
 

Search for a heavy charged boson in events with a charged lepton
and missing transverse momentum from pp collisions at

ffiffi

s
p

= 13 TeV

with the ATLAS detector

G. Aad et al.
*

(ATLAS Collaboration)

(Received 14 June 2019; published 23 September 2019)

A search for a heavy charged-boson resonance decaying into a charged lepton (electron or muon) and a
neutrino is reported. A data sample of 139 fb−1 of proton-proton collisions at

ffiffiffi

s
p ¼ 13 TeV collected with

the ATLAS detector at the LHC during 2015–2018 is used in the search. The observed transverse mass
distribution computed from the lepton and missing transverse momenta is consistent with the distribution
expected from the Standard Model, and upper limits on the cross section for pp → W0

→ lν are extracted
(l ¼ e or μ). These vary between 1.3 pb and 0.05 fb depending on the resonance mass in the range between
0.15 and 7.0 TeV at 95% confidence level for the electron and muon channels combined. Gauge bosons
with a mass below 6.0 and 5.1 TeVare excluded in the electron and muon channels, respectively, in a model
with a resonance that has couplings to fermions identical to those of the Standard Model W boson. Cross-
section limits are also provided for resonances with several fixed Γ=m values in the range between 1% and
15%. Model-independent limits are derived in single-bin signal regions defined by a varying minimum
transverse mass threshold. The resulting visible cross-section upper limits range between 4.6 (15) pb and 22
(22) ab as the threshold increases from 130 (110) GeV to 5.1 (5.1) TeV in the electron (muon) channel.
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I. INTRODUCTION

One of the main goals of the Large Hadron Collider
(LHC) remains the search for physics beyond the Standard
Model (SM). Much progress has been made in this search
thanks to a broad program that encompasses many different
final states. Leptonic final states provide a low-background
and efficient experimental signature that brings excellent
sensitivity to new phenomena at the LHC. In this article, the
results of a search for resonances decaying into a charged
lepton and a neutrino are presented, based on 139 fb−1 of
proton-proton (pp) collisions at a center-of-mass energy of
13 TeV. The data were collected with the ATLAS detector
during the 2015–2018 running period of the LHC, referred
to as Run 2.
The search results are interpreted in terms of the

production of a heavy spin-1 W0 boson with subsequent
decay into the lν final state (l ¼ e or μ). Such production
is predicted in many models of physics beyond the SM as in
grand unified theory models, left-right symmetry models
[1,2], little Higgs models [3], or models with extra

dimensions [4,5], most of which aim to solve the hierarchy
problem. The interpretation in this article uses a simplified
model referred to as the sequential Standard Model (SSM)
[6], in which the W0 boson couples to fermions with the
same strength as the W boson in the SM but with
suppressed coupling to SM bosons. Alternative interpre-
tations in terms of generic resonances with different fixed
widths (Γ=m between 1% and 15%) are also provided for
possible reinterpretation in the context of other models.
Finally, results are also presented in terms of model-
independent upper limits on the number of signal events
and on the visible cross section.
Previous searches forW0 bosons have been carried out at

the LHC in leptonic, semileptonic, and hadronic final states
by the ATLAS and CMS Collaborations. The most sensi-
tive searches for W0 bosons are those in the eν and μν

channels [7,8], with the most stringent limits to date being
set by ATLAS and CMS in the analysis of about 36 fb−1 of
pp collisions at

ffiffiffi

s
p ¼ 13 TeV. A lower limit of 5.2 TeV is

set on the W0 boson mass in the electron channel [7] and
4.9 TeV in the muon channel [8], at the 95% confidence
level (C.L.) in the SSM.
The search relies on events collected using single-

electron or single-muon triggers with high transverse
momentum thresholds. The dominant background source
originates from Drell-Yan (DY) production of W bosons.
Discrimination between signal and background events
relies on the transverse mass ðmTÞ computed from the
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charged-lepton transverse momentum ðpTÞ and the missing
transverse momentum (whose magnitude is denoted Emiss

T )
in the event:

mT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pTE
miss
T ð1 − cosϕlνÞ

q

;

where ϕlν is the angle between the charged lepton and
missing transverse momentum directions in the transverse
plane.1 Final interpreted results are based on a statistical
analysis in which the shape of the signal and both the shape
and normalization of the background expectations are
derived from Monte Carlo (MC) simulation, except for
the background contribution arising from jets misidentified
as leptons or from hadron decays. The results presented in
this article compared with those from Ref. [7] benefit from
an increase in the integrated luminosity by a factor of 4;
several upgrades in reconstruction software, including a
new algorithm for electron reconstruction [9] and an
improved treatment of the relative alignment between the
inner tracker and the muon spectrometer; and several
interpretations with reduced or no model dependence.

II. ATLAS DETECTOR

The ATLAS experiment [10] at the LHC is a multipur-
pose particle detector with a forward-backward symmetric
cylindrical geometry and a near 4π coverage in solid angle.
It consists of an inner detector for tracking surrounded
by a thin superconducting solenoid providing a 2T axial
magnetic field, electromagnetic (EM) and hadronic calo-
rimeters, and a muon spectrometer. The inner detector
covers the pseudorapidity range jηj < 2.5. It consists of
silicon pixel, silicon microstrip, and transition radiation
tracking detectors. An additional innermost pixel layer
[11,12] inserted at a radius of 3.3 cm has been used since
2015. Liquid-argon (LAr) sampling calorimeters provide
EM energy measurements with high granularity. A had-
ronic scintillator-tile calorimeter covers the central pseu-
dorapidity range (jηj < 1.7). The end cap and forward
regions are instrumented with LAr calorimeters for both the
EM and hadronic energy measurements up to jηj ¼ 4.9.
The muon spectrometer surrounds the calorimeters and
features three large air-core toroidal superconducting mag-
net systems with eight coils each. The field integral of
the toroids ranges between 2.0 and 6.0 Tm across most of
the detector. The muon spectrometer includes a system
of precision tracking chambers and fast detectors for

triggering. A two-level trigger system [13] is used to select
events. The first-level trigger is implemented in hardware
and uses a subset of the detector information to reduce the
accepted rate to at most 100 kHz. This is followed by a
software-based trigger level that reduces the accepted event
rate to 1 kHz on average.

III. DATA AND MONTE CARLO

SIMULATION SAMPLES

The data for the analysis were collected during Run 2 at
the LHC at

ffiffiffi

s
p ¼ 13 TeV and correspond to an integrated

luminosity of 139 fb−1 after the requirement that beams
were stable, all detector systems were functional, and the
data satisfied a set of quality criteria. Single-electron
triggers required that electron candidates satisfy either
medium identification criteria [9] and have a transverse
energy ET > 60 GeV or loose identification criteria and
have ET > 140 GeV. For the 3.2 fb−1 collected in 2015,
the ET thresholds were 24 and 120 GeV, respectively.
Single-muon triggers required the presence of at least one
muon reconstructed in both the inner detector and the muon
spectrometer with pT > 50 GeV. The trigger efficiency for
DY W boson events (relative to the full event selection
described in Sec. IV) is estimated to be 99% in the electron
channel and 85% in the muon channel, with little depend-
ence on the mT value.
Signal MC events withW0

→ eν andW0
→ μν decays in

the SSM were produced at leading order (LO) with the
PYTHIA v8.183 event generator [14] and the NNPDF23LO
parton distribution function (PDF) set [15]. The A14 set of
tuned parameters (i.e., the A14 tune) [16] was used for the
parton showering and hadronization process. In the SSM,
the couplings of theW0 boson to SM fermions are chosen to
be identical to those of the SM W boson, whereas the
couplings to SM bosons are set to zero. The corresponding
branching fraction for W0 boson decays into leptons of one
generation is 10.8% for mðW0Þ ¼ 150 GeV and decreases
above the tb threshold to a nearly constant value of 8.2%
formðW0Þ above 1 TeV. Similarly, the ratio of theW0 boson
width to its mass varies from 2.7% for mðW0Þ ¼ 150 GeV
to 3.5% above the tb threshold. Decays into the τν final
state with subsequent leptonic decay of the τ lepton are not
included as they were found to add negligible signal
acceptance in previous studies [17]. Interference between
W0 andW boson production is not included in this analysis.
The dominant background due to DY production of W

bosons decaying into eν, μν, and τν final states was
simulated at next-to-leading order (NLO) with the
POWHEG-BOX v2 event generator [18–21] using the
CT10 PDF set [22]. Background events from DY produc-
tion of Z=γ� bosons decaying into ee, μμ, and ττ final states
were also simulated with the same event generator and PDF
set. In both cases, PYTHIA v8.186 was used for the parton
showering and hadronization process with the AZNLO
tune [23]. The DY processes were generated separately in

1ATLAS uses a right-handed coordinate system with its origin
at the nominal interaction point (IP) in the center of the detector
and the z axis along the beam pipe. The x axis points from the IP to
the center of the LHC ring, and the y axis points upwards.
Cylindrical coordinates ðr;ϕÞ are used in the transverse plane,
ϕ being the azimuthal angle around the z axis. The pseudorapidity
is defined in terms of the polar angle θ as η ¼ − ln tanðθ=2Þ.
Angular distance is measured in units ofΔR≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðΔηÞ2 þ ðΔϕÞ2
p

.
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different lν or llmass ranges to guarantee that sufficiently
large numbers of events remain after event selection in the
full mass range relevant to the analysis. Cross sections
calculated by POWHEG-BOX for both DY processes were
corrected via mass-dependent K factors to account for
QCD effects at next-to-next-to-leading order (NNLO) and
electroweak (EW) effects at NLO. The QCD corrections
were computed with VRAP v0.9 [24] and the CT14 NNLO
PDF set [25]. These corrections increased the cross section
by about 5% for mlν ¼ 1 TeV and 15% for mlν ¼ 6 TeV.
The EW corrections were computed with MCSANC [26] in
the case of QED effects due to initial-state radiation,
interference between initial- and final-state radiation, and
Sudakov logarithm single-loop corrections. These correc-
tions were added to the NNLO QCD cross-section pre-
diction in the so-called additive approach (see Sec. VI)
because of a lack of calculations of mixed QCD and EW
terms. As a result, the cross section decreased by about
10% for mlν ¼ 1 TeV and 20% for mlν ¼ 6 TeV. The
effects due to QED final-state radiation were already
included in the event generation using PHOTOS++ [27].
The QCD corrections based on VRAP and the CT14 NNLO
PDF set were also applied to the signal samples. No
electroweak corrections, beyond those already accounted
for with PHOTOS++, were applied to the signal samples as
those are model dependent.
Additional background sources from diboson (WW,WZ,

and ZZ) production were simulated with the SHERPAv2.2.1
event generator [28] and the NNPDF30 NNLO PDF set
[29]. These processes were computed at NLO for up to one
additional parton and at LO for up to three partons. The
production of top-quark pairs and single top quarks (in the s
and Wt channels) was performed at NLO with POWHEG-

BOX [30–32] and the NNPDF30 NLO PDF set interfaced
with PYTHIA v8.183 and the A14 tune. Single top-quark
production in the t channel was performed in the same way
except for the use of the NNPDF3.04f NLO PDF set. The
cross sections used to normalize the diboson MC samples
are computed with SHERPA, and the top-quark pair cross
section is taken to be 832

þ46

−52
pb for a top-quark mass of

172.5 GeV. This value is calculated at NNLO in QCD,
including the summation of next-to-next-to-leading loga-
rithmic soft gluon terms, with Top++2.0 [33–39]. A
correction depending on the top-quark pT value is applied
to account for shape effects due to NNLO QCD and NLO
EW corrections according to Ref. [40]. The cross sections
for single top-quark production are computed at approxi-
mate NNLO accuracy [41–43].
For all MC samples, except those produced with

SHERPA, b-hadron and c-hadron decays were handled by
EVTGEN v1.2.0 [44]. Inelastic pp events generated using
PYTHIAv8.186 with the A3 tune [45] and the NNPDF23LO
PDF set were added to the hard-scattering interaction in
such a way as to reproduce the effects of additional pp
interactions in each bunch crossing during data collection

(pileup). The detector response was simulated with GEANT

4 [46,47], and the events were processed with the same
reconstruction software as for the data. Energy/momentum
scale and efficiency corrections are applied to the results of
the simulation to account for small differences between the
simulation and the performance measured directly from the
data [9,48].

IV. EVENT RECONSTRUCTION AND SELECTION

The analysis relies on the reconstruction and identifica-
tion of electrons and muons, as well as the missing
transverse momentum in each event. Collision vertices
are reconstructed with inner detector tracks that satisfy
pT > 0.5 GeV, and the primary vertex is chosen as the
vertex with the largest Σp2

T for the tracks associated with
the vertex.
Electron candidates are reconstructed by matching inner

detector tracks to clusters of energy deposited in the EM
calorimeter. Electrons must lie within jηj < 2.47, excluding
the barrel–end cap transition region defined by 1.37 <
jηj < 1.52, and satisfy calorimeter energy cluster quality
criteria. The cluster must have ET > 65 GeV, and the
associated track must have a transverse impact parameter
significance relative to the beam axis jd0j=σd0 < 5.
Successful candidates are identified with a likelihood
method and need to satisfy the tight identification criteria
[9]. The likelihood relies on the shape of the EM shower
measured in the calorimeter, the quality of the track
reconstruction, and the quality of the match between the
track and the cluster. To suppress electron candidates
originating from photon conversions, hadron decays, or
jets misidentified as electrons (hereafter referred to as fake
electrons), electron candidates are required to satisfy the
gradient isolation criteria [9] based on both tracking and
calorimeter measurements. The reconstruction and identi-
fication efficiency rises from approximately 80% at pT ¼
60 GeV to 90% above 500 GeV, and the isolation effi-
ciency is slightly higher than 99% for pT values above
200 GeV. The electron energy resolution for ET > 1 TeV
can be characterized by σðEÞ=E ¼ ce, with ce varying
between 0.007 and 0.012 [9] in the range jηj < 1.2 which
dominates the high-mass part of the search. The corre-
spondingmT resolution ranges from approximately 1.3% at
mT values near 2 TeV to 1.0% near 6 TeV.
Muon candidates are reconstructed by matching inner

detector tracks with muon spectrometer tracks and by
reconstructing a final track combining the measurements
from both detector systems while taking the energy loss in
the calorimeter into account. The candidates must satisfy
quality selection criteria optimized for high-pT perfor-
mance [48] by requiring the candidate tracks to have
associated measurements in the three different chamber
layers of the muon spectrometer. The tracks must also have
consistent charge-to-momentum ratio measurements in the
inner detector and muon spectrometer, have sufficiently
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small relative uncertainty in the charge-to-momentum
ratios for the combined tracks, and be located in detector
regions with high-quality chamber alignment. Candidates
must have jηj < 2.5, pT > 55 GeV, jd0j=σd0 < 3, and
jz0j sin θ < 0.5 mm, where z0 is the longitudinal impact
parameter relative to the primary vertex. The reconstruction
and identification efficiency is 69% for pT ¼ 1 TeV and
decreases to 57% for pT ¼ 2.5 TeV. Muon candidates from
hadron decays are suppressed by imposing a track-based
isolation [48] that achieves an efficiency higher than 99%
for the full pT range of interest. The muon pT resolution at
pT > 1 TeV can be described as σðpTÞ=pT ¼ cμ pT, with
cμ varying between 0.08 and 0.20 TeV−1 depending on the
detector region [48]. This resolution dominates the mT
resolution in the muon channel.
Jets are reconstructed from topological clusters of energy

deposits in calorimeter cells [49] with the anti-kt clustering
algorithm [50] implemented in FASTJET [51]. A radius
parameter R equal to 0.4 is used, and the clusters are
calibrated at the EM scale [52]. Jets are required to have
pT > 20 (30) GeV for jηj smaller (greater) than 2.4. To
remove jets originating from pileup, jet-vertex tagging is
applied [53].
The event’s missing transverse momentum is computed

as the vectorial sum of the transverse momenta of leptons,
photons, and jets. The overlap between these is resolved
according to Ref. [54]. Electrons and muons must pass the
selection requirements described above. In addition to the
above particles and jets, the Emiss

T calculation includes a soft
term [54] accounting for the contribution from tracks
associated with the primary vertex but not associated with
leptons, converted photons, or jets already included in the
Emiss
T calculation.
Events are required to have a primary vertex. They are

rejected if any of the jets fail to pass a cleaning procedure
designed to suppress noncollision background and calo-
rimeter noise [55].
In the electron channel, events must have exactly one

electron passing the selection described above. Events are
vetoed if they contain any additional electron candidate
satisfying the medium selection criteria and having
pT > 20 GeV. Events are also vetoed if they contain
any muon candidate satisfying the medium selection
criteria and having pT > 20 GeV. The missing transverse
momentum must satisfy Emiss

T > 65 GeV, and the trans-
verse mass must satisfy mT > 130 GeV. In the muon
channel, events must have exactly one selected muon as
detailed above, and the same veto on additional electron
and muon candidates is applied, except that electron
candidates close to the muon (ΔR < 0.1) are assumed to
arise from photon radiation from the muon and are thus not
considered as additional electron candidates. Events are
required to satisfy Emiss

T > 55 GeV and mT > 110 GeV in
the muon channel. The event selection described above
defines the signal regions in the electron and muon
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FIG. 1. Distributions of the transverse mass for data and
predicted background events in the electron (top) and muon
(bottom) channels. Expected signal distributions for several SSM
W0 boson masses are shown stacked on top of the total expected
background. The middle panels show ratios of the number of
events observed in the data to the expected total background
count, while the lower panels show the same ratio when taking
into account the pulls on the nuisance parameters observed in the
statistical analysis (Sec. VII). The hatched bands represent the
total uncertainty in the background estimate (Sec. VI). Arrows in
the middle and lower panels for the electron channel indicate data
points that lie outside the vertical axis range.
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channels. In these regions, the acceptance times efficiency
for W0 signal events decreases from 79% (52%) to 64%
(44%) as the W0 boson mass increases from 2 to 7 TeV in
the electron (muon) channel. The decrease at high mðW0Þ
is generally due to the combined effect of a growing low-
mass tail at larger mðW0Þ and the kinematic selection
thresholds. In the case of the muon channel, it also
originates from a decrease in the identification efficiency
at higher pT values due to the requirements on the charge-
to-momentum measurement.

V. BACKGROUND ESTIMATION

AND EVENT YIELDS

The background from DY production of W and Z=γ�

bosons as well as from top-quark pair, single top quark, and
diboson production is modeled with the MC samples
described in Sec. III. To compensate for the limited number
of events at high mT, the smoothly falling mT distributions
for top-quark (corresponding to both pair and single
production) and diboson samples are fitted and extrapolated
to high mT with the following functions commonly used in
dijet searches (e.g., Refs. [56,57]):

fbkg1ðmTÞ ¼ e−amb
Tm

c logðmTÞ
T and

fbkg2ðmTÞ ¼
a

ðmT þ bÞc : ð1Þ

Function fbkg1 is the nominal extrapolation function for the
top-quark background in both the electron and muon

channels as well as for the diboson background in the
electron channel. Function fbkg2 is the nominal function for
the diboson background in the muon channel. In all cases,
checks are performed to guarantee that the function
reproduces the event yields at lower mT values and that
its cumulative distribution (starting from the highest mT
values) is consistent with the small integrated event yields
available in the MC samples.
The background contribution from events with fake

electrons or muons mostly originates from multijet pro-
duction and is extracted from the data using the same
matrix method as used in previous analyses and described
in Ref. [58]. This method relies on data samples in which
the electron or muon selection is loosened (referred to as
the loose selection). The efficiency for those lepton
candidates to pass the nominal lepton selection (tight) is
measured to derive an estimate of the background from fake
leptons. The loose selection is close to that applied by the
trigger requirements. The fraction f of fake leptons passing
the loose selection that also pass the nominal lepton
selection is estimated from the data in background-enriched
control regions that are orthogonal to the signal regions.
These control regions are built by requiring that there are no
Z → ll candidates formed by combining the selected
lepton with a loose lepton in the event and that the Emiss

T
value is less than 60 (55) GeV in the electron (muon)
channel. Additional requirements are placed on the mini-
mum impact parameter, the presence of at least one jet, and
the proximity of the missing transverse momentum vector
to the lepton in the muon channel to reduce the contribution

TABLE I. Number of events in the data and the total expected background passing the full event selection in different mT ranges.
Expected numbers ofW0 signal events are provided for several different masses. The uncertainties include both statistical and systematic
sources of uncertainty.

Electron channel

mT [GeV] 130–400 400–600 600–1000 1000–2000 2000–3000 3000–10 000

Data 3 538 403 35 568 7358 818 17 0
Background 3 320 000� 250 000 34 800� 1500 7200� 400 830� 80 20.2� 3.1 1.3� 0.5

W0 (2 TeV) 574� 22 720� 40 2190� 120 12200� 600 1130� 290 3.20� 0.25
W0 (3 TeV) 68.4� 1.9 58.6� 2.6 127� 7 448� 22 860� 40 87� 23

W0 (4 TeV) 19.6� 0.5 13.2� 0.5 22.1� 1.1 44.3� 2.2 49.2� 2.3 86� 4

W0 (5 TeV) 7.85� 0.19 4.99� 0.18 7.26� 0.35 9.9� 0.5 5.82� 0.28 13.6� 0.7
W0 (6 TeV) 3.76� 0.09 2.35� 0.08 3.28� 0.16 3.82� 0.18 1.41� 0.07 2.01� 0.10

Muon channel

mT [GeV] 110–400 400–600 600–1000 1000–2000 2000–3000 3000–10 000

Data 8 751 095 26 225 5393 622 22 2
Background 7 800 000� 700 000 25 800� 1400 5300� 400 570� 50 18� 4 2.3� 0.9

W0 (2 TeV) 490� 14 594� 26 1680� 90 6700� 500 1520� 210 70� 50

W0 (3 TeV) 58.1� 1.4 45.5� 1.9 102� 6 322� 31 380� 50 160� 40

W0 (4 TeV) 16.3� 0.4 9.64� 0.34 15.9� 0.8 32.2� 3.4 34� 5 44� 13

W0 (5 TeV) 6.50� 0.15 3.55� 0.12 4.98� 0.22 6.7� 0.6 3.9� 0.6 7.2� 2.3
W0 (6 TeV) 3.11� 0.07 1.67� 0.06 2.22� 0.10 2.45� 0.17 0.88� 0.12 1.09� 0.35
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from prompt muons. The remaining contributions from
prompt electrons and muons in these control regions are
subtracted using MC simulation. The number of jets
misidentified as leptons (Nmultijet

T ) in the signal regions is
computed as

N
multijet
T ¼ fNF ¼

f

r − f
½rðNL þ NTÞ − NT�;

where NF is the number of fake leptons that pass the loose
lepton selection, NL is the number of lepton candidates that
pass the loose lepton selection but fail the nominal lepton
selection, and NT is the number of lepton candidates that
pass the nominal lepton selection. The numbers NL and NT
are extracted from the signal regions. In addition, the
quantity r, corresponding to the fraction of real leptons
satisfying the nominal selection in the sample of loose

candidates, is computed from the DY W boson MC
samples. Like for the top-quark and diboson background
sources, the mT distribution is extrapolated to high values
by using a function with the same form as in Eq. (1) in the
electron channel and the function fmultijetðmTÞ ¼ am−b

T in
the muon channel. The same set of checks concerning the
quality of the extrapolation are performed as for the top-
quark and diboson backgrounds.
ThemT distributions in data and simulation are shown in

Fig. 1, and the numbers of events in several mT ranges are
presented in Table I. No event is observed beyond mT
values of 10 TeV in either channel. The features observed in
these distributions are discussed in Sec. VII. The DY W
boson contribution dominates the total background with a
fraction varying between approximately 69% (72%) and
95% (88%) in the electron (muon) channel. Other back-
ground contributions arise mostly from DY Z=γ� boson,
top-quark, and diboson production. The contribution from
multijet events in the electron channel decreases from
approximately 10% at the lowest mT values to less than
5% at highmT, and in the muon channel it is less than 3.2%
(1.7%) for mT values below (above) 600 GeV.

VI. SYSTEMATIC UNCERTAINTIES

Systematic uncertainties arise from experimental sources
affecting the lepton reconstruction and identification
as well as the missing transverse momentum, from the
data-driven multijet background estimate, from theoretical
sources affecting the shape and normalization of back-
ground processes, and from the extrapolation of back-
ground estimates to high mT values.
Experimental uncertainties in the electron trigger,

reconstruction, identification, and isolation efficiencies
are extracted individually from studies of Z → ee and
J=ψ → ee decays in the data using a tag-and-probe method
[9]. These studies also yield uncertainties in the electron
energy scale and resolution [9]. Uncertainties in the
muon trigger, reconstruction, identification, and isolation

efficiencies are derived from studies of Z → μμ and J=ψ →
μμ decays in the data [48]. The muon momentum scale and
resolution uncertainties are extracted from those studies as
well as from special chamber-alignment datasets with the
toroidal magnetic field turned off [48]. Extrapolation
uncertainties toward higher pT are based on the above
studies as well as on the simulation. The impact of those
uncertainties is generally small due to the limited pT
dependence of the efficiencies, except for the high-pT
muon reconstruction and identification efficiency. The
latter is estimated from differences between data and
simulation in the fraction of muons passing the requirement
on the maximum allowed relative error in the charge-
to-momentum ratio measurement. This uncertainty grows
with the muon pT up to 35% (55%) for jηj < 1.05 (>1.05)
at the highest mT values probed in this analysis; it becomes
a dominant source of uncertainty at the highest mT values.
Uncertainties in the reconstruction and calibration of jets
are taken into account since those are input to the Emiss

T
calculation. Finally, all uncertainties affecting electrons,
muons, jets, and the soft term are propagated to the Emiss

T
calculation. The jet energy resolution and soft term con-
tributions have the largest impact at low mT, and their
uncertainties are treated as fully correlated between the
electron and muon channels. Uncertainties in the simu-
lation of pileup contributions have little impact on the mT
distribution and are thus neglected.
The uncertainty in the multijet background estimate

includes the effect of varying the criteria used in the
background-enriched sample selection, and changes in
the fractions f are propagated. As this background estimate
is extrapolated with a functional fit at high mT values, the
uncertainty includes the additional impact of variations in
the fit range. In the electron channel, the uncertainty also
includes a contribution from the variation of the functional
form due to the larger multijet contribution at high mT in
this channel. This extrapolation uncertainty dominates the
overall background uncertainty at mT values above 3 TeV
in the electron channel.
No theory uncertainty is applied to the signal.

Uncertainties in the theory inputs used for the background
estimation are evaluated as follows. One of the largest
uncertainties affecting the dominant DY background comes
from the use of 90% C.L. eigenvector variations for the
CT14 NNLO PDF set. This uncertainty range encompasses
the predictions based on the ABM12 [59], CT10 [22],
MMHT14 [60], and JR14 [61] PDF sets. It also allows for a
sufficiently robust range of predictions in the very high
mass region (i.e., at high Bjorken x). In addition, a reduced
set of CT14 NNLO PDF eigenvectors that preserves the
potential mass-dependent shape changes is used in the
limit-setting procedure. The PDF uncertainty is enlarged in
specific lν mass regions to encompass the DY prediction
based on the alternative NNPDF30 PDF set if this pre-
diction lies outside the range from the CT14 NNLO
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eigenvector variations. A smaller PDF choice uncertainty is
obtained in the muon channel at high mT values than in the
electron channel because the significantly worse muon pT
resolution causes migration of events from low mT values
(where the PDF uncertainty is small) to high mT values.
The uncertainty in the mass-dependent K factors used to
correct the mass distributions to predictions at NNLO
accuracy in αs is evaluated by simultaneously varying
the renormalization and factorization scales up and down
by factors of 2. The largest change (up or down) at each
mass value is then applied as a symmetric scale uncertainty.
The EW correction uncertainty is taken to be the difference
between the predictions obtained with either the multipli-
cative scheme ½ð1þ δEWÞ × ð1þ δQCDÞ� or the additive
scheme ð1þ δEW þ δQCDÞ for the combination of higher-
order EW (δEW) and QCD (δQCD) effects. The DY cross-
section prediction accounts for varying the strong coupling
constant according to αsðmZÞ ¼ 0.118� 0.002, a variation
that corresponds to a 90% C.L. uncertainty range [25] that
nevertheless has a small impact on the analysis. Although
the tt̄ cross-section uncertainty is only about 6% [62] and
the corresponding impact on the total background is small, it
is accounted for in the statistical analysis due the character-
istic mT distribution shape for this background source. An
mT-dependent uncertainty in the tt̄ shape is also included.
It corresponds to the remaining level of disagreement
between the data and the simulation after the correction
described in Sec. III. This uncertainty is evaluated in a
control region consisting of events with both an electron and
a muon candidate, which is a region dominated by tt̄ events.

The diboson cross-section uncertainty is neglected due to its
small impact on the analysis. However, the extrapolation
uncertainty for the diboson background is included in the
statistical analysis as it grows to become significant at higher
mT values. This uncertainty is estimated by varying the
range of mT values over which the fit is performed and by
changing the functional form. The extrapolation uncertainty
for the top-quark background is neglected due to its small
impact.
The uncertainty in the integrated luminosity is 1.7% [63].
Table II summarizes the systematic uncertainties for the

total background and signal in the electron and muon
channels at mT values near 2 and 6 TeV. The values in
Table II correspond to the uncertainties that are incorpo-
rated as input to the statistical analysis described in
Sec. VII. Large uncertainties in the background yields
near mT values of 6 TeV are obtained but those have little
impact on the statistical analysis due to the small back-
ground expectation at such high mT values (e.g., the
number of background events for mT > 5.1 TeV is 0.02
in the electron channel and 0.11 in the muon channel).

VII. RESULTS

The mT distributions in the electron and muon channels
(Fig. 1) provide the input data to the statistical analysis.
This analysis proceeds as a multibin counting experiment
with a likelihood accounting for the Poisson probability to
observe a number of events in data given the expected
number of background and signal events in each bin.

TABLE II. Systematic uncertainties in the expected number of events for the total background and for a W0 boson with a mass of
2 (6) TeV. The uncertainties are estimated with the binning shown in Fig. 1 at mT ¼ 2 (6) TeV for the background and in a three-bin
window around mT ¼ 2 (6) TeV for the signal. Uncertainties that are not applicable are denoted “N/A,” and “negl.” means that the
uncertainty is not included in the statistical analysis because its impact on the result is negligible at anymT value. Small uncertainties that
appear in the table (e.g., those listed as <0.5%) are not negligible at mT values lower than 2 TeV and are thus listed. Sources of
uncertainty not included in the table are neglected in the statistical analysis.

Electron channel Muon channel

Background Signal Background Signal

Source mT ¼ 2ð6Þ TeV mT ¼ 2ð6Þ TeV mT ¼ 2ð6Þ TeV mT ¼ 2ð6Þ TeV
Trigger negl. (negl.) negl. (negl.) 1.1% (1.0%) 1.2% (1.2%)
Lepton reconstruction and identification 4.1% (1.4%) 4.3% (4.3%) 8.9% (37%) 6.6% (38%)
Lepton momentum scale and resolution 3.9% (2.7%) 2.7% (4.5%) 12% (47%) 13% (20%)
Emiss
T resolution and scale <0.5% (<0.5%) <0.5% (<0.5%) <0.5% (<0.5%) <0.5% (<0.5%)

Jet energy resolution <0.5% (<0.5%) <0.5% (<0.5%) <0.5% (0.6%) <0.5% (<0.5%)

Multijet background 4.4% (420%) N/A (N/A) 0.8% (1.5%) N/A (N/A)
Top-quark background 0.8% (1.9%) N/A (N/A) 0.7% (<0.5%) N/A (N/A)
Diboson extrapolation 1.5% (47%) N/A (N/A) 1.3% (9.7%) N/A (N/A)
PDF choice for DY 1.0% (10%) N/A (N/A) <0.5% (1.0%) N/A (N/A)
PDF variation for DY 8.1% (13%) N/A (N/A) 7.4% (14%) N/A (N/A)
EW corrections for DY 4.2% (4.5%) N/A (N/A) 3.7% (7.0%) N/A (N/A)

Luminosity 1.6% (1.1%) 1.7% (1.7%) 1.7% (1.7%) 1.7% (1.7%)

Total 12% (430%) 5.4% (6.4%) 17% (62%) 15% (43%)
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The uncertainties are taken into account via nuisance
parameters implemented as log-normal constraints on the
expected event yields. The parameter of interest is the cross
section σðpp → W0

→ lνÞ. The combined fits to the
electron and muon channels are performed taking correla-
tions between the two channels into account.
The compatibility of the observed data with the back-

ground-only model is tested by computing a frequentist p
value based on the profile likelihood ratio as the test
statistic [64]. The p value corresponds to the probability
for the background to yield an excess equal to or larger
than that observed in data. In the electron channel, the
lowest p value is obtained for mðW0Þ ¼ 625 GeV with a
local significance of 2.8 standard deviations, correspond-
ing to a global significance of 1.3 standard deviations
when taking the look-elsewhere effect into account. In the
muon channel, the lowest p value is obtained formðW0Þ ¼
200 GeV with local and global significances of 2.1 and
0.4 standard deviations, respectively. For the combination
of the two channels, the lowest p value occurs for
mðW0Þ ¼ 625 GeV with local significance of 1.8 standard
deviations, and the corresponding global significance is
−0.5 standard deviations (i.e., the fluctuation in the data is
smaller than the median of the distribution obtained with
background-only pseudoexperiments). In all cases, the
interpretation is performed in the context of the SSM.
Given that no significant deviation from the back-

ground expectation is observed, upper limits are set on
σðpp → W0

→ lνÞ following a Bayesian approach with a
uniform and positive prior for the cross section. This
choice of prior is the same as that used in previous
searches [7,8]. The marginalization of the posterior
probability is performed using Markov chain sampling
with the Bayesian Analysis Toolkit [65]. Upper limits set
at the 95% C.L. in the context of the SSM are presented in
Fig. 2 for the electron and muon channels individually as
well as for their combination, assuming universal W0

boson couplings to leptons. The combined results are
provided in terms of W0 boson decays into leptons of a
single generation. The corresponding lower limits on the
W0 boson mass are summarized in Table III. Weaker limits
are obtained in the muon channel due to the lower signal
acceptance times efficiency and the worse momentum
resolution at high pT.
The lower panels of Fig. 1 show the ratio of the data

to the background prediction before (middle panel) and
after (lower panel) marginalization of the nuisance param-
eters, with the latter resulting from the combined fit to the
electron and muon channels. A difference in event yields is
observed at low mT values for both the electron and muon
channels, although it remains within the range of uncer-
tainty before marginalization. This difference decreases
after marginalization, with the largest deviations from
nominal values occurring for the jet energy resolution
and Emiss

T track soft term nuisance parameters. The latter
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FIG. 2. Observed and expected upper limits at the 95%
C.L. on the pp → W0

→ lν cross section in the electron
(top), muon (middle), and combined (bottom) channels as a
function of W0 mass in the sequential Standard Model. The
dashed lines surrounding the SSM cross-section curve (solid
line) correspond to the combination of PDF, αs, renor-
malization, and factorization scale uncertainties (for illustration
only).
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includes a significant model dependence found by compar-
ing the predictions from the POWHEG-BOX, MADGRAPH5_
aMC@NLO [66], and SHERPA event generators, with the
first two interfaced with PYTHIA 8 for parton showering and
hadronization.
The results displayed in Fig. 2 are obtained with the full

signal line shape from the SSM with no interference
between the W0 signal and the SM DY background. If
the signal line shape is restricted to the W0 peak region by
the requirement mlν > 0.85 ×mðW0Þ, the interference
effects in the low-mass tail of the distributions are largely
suppressed and the observed (expected) mass limits
become weaker by 270 (100) GeV in the electron channel
and 30 (90) GeV in the muon channel, relative to the
mass limits shown in Table III. The mlν > 0.85 ×mðW0Þ
requirement is applied at the event generator level, con-
sidering charged leptons before final-state radiation.
Limits are provided for the production of a generic

resonance with a fixed Γ=m value. For these results,
fiducial cross-section limits are obtained with a requirement
that removes the low-mass tail: mlν > 0.3 ×mðW0Þ. The
region below 0.3 ×mðW0Þ coincides with the lower-mT
region where the background is large and the sensitivity to
signal contributions is reduced. The observed 95% C.L.
upper limits on the fiducial cross section for pp→ W0

→

lν with different choices of Γ=m from 1% to 15% are
shown in Fig. 3. Less stringent limits are obtained for larger
resonance widths since a larger fraction of the signal occurs
in the low-mT tail where the background is higher. The
cross-section upper limits obtained in the fiducial region are
lower than the ones obtained in the full phase space, in
particular at high mðW0Þ where the total cross section has a
large contribution from outside the fiducial region due to
the low-mT tail. The lower values of the cross-section limits
do not indicate that the fiducial limits exclude a broader set
of models, as corresponding theoretical predictions are also
lower in the fiducial than in the total phase space.
To facilitate further interpretations of the results, model-

independent upper limits are also provided for the number of
signal events Nsig in single-bin signal regions obtained by
varying the minimum mT value mmin

T in the range between
130 (110) GeVand 5127 (5127) GeV in the electron (muon)
channel. These limits are translated into limits on the visible
cross section σvis computed as Nsig=L, where L is the

integrated luminosity. The visible cross section corresponds
to the product of cross section times acceptance times
efficiency and the observed 95% C.L. upper limits vary
from 4.6 (15) pb at mmin

T ¼ 130 (110) GeV to 22 (22) ab at

TABLE III. Observed and expected 95% C.L. lower limits on
the W0 mass in the electron and muon channels and their
combination for the sequential Standard Model.

mðW0Þ lower limit [TeV]
Decay Observed Expected

W0
→ eν 6.0 5.7

W0
→ μν 5.1 5.1

W0
→ lν 6.0 5.8

m(W’) [TeV]

0 1 2 3 4 5 6 7

) 
[p

b
]

ν
e

→
W

’
→

(p
p

σ

4−10

3−10

2−10

1−10

1

10

(W’) / m(W’) = 0.15Γ

(W’) / m(W’) = 0.10Γ

(W’) / m(W’) = 0.05Γ

(W’) / m(W’) = 0.02Γ

(W’) / m(W’) = 0.01Γ

ATLAS

ν e→W’ 

-1 = 13 TeV, 139 fbs

Observed limits at 95% CL

 > 0.3 m(W’)νem

m(W’) [TeV]

0 1 2 3 4 5 6 7

) 
[p

b
]

ν
µ

→
W

’
→

(p
p

σ

4−10

3−10

2−10

1−10

1

10

(W’) / m(W’) = 0.15Γ

(W’) / m(W’) = 0.10Γ

(W’) / m(W’) = 0.05Γ

(W’) / m(W’) = 0.02Γ

(W’) / m(W’) = 0.01Γ

ATLAS

νµ →W’ 

-1 = 13 TeV, 139 fbs

Observed limits at 95% CL

 > 0.3 m(W’)νµm

m(W’) [TeV]

0 1 2 3 4 5 6 7

) 
[p

b
]

νl
→

W
’

→
(p

p
σ

4−10

3−10

2−10

1−10

1

10

(W’) / m(W’) = 0.15Γ

(W’) / m(W’) = 0.10Γ

(W’) / m(W’) = 0.05Γ

(W’) / m(W’) = 0.02Γ

(W’) / m(W’) = 0.01Γ

ATLAS

ν l→W’ 

-1 = 13 TeV, 139 fbs

Observed limits at 95% CL

 > 0.3 m(W’)
νlm

FIG. 3. Observed upper limits at the 95% C.L. on the fiducial
cross section for pp → W0

→ lν in the electron (top), muon
(middle), and combined (bottom) channels as a function of W0

mass for a number of different choices of ΓðW0Þ=mðW0Þ ranging
between 1% and 15%.
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highmmin
T in the electron (muon) channel as shown in Fig. 4.

Further details about these model-independent limits are
available in the Appendix.

VIII. CONCLUSION

A search for a heavy resonance decaying into a charged
lepton and a neutrino is carried out in events with an isolated
electron or muon and missing transverse momentum.
The data sample corresponds to 139 fb−1 of pp collisions
at

ffiffiffi

s
p ¼ 13 TeV collected in 2015–2018 with the ATLAS

detector at the LHC. Events are selected with single-electron
and single-muon triggers, and the transverse mass computed
from the lepton pT and the missing transverse momentum
is used as the discriminating variable between signal and
background contributions. The latter is dominated by Drell-
Yan production of W bosons. Monte Carlo simulation is
used to estimate the normalization and shape of the mT
distributions for signal and background events, except for the
multijet background, which is derived from the data.

The observed mT distributions are found to be consistent
with the background expectations, and upper limits are set
on the cross section for pp → W0

→ lν, where the charged
lepton is either an electron or a muon. Limits are also
provided for the combination of the electron and muon
channels. Lower limits of 6.0 and 5.1 TeVon theW0 boson
mass are set at 95% C.L. in the electron and muon channels,
respectively, in the context of the sequential Standard
Model. Fiducial cross-section limits are set on the pro-
duction of resonances with different Γ=m values ranging
from 1% to 15%. To allow for further interpretations of the
results, a set of model-independent upper limits are
presented for the number of signal events and for the
visible cross section above a given transverse mass thresh-
old. These vary from 4.6 (15) pb at mmin

T ¼ 130 (110) GeV
to 22 (22) ab at high mmin

T in the electron (muon) channel.
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and muon (bottom) channels as a function of the mT threshold
mmin

T . The limits are obtained at discrete mmin
T values and are

connected by a straight line for illustration purposes.

G. AAD et al. PHYS. REV. D 100, 052013 (2019)

052013-10



ASGC (Taiwan), RAL (UK), and BNL (USA), the Tier-2
facilities worldwide and large non-WLCG resource
providers. Major contributors of computing resources are
listed in Ref. [67].

APPENDIX

Model-independent upper limits are derived by apply-
ing the full event selection in a set of single-bin signal

regions defined by the minimum mT value mmin
T in the

range between 130 (110) GeV and 5127 (5127) GeV, in
the electron (muon) channel. These minimum values
correspond to the bin boundaries of the mT distributions
shown in Fig. 1. The single-bin signal regions are defined
in Tables IV and V. These tables also show the numbers of
events observed in data and the expected numbers of
background events.

TABLE IV. Observed and expected electron-channel model-independent limits at 95% C.L. on the number of signal events Nsig and
corresponding visible cross section σvis after full event selection for different mT thresholds mmin

T . Also shown are the ingredients to the
limit calculation, namely the number of observed events, the expected number of background events b, and the corresponding
uncertainty Δb.

Upper limit at 95% C.L.

mmin
T [GeV] Nobs b Δb Nobs

sig N
exp
sig σobsvis [pb] σ

exp
vis [pb]

130 3582164 3360000 250000 6.4 × 105 4.6 × 105 4.6 3.3
139 3018934 2850000 200000 5.1 × 105 3.8 × 105 3.7 2.7
149 2345269 2240000 150000 3.6 × 105 2.8 × 105 2.6 2.0
159 1784938 1720000 110000 2.5 × 105 2.0 × 105 1.8 1.4
170 1352988 1310000 80000 1.7 × 105 1.4 × 105 1.3 1.0
182 1028353 1000000 60000 1.2 × 105 1.1 × 105 0.90 0.76
194 784509 770000 40000 9.1 × 104 7.7 × 104 0.66 0.55
208 599989 588000 31000 6.7 × 104 5.8 × 104 0.48 0.42
222 459843 451000 23000 5.0 × 104 4.4 × 104 0.36 0.31
237 352825 347000 18000 3.8 × 104 3.4 × 104 0.27 0.24
254 270299 267000 14000 2.9 × 104 2.6 × 104 0.21 0.19
271 207728 204000 11000 2.3 × 104 2.0 × 104 0.16 0.15
290 159319 157000 8000 1.7 × 104 1.6 × 104 0.13 0.11
310 122150 120000 6000 1.4 × 104 1.2 × 104 0.10 0.088
331 93335 92000 5000 1.1 × 104 9.5 × 103 0.078 0.069
354 71416 70000 4000 8.6 × 103 7.4 × 103 0.062 0.053
379 54642 53500 3100 6.6 × 103 5.8 × 103 0.048 0.042
405 41745 40800 2400 5.3 × 103 4.5 × 103 0.038 0.033
433 31792 31100 1900 4.1 × 103 3.6 × 103 0.030 0.026
463 24257 23600 1500 3.3 × 103 2.8 × 103 0.023 0.020
495 18484 18000 1200 2.6 × 103 2.2 × 103 0.019 0.016
529 13937 13600 900 1.9 × 103 1.7 × 103 0.014 0.012
565 10548 10300 700 1.5 × 103 1.3 × 103 0.011 0.0096
604 7938 7800 500 1.1 × 103 1.0 × 103 0.0080 0.0074
646 5926 5900 400 7.8 × 102 8.0 × 102 0.0056 0.0057
691 4469 4470 330 6.2 × 102 6.2 × 102 0.0044 0.0044
739 3342 3360 250 4.6 × 102 4.8 × 102 0.0033 0.0034
790 2499 2510 190 3.6 × 102 3.7 × 102 0.0026 0.0026
844 1876 1850 140 3.0 × 102 2.8 × 102 0.0022 0.0020
902 1358 1370 110 2.1 × 102 2.2 × 102 0.0015 0.0016
965 1021 1010 80 1.8 × 102 1.7 × 102 0.0013 0.0012
1031 727 740 60 1.2 × 102 1.3 × 102 0.00088 0.00093
1103 495 540 50 74 1.0 × 102 0.00053 0.00072
1179 354 390 40 56 78 0.00040 0.00056
1260 260 278 27 48 60 0.00035 0.00043
1347 175 198 20 33 47 0.00024 0.00034
1441 113 140 15 21 37 0.00015 0.00027

(Table continued)
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TABLE IV. (Continued)

Upper limit at 95% C.L.

mmin
T [GeV] Nobs b Δb Nobs

sig N
exp
sig σobsvis [pb] σ

exp
vis [pb]

1540 74 98 11 16 29 0.00011 0.00021
1647 55 68 8 15 24 0.00011 0.00017
1760 39 46 6 14 19 9.9 × 10−5 0.00013
1882 23 31 5 9.6 15 6.9 × 10−5 0.00011
2012 17 20.9 3.4 9.4 12 6.8 × 10−5 8.9 × 10−5

2151 8 13.7 2.5 6.0 10 4.3 × 10−5 7.4 × 10−5

2300 1 8.9 1.8 3.4 8.4 2.4 × 10−5 6.1 × 10−5

2458 0 5.7 1.4 3.0 7.3 2.2 × 10−5 5.2 × 10−5

2628 0 3.6 1.0 3.0 5.3 2.2 × 10−5 3.8 × 10−5

2810 0 2.2 0.8 3.0 4.9 2.2 × 10−5 3.5 × 10−5

3004 0 1.3 0.6 3.0 4.1 2.2 × 10−5 2.9 × 10−5

3212 0 0.8 0.5 3.0 4.2 2.2 × 10−5 3.1 × 10−5

3434 0 0.5 0.4 3.0 3.0 2.2 × 10−5 2.2 × 10−5

3671 0 0.28 0.28 3.0 3.0 2.2 × 10−5 2.2 × 10−5

3924 0 0.16 0.22 3.0 3.0 2.2 × 10−5 2.2 × 10−5

4196 0 0.09 0.17 3.0 3.0 2.2 × 10−5 2.2 × 10−5

4485 0 0.05 0.13 3.0 3.0 2.2 × 10−5 2.2 × 10−5

4795 0 0.03 0.10 3.0 3.0 2.2 × 10−5 2.2 × 10−5

5127 0 0.02 0.08 3.0 3.0 2.2 × 10−5 2.2 × 10−5

TABLE V. Observed and expected muon-channel model-independent limits at 95% C.L. on the number of signal events Nsig and
corresponding visible cross section σvis after full event selection for different mT thresholds mmin

T . Also shown are the ingredients to the
limit calculation, namely the number of observed events, the expected number of background events b, and the corresponding
uncertainty Δb.

Upper limit at 95% C.L.

mmin
T [GeV] Nobs b Δb Nobs

sig N
exp
sig σobsvis [pb] σ

exp
vis [pb]

110 8783359 7800000 700000 2.1 × 106 1.3 × 106 15 9.1
120 6589361 5900000 500000 1.5 × 106 9.8 × 105 11 7.0
130 4353441 3900000 400000 9.9 × 105 6.5 × 105 7.1 4.7
141 2820607 2590000 220000 5.9 × 105 4.1 × 105 4.3 2.9
154 1840357 1720000 140000 3.5 × 105 2.5 × 105 2.5 1.8
167 1227452 1160000 80000 2.0 × 105 1.5 × 105 1.5 1.1
182 837724 800000 50000 1.2 × 105 9.3 × 104 0.88 0.67
197 581304 562000 32000 7.5 × 104 6.0 × 104 0.54 0.43
215 409019 398000 21000 4.8 × 104 4.0 × 104 0.35 0.29
233 289557 284000 15000 3.2 × 104 2.8 × 104 0.23 0.20
254 206096 202000 10000 2.3 × 104 2.0 × 104 0.16 0.14
276 146653 144000 7000 1.6 × 104 1.4 × 104 0.12 0.10
300 104516 103000 5000 1.1 × 104 1.0 × 104 0.083 0.073
326 74371 73000 4000 8.3 × 103 7.4 × 103 0.059 0.053
354 52871 52100 2900 6.1 × 103 5.5 × 103 0.044 0.039
385 37630 37100 2200 4.5 × 103 4.1 × 103 0.032 0.030
419 26878 26300 1600 3.5 × 103 3.1 × 103 0.025 0.022
455 19035 18700 1200 2.6 × 103 2.3 × 103 0.018 0.017
495 13578 13200 900 2.0 × 103 1.7 × 103 0.014 0.012

(Table continued)
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S. J. Crawley,57 R. A. Creager,137 S. Crépé-Renaudin,58 F. Crescioli,136 M. Cristinziani,24 V. Croft,120 G. Crosetti,41b,41a

A. Cueto,5 T. Cuhadar Donszelmann,149 A. R. Cukierman,153 S. Czekierda,84 P. Czodrowski,36

M. J. Da Cunha Sargedas De Sousa,60b J. V. Da Fonseca Pinto,80b C. Da Via,100 W. Dabrowski,83a T. Dado,28a S. Dahbi,35e

T. Dai,105 C. Dallapiccola,102 M. Dam,40 G. D’amen,23b,23a V. D’Amico,74a,74b J. Damp,99 J. R. Dandoy,137 M. F. Daneri,30

N. P. Dang,181 N. D Dann,100 M. Danninger,175 V. Dao,36 G. Darbo,55b O. Dartsi,5 A. Dattagupta,131 T. Daubney,46

S. D’Auria,68a,68b W. Davey,24 C. David,46 T. Davidek,143 D. R. Davis,49 I. Dawson,149 K. De,8 R. De Asmundis,69a

M. De Beurs,120 S. De Castro,23b,23a S. De Cecco,72a,72b N. De Groot,119 P. de Jong,120 H. De la Torre,106 A. De Maria,15c

D. De Pedis,72a A. De Salvo,72a U. De Sanctis,73a,73b M. De Santis,73a,73b A. De Santo,156 K. De Vasconcelos Corga,101

J. B. De Vivie De Regie,132 C. Debenedetti,146 D. V. Dedovich,79 A.M. Deiana,42 M. Del Gaudio,41b,41a J. Del Peso,98

Y. Delabat Diaz,46 D. Delgove,132 F. Deliot,145,q C.M. Delitzsch,7 M. Della Pietra,69a,69b D. Della Volpe,54 A. Dell’Acqua,36

L. Dell’Asta,73a,73b M. Delmastro,5 C. Delporte,132 P. A. Delsart,58 D. A. DeMarco,167 S. Demers,183 M. Demichev,79

G. Demontigny,109 S. P. Denisov,123 D. Denysiuk,120 L. D’Eramo,136 D. Derendarz,84 J. E. Derkaoui,35d F. Derue,136

P. Dervan,90 K. Desch,24 C. Deterre,46 K. Dette,167 C. Deutsch,24 M. R. Devesa,30 P. O. Deviveiros,36 A. Dewhurst,144

S. Dhaliwal,26 F. A. Di Bello,54 A. Di Ciaccio,73a,73b L. Di Ciaccio,5 W. K. Di Clemente,137 C. Di Donato,69a,69b

A. Di Girolamo,36 G. Di Gregorio,71a,71b B. Di Micco,74a,74b R. Di Nardo,102 K. F. Di Petrillo,59 R. Di Sipio,167

D. Di Valentino,34 C. Diaconu,101 F. A. Dias,40 T. Dias Do Vale,140a M. A. Diaz,147a J. Dickinson,18 E. B. Diehl,105

J. Dietrich,19 S. Díez Cornell,46 A. Dimitrievska,18 W. Ding,15b J. Dingfelder,24 F. Dittus,36 F. Djama,101 T. Djobava,159b

J. I. Djuvsland,17 M. A. B. Do Vale,80c M. Dobre,27b D. Dodsworth,26 C. Doglioni,96 J. Dolejsi,143 Z. Dolezal,143

M. Donadelli,80d B. Dong,60c J. Donini,38 A. D’onofrio,92 M. D’Onofrio,90 J. Dopke,144 A. Doria,69a M. T. Dova,88

A. T. Doyle,57 E. Drechsler,152 E. Dreyer,152 T. Dreyer,53 A. S. Drobac,170 Y. Duan,60b F. Dubinin,110 M. Dubovsky,28a

A. Dubreuil,54 E. Duchovni,180 G. Duckeck,114 A. Ducourthial,136 O. A. Ducu,109 D. Duda,115 A. Dudarev,36 A. C. Dudder,99

E.M. Duffield,18 L. Duflot,132 M. Dührssen,36 C. Dülsen,182 M. Dumancic,180 A. E. Dumitriu,27b A. K. Duncan,57

M. Dunford,61a A. Duperrin,101 H. Duran Yildiz,4a M. Düren,56 A. Durglishvili,159b D. Duschinger,48 B. Dutta,46

D. Duvnjak,1 G. I. Dyckes,137 M. Dyndal,36 S. Dysch,100 B. S. Dziedzic,84 K.M. Ecker,115 R. C. Edgar,105

M. G. Eggleston,49 T. Eifert,36 G. Eigen,17 K. Einsweiler,18 T. Ekelof,172 H. El Jarrari,35e M. El Kacimi,35c R. El Kosseifi,101

V. Ellajosyula,172 M. Ellert,172 F. Ellinghaus,182 A. A. Elliot,92 N. Ellis,36 J. Elmsheuser,29 M. Elsing,36 D. Emeliyanov,144

A. Emerman,39 Y. Enari,163 M. B. Epland,49 J. Erdmann,47 A. Ereditato,20 M. Errenst,36 M. Escalier,132 C. Escobar,174

O. Estrada Pastor,174 E. Etzion,161 H. Evans,65 A. Ezhilov,138 F. Fabbri,57 L. Fabbri,23b,23a V. Fabiani,119 G. Facini,94

R.M. Faisca Rodrigues Pereira,140a R.M. Fakhrutdinov,123 S. Falciano,72a P. J. Falke,5 S. Falke,5 J. Faltova,143 Y. Fang,15a

Y. Fang,15a G. Fanourakis,44 M. Fanti,68a,68b M. Faraj,66a,66c A. Farbin,8 A. Farilla,74a E. M. Farina,70a,70b T. Farooque,106

S. Farrell,18 S.M. Farrington,50 P. Farthouat,36 F. Fassi,35e P. Fassnacht,36 D. Fassouliotis,9 M. Faucci Giannelli,50

W. J. Fawcett,32 L. Fayard,132 O. L. Fedin,138,r W. Fedorko,175 M. Feickert,42 S. Feigl,134 L. Feligioni,101 A. Fell,149

C. Feng,60b E. J. Feng,36M. Feng,49M. J. Fenton,57A. B. Fenyuk,123 J. Ferrando,46A. Ferrante,173A. Ferrari,172 P. Ferrari,120

R. Ferrari,70a D. E. Ferreira de Lima,61b A. Ferrer,174 D. Ferrere,54 C. Ferretti,105 F. Fiedler,99 A. Filipčič,91 F. Filthaut,119

K. D. Finelli,25 M. C. N. Fiolhais,140a L. Fiorini,174 F. Fischer,114 W. C. Fisher,106 I. Fleck,151 P. Fleischmann,105

R. R. M. Fletcher,137 T. Flick,182 B.M. Flierl,114 L. F. Flores,137 L. R. Flores Castillo,63a F. M. Follega,75a,75b N. Fomin,17

J. H. Foo,167 G. T. Forcolin,75a,75b A. Formica,145 F. A. Förster,14 A. C. Forti,100 A. G. Foster,21 M. G. Foti,135 D. Fournier,132

H. Fox,89 P. Francavilla,71a,71b S. Francescato,72a,72b M. Franchini,23b,23a S. Franchino,61a D. Francis,36 L. Franconi,20

M. Franklin,59 A. N. Fray,92 B. Freund,109 W. S. Freund,80b E. M. Freundlich,47 D. C. Frizzell,128 D. Froidevaux,36

J. A. Frost,135 C. Fukunaga,164 E. Fullana Torregrosa,174 E. Fumagalli,55b,55a T. Fusayasu,116 J. Fuster,174 A. Gabrielli,23b,23a

A. Gabrielli,18 G. P. Gach,83a S. Gadatsch,54 P. Gadow,115 G. Gagliardi,55b,55a L. G. Gagnon,109 C. Galea,27b B. Galhardo,140a

G. E. Gallardo,135 E. J. Gallas,135 B. J. Gallop,144 G. Galster,40 R. Gamboa Goni,92 K. K. Gan,126 S. Ganguly,180 J. Gao,60a

Y. Gao,50 Y. S. Gao,31,h C. García,174 J. E. García Navarro,174 J. A. García Pascual,15a C. Garcia-Argos,52

SEARCH FOR A HEAVY CHARGED BOSON IN EVENTS … PHYS. REV. D 100, 052013 (2019)

052013-17



M. Garcia-Sciveres,18 R.W. Gardner,37 N. Garelli,153 S. Gargiulo,52 V. Garonne,134 A. Gaudiello,55b,55a G. Gaudio,70a

I. L. Gavrilenko,110 A. Gavrilyuk,111 C. Gay,175 G. Gaycken,46 E. N. Gazis,10 A. A. Geanta,27b C. N. P. Gee,144 J. Geisen,53

M. Geisen,99 M. P. Geisler,61a C. Gemme,55b M. H. Genest,58 C. Geng,105 S. Gentile,72a,72b S. George,93 T. Geralis,44

L. O. Gerlach,53 P. Gessinger-Befurt,99 G. Gessner,47 S. Ghasemi,151 M. Ghasemi Bostanabad,176 M. Ghneimat,24

A. Ghosh,132 A. Ghosh,77 B. Giacobbe,23b S. Giagu,72a,72b N. Giangiacomi,23b,23a P. Giannetti,71a A. Giannini,69a,69b

G. Giannini,14 S. M. Gibson,93 M. Gignac,146 D. Gillberg,34 G. Gilles,182 D.M. Gingrich,3,e M. P. Giordani,66a,66c

F. M. Giorgi,23b P. F. Giraud,145 G. Giugliarelli,66a,66c D. Giugni,68a F. Giuli,73a,73b S. Gkaitatzis,162 I. Gkialas,9,s

E. L. Gkougkousis,14 P. Gkountoumis,10 L. K. Gladilin,113 C. Glasman,98 J. Glatzer,14 P. C. F. Glaysher,46 A. Glazov,46

M. Goblirsch-Kolb,26 S. Goldfarb,104 T. Golling,54 D. Golubkov,123 A. Gomes,140a,140b R. Goncalves Gama,53

R. Gonçalo,140a,140b G. Gonella,52 L. Gonella,21 A. Gongadze,79 F. Gonnella,21 J. L. Gonski,59 S. González de la Hoz,174

S. Gonzalez-Sevilla,54 G. R. Gonzalvo Rodriguez,174 L. Goossens,36 P. A. Gorbounov,111 H. A. Gordon,29 B. Gorini,36

E. Gorini,67a,67b A. Gorišek,91 A. T. Goshaw,49 C. Gössling,47 M. I. Gostkin,79 C. A. Gottardo,119 M. Gouighri,35b

D. Goujdami,35c A. G. Goussiou,148 N. Govender,33b C. Goy,5 E. Gozani,160 I. Grabowska-Bold,83a E. C. Graham,90

J. Gramling,171 E. Gramstad,134 S. Grancagnolo,19 M. Grandi,156 V. Gratchev,138 P.M. Gravila,27f F. G. Gravili,67a,67b

C. Gray,57 H.M. Gray,18 C. Grefe,24 K. Gregersen,96 I. M. Gregor,46 P. Grenier,153 K. Grevtsov,46 C. Grieco,14

N. A. Grieser,128 J. Griffiths,8 A. A. Grillo,146 K. Grimm,31,t S. Grinstein,14,u J.-F. Grivaz,132 S. Groh,99 E. Gross,180

J. Grosse-Knetter,53 Z. J. Grout,94 C. Grud,105 A. Grummer,118 L. Guan,105 W. Guan,181 J. Guenther,36 A. Guerguichon,132

J. G. R. Guerrero Rojas,174 F. Guescini,115 D. Guest,171 R. Gugel,52 T. Guillemin,5 S. Guindon,36 U. Gul,57 J. Guo,60c

W. Guo,105 Y. Guo,60a,v Z. Guo,101 R. Gupta,46 S. Gurbuz,12c G. Gustavino,128 P. Gutierrez,128 C. Gutschow,94 C. Guyot,145

C. Gwenlan,135 C. B. Gwilliam,90 A. Haas,124 C. Haber,18 H. K. Hadavand,8 N. Haddad,35e A. Hadef,60a S. Hageböck,36

M. Hagihara,169 M. Haleem,177 J. Haley,129 G. Halladjian,106 G. D. Hallewell,101 K. Hamacher,182 P. Hamal,130

K. Hamano,176 H. Hamdaoui,35e G. N. Hamity,149 K. Han,60a,w L. Han,60a S. Han,15a,15d K. Hanagaki,81,x M. Hance,146

D.M. Handl,114 B. Haney,137 R. Hankache,136 P. Hanke,61a E. Hansen,96 J. B. Hansen,40 J. D. Hansen,40 M. C. Hansen,24

P. H. Hansen,40 E. C. Hanson,100 K. Hara,169 A. S. Hard,181 T. Harenberg,182 S. Harkusha,107 P. F. Harrison,178

N.M. Hartmann,114 Y. Hasegawa,150 A. Hasib,50 S. Hassani,145 S. Haug,20 R. Hauser,106 L. B. Havener,39 M. Havranek,142

C.M. Hawkes,21 R. J. Hawkings,36 D. Hayden,106 C. Hayes,155 R. L. Hayes,175 C. P. Hays,135 J. M. Hays,92 H. S. Hayward,90

S. J. Haywood,144 F. He,60a M. P. Heath,50 V. Hedberg,96 L. Heelan,8 S. Heer,24 K. K. Heidegger,52 W.D. Heidorn,78

J. Heilman,34 S. Heim,46 T. Heim,18 B. Heinemann,46,y J. J. Heinrich,131 L. Heinrich,36 C. Heinz,56 J. Hejbal,141 L. Helary,61b

A. Held,175 S. Hellesund,134 C.M. Helling,146 S. Hellman,45a,45b C. Helsens,36 R. C.W. Henderson,89 Y. Heng,181

S. Henkelmann,175 A.M. Henriques Correia,36 G. H. Herbert,19 H. Herde,26 V. Herget,177 Y. Hernández Jiménez,33c
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133

Graduate School of Science, Osaka University, Osaka, Japan
134

Department of Physics, University of Oslo, Oslo, Norway
135

Department of Physics, Oxford University, Oxford, United Kingdom
136
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mmAlso at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom.
nnAlso at Louisiana Tech University, Ruston, Louisiana, USA.
ooAlso at School of Physics, Sun Yat-sen University, Guangzhou, China.
ppAlso at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia, Bulgaria.
qqAlso at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia.
rrAlso at Department of Applied Physics and Astronomy, University of Sharjah, Sharjah, United Arab Emirates.
ssAlso at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.
ttAlso at CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France.
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