of the modified PCC p(v,,{2}?, [pr]) quantifying the correlation between the flow
harmonics and the mean transverse momentum is performed by ATLAS experiment at the LHC. The
measurement uses 22 ub~! of Pb+Pb data and 28 nb~! of p+Pb data at the same centre-of-mass energy per
nucleon pair of 5.02 TeV.

The correlation coefficient for several charged-particle pt ranges is measured as a function of the number
of charged particles N, and, in Pb+Pb collisions, the average number of nucleons participating in the
collision, Npa. For the ond_ 3rd_"and 4™-order harmonics, the measured quantities exhibit a dependence
on the choice of charged-particle pr range. Measurements with an upper limit of 5 GeV on pr indicate a
stronger correlation than those with an upper limit of 2 GeV. For mid-central and central collisions, when
varying the lower pr limit, consistent values of p(v3{2}2, [pr]) and p(v4{2}?, [pr]) coefficients are obtained,
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whereas for the p(v2{2}?, [pr]) coefficient a difference of 10-20% is seen. As a function of event activity,
for Pb+Pb collisions, a strong positive correlation p(v2{2}% [pr]) is observed in mid-central and central
collisions while negative values are measured for peripheral events. The correlation p(v3{2}?, [pr]) is found
to be weaker, yet non-zero. The values of p(v4{2}? [pr]) are also positive in the studied centrality range.
Non-monotonic behaviour is observed in central Pb+Pb collisions. That trend observed for p(v2{2}2, [pt])
in Pb+Pb collisions is in line with expectations drawn from the ALICE results [20]. In p+Pb collisions, the
value of p(v2{2}2, [pr]) is negative and approximately independent of Ng,.

The modified PCC is a valuable tool for studying the dynamics of heavy-ion collisions. It provides a reliable
estimate of the magnitude of correlations calculated using finite multiplicities. In comparison with existing
results, it allows quantitative comparisons between the experimental data and theoretical models. The
precise measurements of this observable, presented in this paper, provide useful insights into the interplay
of the azimuthal anisotropies (azimuthal flow) and the mean event pt (radial flow), providing input for
a better understanding of QGP dynamics and for constraining the theoretical models. Sizeable positive
correlations observed for non-peripheral Pb+Pb collisions support a qualitatively expected scenario in
which the azimuthal flow originates from the pressure gradients. The negative correlation in small systems
sheds light on the role of the initial conditions in these systems.
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