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Abstract

The impact of measurements of heavy-flavour production in deep inelastic ep scattering

and in pp collisions on parton distribution functions is studied in a QCD analysis at next-

to-leading order. Recent combined results of inclusive and heavy-flavour production cross

sections in deep inelastic scattering at HERA are investigated together with heavy-flavour

production measurements at the LHC. Differential cross sections of charm- and beauty-

hadron production measured by the LHCb collaboration at the centre-of-mass energies of

5, 7 and 13 TeV as well as the recent measurements of the ALICE experiment at the centre-

of-mass energies of 5 and 7 TeV are explored. These data impose additional constraints

on the gluon and the sea-quark distributions at low partonic fractions x of the proton mo-

mentum, down to x ≈ 10−6. The impact of the resulting parton distribution function in the

predictions for the prompt atmospheric-neutrino fluxes is studied.
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1 Introduction

The fundamental structure of the nucleon is described by the theory of strong interactions,

quantum chromodynamics (QCD). In the collinear factorisation, the nucleon structure is

expressed in terms of parton distribution functions (PDFs), defined as probability densi-

ties for partons to carry a fraction x of the nucleon momentum at a factorisation scale µ f .

While the scale evolution of the PDFs is calculated in perturbative QCD (pQCD) using

the DGLAP equations [1–7], the x-dependence must be constrained from the experimental

measurements. The constraining power of experimental data on particular parton distri-

bution is to a large extent defined by the acceptance of the experiment. Measurements

of neutral current (NC) and charged current (CC) cross sections in deep inelastic scatter-

ing (DIS) at HERA [8] probe the x range of 10−4 < x < 10−1, impose most significant

constraints on the light quark PDFs and probe the gluon distribution via scaling viola-

tions. Additional constraints on the flavour separation of the quark sea and on the gluon

distribution at low and high x are obtained by using the measurements at fixed target exper-

iments and in proton-(anti)proton collisions. Heavy-flavour production in proton-proton

(pp) collisions at the LHC is dominated by gluon-gluon fusion, therefore corresponding

measurements probe the gluon distribution directly [9–12]. The measurements of forward

charm [13] and beauty [14] production by the LHCb experiment at the centre-of-mass en-

ergy
√

s = 7 TeV were used for the first time by the PROSA collaboration [9] to improve

constraints on the gluon distribution at 5×10−6 < x < 10−4, in the region hardly covered

by any other measurements to that date. The resulting PDFs (PROSA 2015) were further

used to predict the prompt neutrino flux from the decays of charmed mesons produced

via cosmic ray interactions in the Earth’s atmosphere [15], which constitute an irreducible

background in searches for the extraterrestrial neutrino flux by IceCube.

Recent improvements in the precision of the HERA measurements [8,16], new experi-

mental data on heavy flavour production at the LHC at different
√

s [17–20], together with

new developments in the theory and improvements of the phenomenological tools, offer

possibilities for stronger constraints on the gluon distribution at low x. These improve-

ments in experimental measurements and the theory are explored in the QCD analysis

presented in this paper, which updates the earlier PDF result [9]. The results, referred to

as PROSA 2019, are used to update the predictions for the prompt atmospheric-neutrino

fluxes.

2 Input data sets and used theory predictions

The main objective of the present QCD analysis is to demonstrate the constraining power

of the updated measurements of heavy-flavour production in DIS and pp collisions for

the determination of the PDFs of the proton. The QCD analysis is performed at next-to-

leading order (NLO) using the xFitter framework [21]. The updated combinations of the

inclusive DIS cross sections [8] and of charm and beauty production cross sections [16]

are used together with the measurements of charm and beauty hadroproduction in pp

scattering at the LHC. The latter include the measurements of charm hadroproduction by
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the LHCb collaboration at
√

s = 5 TeV [18], 7 TeV [13] and 13 TeV [17], and by ALICE at√
s = 5 TeV [20] and 7 TeV [19]. The measurements of beauty hadroproduction by LHCb

at
√

s = 7 TeV [14] are also used.

The cross sections measured by LHCb and ALICE in each pT range are normalised

in rapidity y, d2σ
dydpT

/
(

d2σ
dydpT

)

0
. Here,

(

d2σ
dydpT

)

0
is the cross section in the central LHCb

rapidity bin, 3 < y < 3.5. When normalising cross sections in this way, ALICE measure-

ments at |y| < 0.5 are divided by the LHCb cross-section measurement in 3 < y < 3.5.

The advantage of using the normalised cross section, demonstrated in the earlier PROSA

analysis [9], is a significant reduction of the scale dependence in the theoretical prediction,

while retaining the sensitivity to the PDFs.

In the presented QCD analysis, bin-to-bin correlations in the input measurements are

taken into account as described in the following. The treatment of correlated experimental

uncertainties for the HERA data follows that of the original publications [8, 16].

The correlated uncertainties in the ALICE and LHCb measurements reported in the

original publications [13, 14, 17–20] and listed in the respective tables as exact uncer-

tainty values in each kinematic bin in pT and y, are treated as fully correlated, and the

uncorrelated uncertainties are obtained by subtracting the correlated ones from the total

uncertainties, in quadrature. Because of this treatment of systematics, most of these corre-

lated systematic uncertainties cancel in the calculation of the normalised cross sections. In

case of the LHCb cross section ratio measurements, the uncertainties cancel completely.

Further systematic uncertainties, reported as error intervals, see e.g. Table (2) of Ref. [18],

are assumed uncorrelated, since no details about their size in individual pT and y bins are

provided. For different final state measurements within one experiment, the tracking and

luminosity uncertainties are treated as correlated. Furthermore, all experimental uncertain-

ties are treated as uncorrelated among measurements at different centre-of-mass energies.

The uncorrelated uncertainties in the normalised cross sections
(

d2σ
dydpT

)

0
are propagated

as correlated uncertainties to the respective complementary rapidity bins. It is worthwhile

to note, that the details of the experimental uncertainties and their correlations in each in-

dividual kinematic range is of great importance and therefore most detailed information

about the systematic correlations in the experimental measurement is required.

In the presented QCD analysis, the scale evolution of partons is calculated through

the DGLAP equations at NLO, as implemented in the QCDNUM programme [22]. The

description of the inclusive HERA data in the PDF fits improves in the kinematic range of

small x and low virtuality Q2, by including higher twist effects [23, 24] or, alternatively,

small x resummation [25, 26]. These upgrades are left for future analyses, once all neces-

sary theoretical ingredients have become available. The changes in the PDFs when varying

the Q2
min = 3.5 GeV2 cut imposed on the HERA data, 2.5 ≤ Q2

min ≤ 5.0 GeV2, are found

to be small with respect to other uncertainties. Therefore we are confident that inclusion

of higher-twist terms would not modify the results of this analysis in a substantial way.

The theoretical predictions for the heavy-quark and inclusive HERA data are obtained

using OPENQCDRAD [27] code in the fixed-flavour-number scheme (FFNS) with three

active flavours in the proton using the MS mass scheme, following the Ref. [16]. Simi-

lar to the earlier PROSA analysis [9], the theoretical predictions for the fully differential
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heavy-quark hadroproduction in pp collisions, available at NLO in FFNS, are used. These

are calculated using the MNR code [28], with the single-particle inclusive distributions

computed using the pole mass scheme for the heavy quarks, and translated into the MS

mass scheme expressions using the MS mass mQ(mQ) and following Ref. [29]. The MS

mass scheme is then consistently used in the calculations for all used processes.

The factorisation and renormalisation scales are chosen to be Q for inclusive DIS,

and µr = µ f =
√

Q2 +4mQ(mQ)2 for heavy quark production in DIS, respectively, with

mQ(mQ) representing the heavy-quark mass in the MS scheme. For heavy quark produc-

tion in pp collisions, µr = µ f =
√

4mQ(mQ)2 + p2
T is assumed.

The calculations for heavy quark hadroproduction are supplemented with phenomeno-

logical non-perturbative fragmentation functions to describe the transition of heavy quarks

into hadrons. The fragmentation of charm quarks into D mesons is described by the

Kartvelishvili function DQ(z) ∝ zαK(1−z) with αK = 4.4±1.7 as measured at HERA [30,

31], and for the fragmentation of beauty quarks αK = 11 ± 3 is used as measured at

LEP [32], following the previous PROSA analysis [9]. Studies of the uncertainties re-

lated to the fragmentation in [33] for a determination of the charm-quark mass in the MS

scheme from deep inelastic scattering at HERA data have shown that the dominant ef-

fect is captured by varying αK within its uncertainties. This treatment of charm quark

fragmentation is independent of the choice of a particular renormalisation scheme for the

heavy quark mass. The latter is needed in a determination of the initial condition for the

perturbative heavy quark fragmentation function, which is known to NNLO [34]. The sub-

sequent range of evolution in the case of charm quark fragmentation into D mesons from

the scale of hadronisation to scales of order of the charm quark mass is very short, so that

the modelling with the non-perturbative Kartvelishvili function DQ(z) is justified.

The main QCD analysis is performed in the FFNS and the sensitivity of the heavy

quark measurements to the PDFs and to the masses of the charm and beauty quarks is

fully explored by treating mc(mc) and mb(mb) as free parameters in the fit. The fit is also

performed in the variable flavour number scheme (VFNS) to allow for incorporation in

shower Monte Carlo event generators and applications in e.g. underlying event tuning at

the LHC.

3 PDF parametrisation

The PDFs are parametrised at the starting evolution scale of µ2
f 0 = 1.9 GeV2, similar as in

Ref. [8] and Ref. [35], as follows:

xg(x) = AgxBg (1− x)Cg (1+Fglogx),

xuv(x) = AuvxBuv (1− x)Cuv (1+Euvx2),

xdv(x) = Adv
xBdv (1− x)Cdv ,

xU(x) = AUxBU (1− x)CU (1+DUx),

xD(x) = ADxBD (1− x)CD .

(1)
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Here, xg(x), xuv(x) and xdv(x) represent the gluon, up and down valence quark dis-

tributions, respectively. The sea quark distribution is defined as xΣ(x) = xu(x)+ xd(x)+
xs(x), with xu(x), xd(x), and xs(x) denoting the up, down, and strange antiquark distribu-

tions, respectively. For the up- and down-type antiquark distributions, xU(x) and xD(x),
relations xU(x) = xu(x) and xD(x) = xd(x)+ xs(x) are assumed. The normalisation pa-

rameters Auv , Adv
, and Ag are determined by the QCD sum rules. The strangeness fraction

fs = xs/(xd + xs) is fixed to fs = 0.4 as in the HERAPDF2.0 analysis [8]. Additional

constraints BU = BD and AU = AD(1− fs) are imposed to ensure the same normalisation

for the xu and xd distributions as x → 0. The term Fg logx was proposed in [35] to provide

a flexible functional form at low x and replace the 3-parameter extra term in Ref. [8].

The predicted and measured cross sections together with their corresponding uncer-

tainties are used to build a global χ2, minimised to determine the initial PDF parameters.

The χ2 definition follows that of Eq. (32) in Ref. [8]. In the minimisation, performed using

the MINUIT package [36], the experimental uncertainties in the heavy-quark normalised

cross sections are treated as additive, and the treatment of the experimental uncertainties

for the HERA DIS data follows the prescription given in Ref. [8].

The parameters in Eq. (1) are selected by first parametrising each PDF as

x f (x) = AxB(1− x)C(1+Dx+Ex2 +F logx), f = g

x f (x) = AxB(1− x)C(1+Dx+Ex2), f = uv,dv,U,D
(2)

and setting all D and E parameters to zero. Additional parameters in each resulting PDF

are included in the fit one at a time. The improvement in χ2 of the fits is monitored and

the procedure is stopped when no further improvement is observed. The inclusion of the

Fg parameter does not lead to significant change in χ2, in particular, its fitted value is

consistent with 0 within uncertainty, however the variation of Fg significantly affects the

fit uncertainties.

To ensure that the gluon PDF at low x is not over-constrained in the fit, different func-

tional forms in the parametrisation were tested, as used in the ABMP16 [24], CT14 [37],

HERAPDF2.0 [8] and Bonvini-Giuli (BG) [35] PDF fits:1

ABMP16: xg(x) = A(1− x)bxa(1+γ1x),

CT14: xg(x) = Axa1(1− x)a2(e0(1− y)2 + e1(2y(1− y))+ y2),y = 2
√

x− x,

HERAPDF2.0: xg(x) = AgxBg(1− x)Cg +A′
gxB′

g(1− x)25,

HERAPDF2.0 no flex. g: xg(x) = AgxBg(1− x)Cg ,

BG: xg(x) = AgxBg (1− x)Cg (1+Fglogx+Gglog2 x),
(3)

These functional forms are characterised by 3 (HERAPDF2.0 no ’flexible’ g), 4 (ABMP16)

or 5 (CT14, HERAPDF2.0, BG) parameters controlling the gluon PDF, c.f. 4 parameters

1Note that in this analysis, it was not possible to achieve convergence of the fit using the MMHT2014

parametrisation [38], because the data sets used did not have sufficient sensitivity to the gluon distribution

at high x.
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Figure 1: Left panel: the gluon PDF with their total uncertainties at the scale µ2
f = 10

GeV2 obtained using different gluon parametrisations, see Eq. (3). Right panel: the same

PDFs normalised to the distribution obtained using the nominal parametrisation.

in the presented nominal parametrisation of Eq. (1). The resulting gluon distributions are

presented in Fig. 1. The parametrisations of ABMP16, HERAPDF2.0 without the flexi-

ble gluon, and BG provide very similar results to that of the nominal parametrisation in

Eq. (1). Note that also the HERAPDF2.0 analysis considered the parametrisation without

the flexible gluon, referred to as an ‘alternative’ gluon parametrisation [8], provided pri-

marily for predictions of cross sections at very low x, such as very high-energy neutrino

cross sections.

The fit using the HERAPDF2.0 and CT14 parametrisations yielded a gluon distribu-

tion with a sharp turnover to negative values at x ∼ 10−6, i.e. at the edge of the kinematic

reach of the used measurements. Using such PDFs would lead to a negative prediction for

the total charm hadroproduction cross sections at
√

s & 20 TeV, similar to the observation

of Ref. [23]. Therefore these parametrisations are discarded (despite they provide an im-

proved χ2, by 22 and 7 units when using the HERAPDF2.0 and CT14 parametrisations,

respectively).

4 PDF uncertainties

The PDF uncertainties are investigated according to the general approach of the HER-

APDF2.0 analysis [8], with the fit, model, and parametrisation uncertainties taken into

account.

The fit uncertainties arising from the uncertainties in the measurements are estimated

by using the Hessian method, adopting the tolerance criterion of ∆χ2 = 1, and correspond

to 68% confidence level.

To investigate the impact of model assumptions on the resulting PDFs, alternative
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fits are performed and the differences to the central result are considered as model un-

certainties. The strangeness fraction is varied as 0.3 ≤ fs ≤ 0.5 and the value of Q2
min

imposed on the HERA data as 2.5 ≤ Q2
min ≤ 5.0 GeV2. The FFNS strong coupling

constant is assumed as 0.105 < α
n f=3
s (MZ) < 0.107 (corresponding to the VFNS val-

ues of 0.117 < α
n f=5
s (MZ) < 0.119 [39]). The variation of the fragmentation parameters

αK = 4.4± 1.7 for charm hadrons [30, 31] and αK = 11± 3 for beauty hadrons [32] is

performed. The scales µ f and µr for heavy quark production are varied independently and

simultaneously up and down by a factor of two, excluding variations of the two scales in

opposite directions. Note that for the normalised cross section predictions, the simultane-

ous variation of the µ f and µr scales in the same direction results in the largest deviation

in the resulting PDFs and is considered as one PDF uncertainty eigenvector.

The parametrisation uncertainty is estimated by extending the functional form of each

PDF in Eq. (1) with additional parameters D and E, see Eq. (2), which are added or re-

moved one at a time and do not impact the χ2. Furthermore, the shape of the gluon PDF

is extended by adding a +Gg log2 x term [35]. This modification does not result in an

improvement in χ2 and therefore is not considered in the nominal parametrisation. The

variation of the starting scale, 1.6 < µ2
f0 < 2.2 GeV2, is also taken into account as contri-

bution to the parametrisation uncertainty. The parametrisation uncertainty is constructed

at any given scale as an envelope built from the maximal differences between the PDFs

resulting from all the parametrisation variations and the central fit at each x value.

The total PDF uncertainty is obtained by adding experimental, model, and parametri-

sation uncertainties in quadrature.

5 PROSA 2019 parton distributions

The quality of the overall fit can be judged based on the global χ2 divided by the number

of degrees of freedom, ndo f . For each data set included in the fit, a partial χ2 divided by the

number of measurements (data points), nd p, is provided. The correlated part of χ2 quanti-

fies the influence of the correlated systematic uncertainties in the fit. The global and partial

χ2 values for each data set are listed in Table 1, illustrating a general agreement among

all the data sets. The central values and the uncertainties of the fitted PDF parameters are

given in Table 2. The fitted masses of the heavy quarks are mc(mc) = 1.230±0.031 GeV,

mb(mb) = 3.977±0.100 GeV. These values are a bit lower than, but consistent with, those

obtained from the HERA data only [16]. The corresponding full set of other potential

systematic uncertainties was not evaluated here.

The resulting PROSA 2019 PDFs with their total uncertainties at the scale µ2
f = 10 GeV2

are shown in Fig. 2. These are compared to the result of the PROSA 2015 fit [9]. In Fig. 3

(left), the gluon distribution normalised to the one from the PROSA 2015 fit is shown.

The two results are in a very good agreement and a significant improvement in the preci-

sion of the gluon PDF is achieved at x < 10−4, as compared to the PROSA 2015 fit. The

valence and sea quark PDFs are in good agreement with the result of the HERAPDF2.0

analysis [8] and the observed differences in these distributions to the PROSA 2015 analy-

sis are attributed to the update of the DIS measurements [40] used in Ref. [9] to the final
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Data set χ2/nd p

HERA CC e+p 62 / 39

HERA CC e−p 49 / 42

HERA NC e−p 227 / 159

HERA NC e+p 820 GeV 68 / 70

HERA NC e+p 920 GeV 440 / 377

HERA NC e+p 460 GeV 223 / 204

HERA NC e+p 575 GeV 223 / 254

HERA NC charm 49 / 52

HERA NC beauty 18 / 27

LHCb 7 TeV B0 52 / 76

LHCb 7 TeV B+ 129 / 108

LHCb 7 TeV B0
s 37 / 60

LHCb 7 TeV D0 15 / 30

LHCb 7 TeV D+ 19 / 29

LHCb 7 TeV D+
s 14 / 20

LHCb 7 TeV D∗+ 16 / 22

LHCb 5 TeV D0 60 / 35

LHCb 5 TeV D+ 25 / 35

LHCb 5 TeV D+
s 30 / 29

LHCb 5 TeV D∗+ 35 / 30

LHCb 13 TeV D0 111 / 60

LHCb 13 TeV D+ 72 / 64

LHCb 13 TeV D+
s 69 / 55

LHCb 13 TeV D∗+ 82 / 54

ALICE 7 TeV D0 5.1 / 8

ALICE 7 TeV D+ 0.75 / 7

ALICE 7 TeV D∗+ 2.3 / 6

ALICE 5 TeV D0 6.3 / 10

ALICE 5 TeV D+ 5.8 / 9

ALICE 5 TeV D+
s 2.5 / 4

ALICE 5 TeV D∗+ 1.7 / 9

Correlated χ2 282

Log penalty χ2 -32

Total χ2 / ndo f 2401 / 1969

Table 1: The global and partial χ2 values for each data set together with the corresponding

number of data points (ndp). The correlated χ2 and the log penalty χ2 entries refer to the χ2

contributions from the correlated uncertainties and from the logarithmic term, respectively,

as described in Ref. [8].
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Parameter Value

Bg 0.004±0.053

Cg 6.25±0.29

Fg 0.068±0.024

Buv
0.644±0.030

Cuv
4.862±0.076

Euv
15.8±2.2

Bdv
0.873±0.076

Cdv
4.61±0.35

CU 7.36±0.77

DU 10.1±2.4

AD 0.1061±0.0058

BD −0.1661±0.0062

CD 12.7±3.0

Table 2: The resulting parameters for the PDFs with their fit uncertainties.

combination [8] of the HERA data.

The relative total, fit, model and parametrisation uncertainties for the gluon PDF are

shown in Fig. 3 (right). The total uncertainties are dominated by the model uncertainties,

with the largest contributions arising from the scale variations in predictions for heavy-

quark hadroproduction. Reduction of these uncertainties would require theoretical calcu-

lations at higher order. The resulting PDFs are available in the LHAPDF format at the

PROSA web-page [41].

5.1 Fit in VFNS

The fit in the VFNS is performed using the APFEL library [42] interfaced to xFitter. The

theoretical predictions for the HERA data are computed using the FONLL-B scheme [43]

with the pole charm and beauty quark masses set to m
pole
c = 1.4 GeV and m

pole
c = 4.5

GeV respectively. However, no VFNS calculation for heavy-quark pp hadroproduction is

interfaced to public QCD analysis tools like xFitter. To use the MNR calculations with the

VFNS, the functionality of the APFEL library is exploited, allowing to choose arbitrary

heavy-quark matching thresholds [44]. These thresholds are set as:

µc = 4.5mpole
c = 6.3 GeV,

µb = 4.5m
pole
b = 20.25 GeV.

(4)

The kinematic requirements pT < 5 GeV and pT < 16 GeV are imposed on the LHC

charm and beauty data, respectively, to ensure that not more than 3 (4) flavours are con-

sidered when calculating predictions for charm (beauty) data when choosing µr = µ f =
√

Q2 +4mQ(mQ)2. The strong coupling constant is set to α
n f=5
s (MZ) = 0.118 [39], while
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Figure 2: The PROSA 2019 PDF in FFNS with their total uncertainties as a function of

x shown at the scale µ2
f = 10 GeV2, compared with the respective distributions from the

PROSA 2015 fit.
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PROSA 2015, shown as a function of x at the scale µ2
f = 10 GeV2. Right panel: relative

total, fit, model and parametrisation uncertainties for the gluon PDF at the scale µ2
f =

10 GeV2.

all other settings are the same as in the FFNS fit. The specific matching thresholds in

Eq. (4) are chosen to ensure that a sufficient amount of the LHC charm and beauty data is

still included in the fit. The choice of the matching thresholds is arbitrary and coincides

with the renormalisation scheme choice of Ref. [44]. The results are proven to remain sta-

ble under variations of 3.1 ≤ µQ/m
pole
Q ≤ 6, whereby the pT cuts in the charm and beauty

cross-section measurements of the LHC are modified accordingly.

In the VFNS variant of the PDF fit, χ2 = 2114 is obtained for ndo f = 1714, indicating a

similar quality of data description as compared to the fit in the FFNS. The resulting PDFs

are available in the LHAPDF format at the PROSA web-site [41]. No PDF uncertainties

are provided with this set.

The performance of the PROSA 2019 VFNS PDFs is tested by computing predic-

tions for the inclusive and multi-jet production in DIS [45–49] and jet [50] and top quark-

antiquark production [51, 52] in pp collisions. The results collected at the PROSA web-

site [41] are found to be similar to those using HERAPDF2.0 PDF.

6 Predictions for prompt atmospheric-neutrino fluxes

Various applications in high-energy astroparticle physics could benefit from accurate PDFs

in the low-x region. One of the most interesting cases is the evaluation of the prompt flux

of atmospheric neutrinos, originating from the semileptonic decays of heavy-flavoured

hadrons produced in the interactions of cosmic rays (CR) with nuclei in the atmosphere.

The prompt atmospheric-neutrino flux represents a relevant background for searches of

highly energetic cosmic neutrinos, which are supposed to be produced in the vicinity of
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far astrophysical sources and in the Galactic Plane [53]. Such searches are conducted

at Very Large Volume Neutrino Telescopes such as ANTARES [54], IceCube [55] and

KM3NeT [56], which register and analyse the features of the track and cascade events in-

duced by the charged-current and neutral-current weak interactions of the impinging neu-

trinos with the water/ice nuclei. To date, no direct measurement of the prompt atmospheric-

neutrino flux is available. Therefore, the most precise theoretical predictions for these

fluxes are needed for the reliable interpretation of the experimental data in order to disen-

tangle the cosmic neutrino component from the atmospheric background [57].

In this paper, the predictions for the prompt atmospheric-neutrino fluxes are calcu-

lated, in general following the method detailed in Ref. [15]. It is assumed, that pA and

AA interactions leading to charm production can be described in terms of pp interactions

(superposition model) in pQCD. For the proton structure description, the PROSA 2019

PDF fit is used among other PDFs. Production and decay of the D±, D0, D̄0, D±
s , Λ±

c in

the atmosphere is considered dominant, since the contribution of other charmed hadrons,

as well as b-flavoured hadrons, amounts to 5-15% of the dominant one [58]. In the compu-

tation of charmed-hadron production cross sections, the renormalisation and factorisation

scales are chosen as µR = µF = µ0 =

√

p2
T +4m2

c , consistent with the scale choice adopted

in the theory predictions of D- and B-meson production at LHCb and ALICE used in the

PDF fit. Note that this scale choice differs from the one of Ref. [15] (PROSA 2015), where

µR = µF =

√

p2
T +m2

c was used, consistent with [9]. While the difference between the two

scale choices reduces with increasing pT , at low pT the present scale choice is motivated

by faster convergence of the perturbative series to NNLO for the total pp → cc̄+X cross

section at the LHC energies, as reported in Ref. [59].

In the present work, the central value of the pole mass of the charm quark, m
pole
c =

1.43 GeV is used, corresponding to mc(mc) = 1.23 GeV in the PDF fit (see Table 2), as

obtained using 1-loop conversion. It is worthwhile to note that this value is somewhat

larger then the one2 used in the PROSA 2015 computation. The uncertainty due to the

choice of the charm quark mass is evaluated by varying the pole mass by ± 0.15 GeV

around the central value.

The PDF uncertainties are evaluated using the respective uncertainty eigenvectors, pro-

vided. The uncertainty related to the choice of the scales is evaluated considering the enve-

lope of the resulting cross section for the assumptions (µR, µF ) = {(1, 1), (0.5, 0.5), (2, 2),

(1, 2), (2, 1), (1, 0.5), (0.5, 1)} (µ0, µ0).

The predictions for the prompt (νµ + ν̄µ) fluxes using PROSA 2019 PDFs are presented

in Fig. 4. Those are obtained by using different hypotheses for the primary CR all-nucleon

flux [60, 61], which are derived from the measured CR all-particle spectrum [62], under

specific assumptions for the CR composition. In particular, these assumptions concern the

proton and nuclear groups included in the derivation of the spectra, their spectral indices,

their rigidity, the number of populations of galactic origin and their origin, the presence or

not of an additional proton population of extragalactic origin, as detailed in the aforemen-

tioned references.

The QCD uncertainties in the resulting prompt (νµ + ν̄µ) fluxes encompass the uncer-

2In Ref. [15], the mc=1.4 GeV was used instead of the mc=1.25 GeV obtained in the PDF fit of Ref. [9].
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tainties in the charm quark mass, PDF and those related to the scale choice, with the latter

being the dominant uncertainty. The quoted scale uncertainty bands are obtained at fixed

PDF, i.e. they do not include the contribution related to scale variation in the PDF fit. The

effect of varying the (µR, µF ) scales when comparing theoretical predictions with experi-

mental data in the PDF fit process, according to the method detailed in Section 4, is instead

accounted for in the PDF uncertainty bands. As expected, the uncertainty on prompt neu-

trino fluxes due to the variation of the charm quark mass value in the constant interval

around its central constant value, decreases with energy: at small Eν, lab this uncertainty

dominates over the PDF uncertainty, whereas at Eν, lab ∼ 107 - 108 GeV, both uncertainty

contributions become similar. At high Eν, lab, the PDF uncertainties are reduced with re-

spect to those of the PROSA 2015 computation.

The different contributions of the PROSA 2019 PDF uncertainty in the flux prediction

are shown in Fig. 5. All the uncertainties increase with increasing Eν, lab, which corre-

sponds to the decreasing x of the target parton, probed.

Prompt neutrinos with energy Eν, lab are mostly produced by air collisions of CR pro-

tons with laboratory energies (10 - 100) times larger. Therefore, neutrinos with energies

of some PeV, i.e. the most energetic neutrinos seen so far by IceCube, are mostly obtained

by collisions up to the LHC centre-of-mass energies. On the other hand, neutrinos with

higher energies can be the result of collisions at energies not yet probed at accelerators. It

is worthwhile to note that the PDF uncertainties for 106 < Eν, lab < 108 GeV are calculated

assuming the PDFs can be extrapolated to x-values lower than the kinematic reach of the

data used in the PDF fit, x ≈ 10−6. To date, there are no further measurements probing

the x-range lower than 10−6 3. However, the computation of the prompt neutrino flux at

the highest Eν, lab energies involves a non-negligible contribution from initial state partons

with x lower than 10−6, as shown in Fig. 4 of [63]. The agreement of the results based

on the PROSA 2019 and the PROSA 2015 PDF sets can be considered as a consistency

test of the extrapolation procedure, assuming no New Physics contribution in the probed

x-range. Furthermore, at the neutrino energies of Eν, lab & 105 GeV, the assumptions on

the CR composition become very important (see Fig. 4, bottom right-hand plot), having an

impact on both the shape and the normalisation for the prompt atmospheric-neutrino flux.

In particular, at the highest Eν, lab, corresponding to the lowest x values, the spread be-

tween central predictions obtained using as input different CR primary all-nucleon spectra

amounts to a factor of O(5-10), that is much larger than the extrapolated PDF uncertainty.

In Fig. 6, predictions for prompt atmospheric-neutrino fluxes using different descrip-

tions of the proton structure, are compared among each other. The predictions using FFNS

PROSA 2019, PROSA 2015 and ABM11 PDFs with corresponding αS(MZ), have been

obtained using as a basis matrix elements for cc̄ hadroproduction at NLO in FFNS (N f =3),

matched, according to the Powheg formalism [64, 65], to the PYTHIA8 Parton Shower

and Hadronisation algorithms [66]4. Each pp collision can produce more than two D-

3We recall that the kinematic formula relating the projectile/target parton x with the pT and y of a pro-

duced heavy-quark with mass mQ in pp → QQ̄ collisions at a laboratory energy Ep is x =

√

p2
T+m2

Q

Ep
e±y

4In this work the PROSA 2019 PDFs are used for the evaluation of the fixed-order cross-sections but

not in the PYTHIA Shower Monte Carlo, where PDFs consistent with the tunes already available are instead
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hadrons, because charm quarks can be produced both in the hard-scattering and during

the parton shower processes. The predictions using PROSA 2019 at high energies are

somewhat lower than those using PROSA 2015 and ABM11 PDFs, due to a somewhat

suppressed gluon at low x. In the same Figure, the predictions obtained in the general-

mass VFNS framework of Ref. [67] (GM-VFNS), using as input VFNS PDFs (CT14nlo

and the PROSA 2019 VFNS) are shown. The NLO QCD corrections are included in the

partonic cross section, whereas the transition from partons to hadrons is described by frag-

mentation functions evolving with the factorisation scale [68], a procedure which resums

logarithms of pT/mc at next-to-leading-logarithmic accuracy. Both central predictions us-

ing the GM-VFNS shown in the plot are compatible among each other, but show shape

differences with respect to the FFNS ones. Part of these differences are related to the dif-

ferent treatment of the transition of partons into hadrons (parton shower + hadronisation

on the one hand, vs. fragmentation functions on the other hand). Also, a different factori-

sation scale is used in the GM-VFNS predictions 5. For comparison, the upper limit on the

prompt neutrino flux obtained in the IceCube analysis [69] of up-going muons from the

northern hemisphere is also shown and is well described by the predictions.

The various predictions shown in Fig. 6 were all obtained under identical assumptions

for all inputs used in the solution of the cascade equations for the evaluation of prompt

neutrino fluxes, except for the explained differences in the evaluation of D-hadron produc-

tion. On the other hand, in Fig. 7 the presented flux prediction using the PROSA 2019

PDFs is compared to those obtained by other groups. The BPL primary CR all-nucleon

spectrum [53] is used as input for this comparison because of its very simple form which

has allowed an easy incorporation of this spectrum in the computation of many different

authors. Although the general methodology for the calculation of prompt neutrino fluxes

is the same, the calculation by different authors are obtained in a completely indepen-

dent way and, thus, at least in principle, might differ in many respects, not only related

to the methodology for the computation of charm hadroproduction, but even for other as-

sumptions in the solution of cascade equations (e.g. the details of the atmospheric model,

of the p-Air total inelastic cross-section and of the proton and hadron regeneration pro-

cesses [59]). Notwithstanding these possible further sources of discrepancies, we observe

that our predictions turn out to be consistent with those by other authors, within uncer-

tainties. Due to this similarity, the experimental collaborations, in many of their works,

limit themselves to consider as input only very few (if not only one) of the theoretical

predictions available. The result of Ref. [70] shows the largest differences with the pre-

sented result due to using the charm cross-section calculation at LO only. The ERS dipole

model prediction [71], that is mostly used by the experimental collaborations in their data

analysis, is also consistent with the prediction of this paper, within uncertainties. The un-

certainties in the ERS prediction are smaller compared to the QCD-based prediction, how-

ever the way of the uncertainty estimate in both calculations can not be directly compared.

Indeed the dipole approach is expected to effectively resum logarithmic contributions of

the form αSln(1/x) in the PDF evolution, a property which could lead to a reduction of

used. Changing PDFs in the Shower Monte Carlo code would require its re-tuning.
5Motivations for the specific µF = µR/2 choice adopted in the GM-VFNS computation are reported in

Ref. [67]
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the PDF uncertainties associated to the target parton at low x, whereas the resummation of

these logarithms is not included in the DGLAP evolution. The uncertainties associated to

the projectile parton distributions in Ref. [71] were estimated by comparing two different

central PDF sets, without considering the PDF uncertainty associated to each of those.

Furthermore, the factorisation scale variation in Ref. [71] is performed in a limited range

of µF= mc, µF=2 mc.

In Fig. 8, the prediction for the prompt neutrino flux based on the superposition model

for both the projectile CR and the target nucleon of the air, obtained using the PROSA

2019 proton PDF set, is compared to the calculation of Ref. [58] which uses nuclear PDFs

to describe the target nucleon (nitrogen) and the proton PDFs for the projectile CR. The

H3p CR all-nucleon spectrum is adopted as an input in our calculation, to be consistent

with the choice of Ref. [58]. In general, nuclear PDF fits are at a less advanced stage of

development with respect to the proton PDF fits, due to the fact that less experimental data

on collisions involving at least one nucleus are available with respect to the proton case,

and that the theory for describing these collisions is also less advanced, with persistent

difficulties in disentangling the different possible sources of cold nuclear matter effects.

Additionally, the study of p-A collisions at the Large Hadron Collider has been performed

by mostly using Pb beams, while the atmosphere involves much lighter nuclei (N, O),

which necessarily requires an important extrapolation. However, at present stage, it is

remarkable to observe that predictions using proton PDFs and the superposition model turn

out to agree with those using nuclear PDFs, at least within present uncertainty. This might

point to the conclusion that the approximation of using proton PDFs and the superposition

model, instead of nuclear PDFs (which, in principle, would be more appropriate because

the air is made by nuclei instead of being made by unbound protons and neutrons) can still

be considered as well justified, at least considering the present status of uncertainties.

7 Summary

In this paper, improved constraints on the parton distributions are presented, as obtained

in a QCD analysis at NLO using DIS and pp collision data. In particular, the recent

measurements of the LHCb and ALICE experiments of hadroproduction of charm and

beauty-flavoured hadrons in different kinematic ranges (forward and central) provide ad-

ditional sensitivity to the gluon distribution on a wide range of x values. The assumptions

on the initial parametrisation of the gluon distribution are investigated, which is impor-

tant for understanding the low-x behaviour of the gluon in the proton. For x < 10−4, the

gluon and sea quark PDFs turn out to be consistent and have smaller uncertainties with

respect to our previous fit (PROSA 2015). The resulting PROSA2019 PDFs are extracted

in FFNS and VFNS and can be used in e.g. high-energy astrophysical applications. In this

paper, they are used to obtain improved predictions for the prompt atmospheric-neutrino

flux. At low x, the gluon distribution of the PROSA 2019 fit is slightly reduced with re-

spect to the earlier PROSA 2015 result. This fact, together with the choice of a charm

quark mass value consistent with the value extracted in the PDF fit, leads to a decrease in

the predicted central prompt neutrino flux at high energies. When considering the uncer-
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tainties, the PROSA 2019 neutrino flux predictions are consistent with the earlier PROSA

results and have significantly improved accuracy. The presented neutrino flux predictions

are also compatible with the calculations based on nuclear PDFs and with the results of

the IceCube experiment.
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