
Performance optimization of the air shower simulation pro-

gram for the Cherenkov Telescope Array

Luisa Arrabito1,∗, Konrad Bernlöhr2, Johan Bregeon1, Gernot Maier3 for the CTA Consor-

tium,

Philippe Langlois4, David Parello4, and Guillaume Revy4

1Laboratoire Univers et Particules, Université de Montpellier Place Eugène Bataillon - CC 72,

CNRS/IN2P3, F-34095 Montpellier, France
2Max-Planck-Institut für Kernphysik, P.O. Box 103980, D-69029 Heidelberg, Germany
3Deutsches Elektronen-Synchrotron, Platanenallee 6, 15738 Zeuthen, Germany
4Université de Perpignan Via Domitia, Digits, Architectures et Logiciels Informatiques, F-66860, Per-

pignan, Université de Montpellier, Laboratoire d’Informatique Robotique, CNRS, France

Abstract. The Cherenkov Telescope Array (CTA), currently under construc-

tion, is the next-generation instrument in the field of very high energy gamma-

ray astronomy. The first data are expected by the end of 2018, while the scien-

tific operations will start in 2022 for a duration of about 30 years. In order to

characterize the instrument response to the Cherenkov light emitted when cos-

mic ray showers develop in the atmosphere, detailed Monte Carlo simulations

will be regularly performed in parallel to CTA operation. The estimated CPU

time associated to these simulations is very high, of the order of 200 millions

HS06 hours per year. Reducing the CPU time devoted to simulations would al-

low either to reduce infrastructure cost or to better cover the large phase space.

In this paper, we focus on the main computing step (70% of the whole CPU

time) implemented in the CORSIKA program, and specifically on the mod-

ule responsible for the propagation of Cherenkov photons in the atmosphere.

We present our preliminary studies about different options of code optimiza-

tion, with a particular focus on vectorization facilities (SIMD instructions). Our

proposals take care, as automatically as possible, of the hardware portability

constraints introduced by the grid computing environment that hosts these sim-

ulations. Performance evaluation in terms of running-time and accuracy is pro-

vided.

1 Introduction

The Cherenkov Telescope Array Observatory [1] aims at building and operating the world

largest instrument to observe the very high energy gamma-ray sky. The instrument is be-

ing built as two arrays of telescopes (one per Earth hemisphere) exploiting the imaging

Cherenkov technique to reconstruct the nature, direction and energy of cosmic-ray particles

interacting in the atmosphere. High energy gamma-rays from the cosmos interact with the

atoms of the atmosphere and convert into electron-positron pairs that then generate a large

electromagnetic shower. Electrons and positrons, that go faster than light in the air, cause

∗e-mail: arrabito@in2p3.fr

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 214, 05041 (2019) https://doi.org/10.1051/epjconf/201921405041

CHEP 2018



the emission of Cherenkov light (mostly optical blue light), which propagates through the

atmosphere to the ground, where it is collected by CTA telescopes. Images of the showers,

produced through the Cherenkov light cones, and acquired in the telescope camera are used

to reconstruct the properties of the incident particle.

The instrument response functions (IRFs) are then used to go from a list of events to

the estimation of the properties of gamma-ray sources. In this scheme, IRFs are produced

through Monte Carlo simulations of the whole process: atmospheric air shower, production

and propagation of the Cherenkov light, optical telescope response and camera image acqui-

sition. Given the size of the CTA arrays (several km2), the energy range (tens of GeV up to

300 TeV) and the very large parameter phase space, producing accurate IRFs requires large

volume of simulations. These simulations are, as of today, mostly run on the EGI (European

Grid Initiative) grid resources, that are gracefully made available to the CTA Consortium [2].

Up to 10000 CPU cores can be available at a time, and more than 100 millions HS06 CPU

hours have been consumed each year in the past 5 years. In this context, the optimization

of the simulation software has multiple purposes: faster production, higher statistics, better

coverage of the phase space and eventually cost reductions when CTA is in production phase.

Given the large amount of CPU consumed every year for CTA simulations, even a modest

improvement of the code performances would allow to save several millions of CPU hours. In

this paper we present our first performance optimization of the air shower simulation software

used in CTA, called CORSIKA, which is described in Section 2. In Section 3, we present the

results of the program profiling and in Section 4 the work on the optimization.

2 Corsika, an air shower simulation program

CORSIKA [3], for COsmic Ray SImulations for KAscade, is a program for detailed sim-

ulation of extensive air showers initiated by high energy cosmic ray particles. Originally

developed at KIT (Karlsruhe Institute for Technology) in the early 90’s for the KASCADE

experiment, CORSIKA has been rapidly adapted by other experiments for their specific use

case. Nowadays, it is the reference air shower simulation software for all cosmic-ray, gamma-

ray and neutrino astronomy experiments (e.g. Auger, CTA, IceCube, etc.). For a given event,

basically, the program tracks the initial particle until its first interaction in the atmosphere,

then handles the development of the electromagnetic and hadronic cascades, particle energy

losses, interaction processes and the production of the multiple secondary particles that are

then propagated until they decay/interact or go below a given energy threshold, or reach the

ground.

CORSIKA consists of a single main source code, written in Fortran 77, handling the

description of the atmosphere, the stack of particles to propagate and the so-called particle

transport. Physics interactions are handled in customized external packages. For the case of

Cherenkov astronomy, an additional IACT/atmo package [4], written in C, implements the

geometry of 3D arrays of Cherenkov telescopes, an improved description of the atmosphere

(allowing the use of external atmospheric models) and the photon propagation through the

atmosphere. In total CORSIKA consists of more than 105 lines of code. The description and

response of the detectors are usually implemented in a separated software package.

2.1 The CTA use case

As explained in the introduction, in CTA we are interested in measuring the Cherenkov light

produced within electromagnetic air showers. Two steps must then be considered: first the

generation of Cherenkov photons, second the propagation of these photons to the ground.

2

EPJ Web of Conferences 214, 05041 (2019) https://doi.org/10.1051/epjconf/201921405041

CHEP 2018



The generation of Cherenkov photons is described by equation 1:

d2N

dxdλ
=

2παz2

λ2

(

1 −
1

β2n2(λ)

)

(1)

where N is the number of photons per unit length of particle path and per unit of wavelength

λ, z the charge of the particle, α the fine structure constant, n the refraction index and β the

ratio between particle and light speed. While the energy loss of electrons and positrons is

both small and smooth in the atmosphere, the production of Cherenkov light changes rapidly

with the refraction index. This implies that to get a good description of the Cherenkov light

production, small enough steps in the atmosphere are mandatory.

At high energies air showers are composed of hundred of thousands of particles, and even

more Cherenkov photons are produced at each step, each of which must be propagated to the

ground. The propagation of light through the atmosphere is a very intensive computationally

process, indeed for each photon the air refraction index profile must be computed and applied

through an interpolation process of external atmospheric tables.

Cherenkov production is implemented in a dedicated subroutine (cerenk) of the COR-

SIKA main program, while the photon propagation is handled in the raybnd function of the

IACT/atmo package. Particle tracks are subdivided into several steps and for each step, the

number of emitted Cherenkov photons is calculated from equation 1 within the cerenk sub-

routine. In order to reduce the computing time of photon propagation, all the computations

are applied to bunches of typically 5 photons rather than to individual photons. Particle steps

are further subdivided into sub-steps so that a single photon bunch is emitted at each sub-step.

At each sub-step iteration the raybnd function is called to calculate the bending of the photon

bunch due to the refraction in the atmosphere and its propagation toward the ground. Finally,

the coordinates of the photon bunches intersecting the telescope geometry are recorded and

saved in the CORSIKA output (telout function in IACT/atmo).

3 Corsika profiling

Before starting any optimization work on CORSIKA performances, we have performed a

code profiling to identify which parts of the program are the most computationally intensive,

using the Linux perf tool1. The profiling was executed on a dedicated server (running Cen-

tOS 7.4.1708 on a x86_64 Intel Xeon E5-2650 at 2.20 GHz) using a set of standard input

parameters, as those used in the official CTA productions. The program execution duration is

controlled by varying the number of generated showers. After having checked the stability of

the profiling results for different run durations, we have set to 1000 the number of simulated

showers, which for the chosen set of input parameters takes about 5 minutes.

Linux perf is an a event-based sampling tool. As sampling event, we have used the cycles

event with a sampling frequency of 99 Hz. In order to easily visualize the profiling results, we

have processed the sampled data with the Flame Graph tool2. The obtained profile is shown

in Figure 1, where each box corresponds to a particular function or subroutine. The width

of the boxes is proportional to the CPU spent in that function. The hierarchy of the function

calls is also represented, each box having its parent function just below.

In more detail, Flame Graph reports 82% of the total CPU as consumed by the cerenk sub-

routine, of which about 50% is spent in the raybnd function, which we recall is responsible

for the photon propagation through the atmosphere. These results confirm that photon propa-

gation is one the most CPU intensive parts of CORSIKA. As explained in Section 2.1, raybnd

1https://perf.wiki.kernel.org/index.php/Main_Page
2http://www.brendangregg.com/flamegraphs.html

3

EPJ Web of Conferences 214, 05041 (2019) https://doi.org/10.1051/epjconf/201921405041

CHEP 2018







the transformed code exposes some vectorization possibilities for calls to the exp function,

which is one of the most frequently called mathematical functions as shown by the profiling

(cf. Section 3). Our second transformation thus consisted in applying a vectorized exp to a

selected portion of the program, where 2 or 3 subsequent calls to exp could be easily grouped

into vectors.

For this purpose, we have relied on external vectorized mathematical libraries. Among

the various available, we have tested the SIMD vector libm [6] and the CERN’s VDT [7]

library. The main advantage of these two libraries with respect to others (i.e. Intel’s SVML6,

AMD’s libm7), is that they are open source, fully written in high-level languages (C and C++)

and hence portable across systems. Another library we may consider in future is the libmvec8

recently added to GNU glibc to support auto-vectorization in gcc. It is also open source, even

if not portable on all architectures.

The speed-up achievable with the two tested libraries depends on the considered func-

tion. In the case of exp, the SIMD vector libm announces a speed-up of a factor 4, while

VDT library reports an interesting 77 speed-up factor (for SIMD vectors of length 4). These

differences may be explained by the fact that the SIMD vector libm certifies a certain level

of accuracy, while there is no guarantee for VDT. Since performance and accuracy are in-

timately related, we plan to carry out a detailed study to determine the minimum required

accuracy in air shower simulations. A similar study [7] has proven that typical High Energy

Physics (HEP) applications do not require the high degree of accuracy, which is commonly

provided by standard mathematical libraries [8]. The performance result obtained after our

second transformation is an overall speed-up of 1.16 for both the tested libraries. Regard-

ing the accuracy, we verified that we have obtained strictly identical numerical results on the

output physics quantities with respect to the reference version.

Encouraged by these results, we have then extended the vectorization to other mathemat-

ical functions within the IACT/atmo module. This, however required a slightly larger code

rewriting, such as the unrolling of the loop over the particle sub-steps (cf. Section 2.1) in

the cerenk subroutine. This third transformation allowed us to apply mathematical vector li-

braries also to trigonometric functions (sin, cos and asin) mainly used for the refraction angle

calculation and the photon trajectory projection. The obtained speed-up thus increased to a

value of 1.20. More details about the three transformations just discussed can be found in [5].

Finally, in order to apply vector operations also to arithmetic expressions, we have tested

different high-level libraries, which provide an abstraction of low level SIMD instructions.

Among them we mention: bSIMD9, Vc [9], UME (Unified Multicore Environment) [10],

xsimd10. In our preliminary non-exhaustive evaluation, we have considered the portability,

the support of the most common vector types and operations for different instruction sets

(SSE4, AVX, AVX2, AVX-512) as well as the support of vectorized mathematical functions.

We found that bSIMD proposes a proprietary and a public version, however it is not clear

which functionalities will be supported in the public version. Vc is an open source project

widely used within the HEP community. It is the backend of the VecCore library11, but it

does not support mathematical functions. UME is a similar project developed at CERN. It

has the advantage over Vc to support AVX-512 instruction set, but with apparently lower

overall performances [11]. Finally, we did not test yet xsimd, an open source project, which

6https://software.intel.com/en-us/node/583201
7http://developer.amd.com/tools-and-sdks/archive/libm/
8https://sourceware.org/glibc/wiki/
9https://developer.numscale.com/bsimd/documentation/v1.17.6.0/

10https://github.com/QuantStack/xsimd
11https://github.com/root-project/veccore

6

EPJ Web of Conferences 214, 05041 (2019) https://doi.org/10.1051/epjconf/201921405041

CHEP 2018



Table 1. Speed-up obtained with automatic and manual transformations of CORSIKA. The reported

speed-up is the cumulated value after each transformation. For each version of the program, the

accuracy has been checked by comparing the output numerical values with those obtained with a

CORSIKA reference version.

Transformation Speed-up Comments

Automatic transformation with gcc 1.03 Using special optimization options

Manual refactoring 1.09 Eliminating redundant calls to binary

search in interpolation process

First manual vectorization 1.14 Using vectorized exp

Extended manual vectorization 1.20 Grouping photon bunches by 4 and using

vectorized mathematical functions

seems to cover all the desired functionalities. Our future plan is to conduct a more detailed

evaluation of all these products for their later application to CORSIKA.

5 Perspectives

In the optimization work presented in Section 4.2, we have restricted ourselves to the

Cherenkov propagation module, where we have applied vectorized mathematical functions

only to a few selected instructions. The next step will consist in extending the vectorization

to a number of arithmetic expressions we have already identified both in the Cherenkov prop-

agation and in the Cherenkov production modules. Moreover, the implementation of some

conditional expressions is non optimal with respect to compiler branch prediction. However,

since the Cherenkov production module is written in Fortran (cerenk subroutine), it is not

possible to rely on one of the above mentioned high-level libraries for vectorization (cf. Sec-

tion 4.2), so that we envisage to fully reimplement it as an external C++ module. A detailed

study of the memory access patterns will most likely give us additional hints about further

optimization opportunities.

For the longer term, we plan to consider a complementary approach for optimization,

which consists in reducing the format of certain variables (i.e. from double precision to single

precision), still preserving the desired numerical accuracy of the output physics quantities.

Indeed, format reduction can improve the overall performances of a program and has an even

more direct impact on the vectorized portions. For this purpose, we will test one or more of

the available tools for the identification of the candidate variables for reduction [12] [13].

Finally, another area of improvement concerns the algorithm used for the atmospheric

tables interpolation applied in several places (cf. Section 2.1). Atmospheric tables contain

the values of various physics quantities (air density, thickness, refraction index, etc.) at given

altitudes. The goal of the interpolation procedure is to calculate the values of these quantities

at intermediate altitudes (along the particle propagation path). Since the atmospheric profiles

are almost exponential, a linear interpolation is performed between log values. The drawback

of this simple approach is that it implies massive calls to exp to later retrieve the interpolated

values. In order to dramatically reduce the number of calls to exp, we plan to evaluate ad-hoc

interpolation schemes that replace linear interpolation of the log values.

6 Conclusions

In this work, we have demonstrated that vectorization techniques can be successfully em-

ployed in the CORSIKA air shower simulation program. Focusing on one of the most CPU

7

EPJ Web of Conferences 214, 05041 (2019) https://doi.org/10.1051/epjconf/201921405041

CHEP 2018



consuming parts of the program, i.e. the Cherenkov propagation module, we have identified,

applied and evaluated successive manual transformations summarized in Table 1. The highest

speed-up (1.20) has been obtained by applying 3 consecutive transformations, where the last

step consisted in grouping photon bunches by 4 in the Cherenkov production module and ap-

plying vectorized mathematical functions in the photon propagation module. If we consider

that a typical Monte Carlo campaign takes about 100 millions of CPU hours, a performance

gain of 1.20 potentially allows a reduction of 17 millions CPU hours. Given the limited scope

of the program transformations performed so far, we think that further optimizations should

be achievable. In Section 5, we have presented several optimization options, mostly based

on vectorization, precision reduction and optimization of the interpolation algorithm. Finally

this work will serve as a basis for the application of vectorization techniques in the context of

the recently started project of Next Generation Corsika [14].

We gratefully acknowledge financial support from the agencies and organizations listed

here: http://www.cta-observatory.org/consortium_acknowledgments.

References

[1] Actis M. et al. (CTA Consortium), Design concepts for the Cherenkov Telescope Array

CTA: an advanced facility for ground-based high-energy gamma-ray astronomy, Experi-

mental Astronomy 32, 193-316 (2011)

[2] Arrabito L. et al., The Cherenkov Telescope Array production system for Monte Carlo

simulations and analysis, Journal of Physics Conference Series, 898, 052013 (2017)

[3] Heck D., Knapp J., Capdevielle J. N., Schatz G., Thouw, CORSIKA: a Monte Carlo code

to simulate extensive air showers, Tech. Rep. FZKA-6019, Forschungszentrum Karlsruhe.

https://publikationen.bibliothek.kit.edu/270043064 (1998)

[4] Bernlöhr K., Simulation of imaging atmospheric Cherenkov telescopes with CORSIKA

and sim_telarray, Astroparticle Physics 30, 149-158 (2008)

[5] https://gite.lirmm.fr/cta-optimization-group/cta-optimization-project/wikis

[6] Lauter C., A new open-source SIMD vector libm fully implemented with high-level scalar

C, 50th Asilomar Conference on Signals, Systems and Computers, Nov 2016, Pacific

Grove, United States (2016)

[7] Piparo D. et al., Speeding up hep experiment software with a library of fast and auto-

vectorisable mathematical functions, Journal of Physics: Conference Series, 513, 052027

(2014)

[8] IEEE Computer Society, IEEE Standard for Floating-Point Arithmetic. IEEE Standard

754-2008 (2008)

[9] M. Kretz, Extending C++ for Explicit Data-Parallel Programming via SIMD Vector

Types, Goethe University Frankfurt, Dissertation (2015)

[10] Karpinski P., McDonald J., An Embedded Domain Specific Language for General Pur-

pose Vectorization, Kunkel J., Yokota R., Taufer M., Shalf J. (eds) High Performance Com-

puting. ISC High Performance 2017. Lecture Notes in Computer Science, 10524 Springer,

Cham (2017)

[11] Moneta L. et al., Vectorization of ROOT Mathematical Libraries, CHEP Parallel 372

these proceedings (2018)

[12] C. Rubio-Gonzalez, C. Nguyen, H. D. Nguyen, J. Demmel, W. Kahan, K. Sen, D. H.

Bailey, C. Iancu, and D. Hough, Precimonious: tuning assistant for floating-point preci-

sion, SC ’13, 1-12 (2013)

8

EPJ Web of Conferences 214, 05041 (2019) https://doi.org/10.1051/epjconf/201921405041

CHEP 2018



[13] C. Rubio-Gonzalez, C. Nguyen, B. Mehne, K. Sen, J. Demmel, W. Kahan, C. Iancu,

W. Lavrijsen, D. H. Bailey, and D. Hough, Floating-point precision tuning using Blame

analysis, ICSE 2016, 1074-1085 (2016)

[14] https://arxiv.org/abs/1808.08226

9

EPJ Web of Conferences 214, 05041 (2019) https://doi.org/10.1051/epjconf/201921405041

CHEP 2018


