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ABSTRACT

We provide a pathway to compact ultrabright light sources, based on ultrabright, high energy electron beams
emerging from a combination of plasma wakefield acceleration and plasma photocathodes. While plasma ac-
celeration is known to produce accelerating fields three or four orders of magnitude larger than conventional
accelerators, the plasma photocathode allows production of electron beams three or four orders of magnitude
brighter than conventional, and thus is suitable to unleash the full potential of plasma accelerators. In particu-
lar, this is the case for various types of light sources, which profit enormously from an increased electron beam
brightness. Building on the recent first experimental demonstration of the plasma photocathode, in this work
we discuss the prospects of plasma photocathodes for key photon source approaches such as x-ray free-electron
lasers, betatron radiation, ion-channel lasers and inverse Compton scattering.
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1. INTRODUCTION

Electron beam-based light sources such as synchrotrons, Free-Electron Lasers (FELs), Inverse Compton Scatter-
ing (ICS) systems or Ion-Channel Lasers (ICLs) rely on high energy and high quality of the driving electron beam
population. The electron beam needs to be compact in transverse and longitudinal phase space in order to radiate
photons coherently when forced on undulating trajectories by an alternating magnetic field array in an undulator
(FEL), by a laser pulse (ICS) or by plasma (betatron oscillations/ICL). They also need high energies in order
to emit photons in the desired X-ray or γ-ray range. Plasma accelerators, both laser and particle-beam driven,
produce accelerating fields which are three to four orders of magnitude larger than in conventional, metallic
cavity and radiofrequency-based accelerator structures. Multi-GeV-scale, femtosecond-scale duration and kA-
scale current electron bunches can today be routinely produced and accelerated by the large electric fields inside
plasma waves driven either by a laser or charged particle beam, which expels plasma electrons transversely and
excites a co-moving plasma accelerator cavity. The availability of such electron beams has nurtured their use
as light sources; in fact, the construction and application of plasma-based light sources is a major R&D-driver.
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However, likewise crucial are production of low energy spread and emittance electron beams to realize compact
transverse and longitudinal phase spaces, respectively. Regarding energy spread, the large electric field gradient
inside a plasma cavity, ranging e.g. from +50 GV/m at the front of a 100µm-scale plasma bubble/blowout
structure to -50 GV/m at its end, implies that even for injected electron beams of few fs duration, the head
of the beam will see substantially different accelerating fields than the tail. This leads to a correlated energy
chirp and thus increased longitudinal phase space, which can be a showstopper for achieving lasing in an FEL.
With respect to emittance, the fact that the plasma wave driver beam kicks out plasma electrons transversely,
and their re-attraction by immobile plasma ions – the very essence of plasma accelerators – in turn means that
the transverse momentum of these plasma electrons, which may be captured in the plasma wave in conventional
injection methods, is large. This sets limits on the compactness of the transverse phase space and emittance of
electron beams produced by such conventional injection methods. Likewise, similar to the energy spread consid-
erations, a too large emittance will not allow achieving lasing in an FEL at given electron energy. The key beam
parameters, current, energy spread, and emittance are combined in the crucial composite parameter brightness,
which scales linearly with the current, inversely with the emittance in each plane and the energy spread. The
central importance of brightness e.g. for free-electron-lasers1 is well known, because, for example, it defines the
gain of the photon field in an FEL. Reduction of emittance and energy spread are therefore top priorities in
the development of plasma-based accelerators, as they currently present a roadblock for the full exploitation of
plasma accelerators for light sources.

2. THE PLASMA PHOTOCATHODE: PRODUCTION OF ULTRAHIGH
BRIGHTNESS ELECTRON BEAMS WITH PLASMA WAKEFIELD

ACCELERATORS

The key requirements discussed in the introductory section are very challenging to meet, however they are not
unsurmountable. Electron beam-driven plasma wakefield acceleration (PWFA) has evolved into an increasingly
attractive approach and is now considered as feasible alternative for next generation particle accelerators. In
addition to the enormous accelerating gradients, enabling tens of GeV energy gain per metre2,3 in a dephasing-
free fashion and thus providing a near-ideal plasma accelerator environment, a transformative thrust is added
by the invention and development of plasma photocathodes. In this approach, also known as Trojan Horse
technique, one relies on laser-based release of cold electrons instead of injection of hot, thermal plasma electrons.

The plasma photocathode4,5 is an advanced plasma-based electron injector which allows releasing cold elec-
trons directly inside a non-linear plasma wave. In principle, it can also be realized in Laser Wakefield Acceleration
(LWFA) but manifests its advantages most pronounced in a beam-driven plasma wakefield accelerator. This is
because of the favorable properties of PWFA, such as dephasing-free and dark current-free acceleration in a
comparably robust acceleration cavity with fixed phase relation over a long acceleration distance, allowing multi-
GeV energy gain in a single stage,2,3 but characteristically also because unlike with LWFA, the peak electric
fields of the PWFA driver beam are comparable to the magnitude (GV/m-scale) of the accelerating and fo-
cusing fields of the plasma wave. In contrast, state-of-the-art LWFA requires laser pulse drivers with electric
peak fields many orders of magnitude larger (TV/m scale), which exceeds the tunneling ionization threshold of
elements by orders of magnitude and thus imposes significant residual transverse momentum on plasma elec-
trons in its path. In the Trojan Horse method, the comparably low peak electric fields of the PWFA driver
can be below tunneling ionization thresholds and thus allow subsequent exploitation of laser-gated tunneling
ionization just above the electric field thresholds for controlled injection of high quality electron beams. The
plasma photocathode is realized as follows: a relativistic electron driver beam excites a non-linear plasma wave
with its typical ”blowout”-like structure in a (laser-)preionized plasma such as hydrogen. A co-propagating,
spatiotemporally aligned and synchronized laser pulse is then focused inside this blowout structure such that the
laser pulse intensity only around the focal point exceeds the tunnel ionisation threshold of a hitherto non-ionized
component, for example neutral background gas such as helium. The laser pulse then liberates helium electrons
localized directly inside the blowout structure, where the GV/m-scale accelerating PWFA gradient accelerates
those electrons rapidly to relativistic energies, thus counter-acting the space charge field of the injected electrons
and preventing transverse phase space dilatation. Because of the relatively low intensities and vanishing pon-
deromotive potential of the plasma photocathode laser pulse, the transverse residual momenta of the released



electrons are negligible. Localized injection in conjunction with negligible transverse residual momentum results
in extremely compact transverse phase space volume of produced electron populations, reflected by nm-rad-scale
normalized emittances ǫn. This is a key advantage of this method, whereas tunneling ionization based methods in
conventional LWFA systems require much higher laser intensities. This raises emittance to values typically of the
order of micrometer rad (µrad), a similar level as obtainable for classical metallic cavity-based systems and three
orders of magnitude larger than by the plasma photocathode injector. Combined with the intrinsic compression
of electron populations released in plasma-based accelerators to fs-duration and associated kA-scale peak cur-
rents Ip, such ultralow emittance in both transverse planes yields ultrahigh 5D-brightness B5D = 2Ip/ǫn,xǫn,y,
exceeding those obtainable from plasma-based and conventional accelerators by approximately up to six orders
of magnitude.6 Furthermore, in contrast to conventional methods of injection, the injection process in Trojan
Horse is decoupled from the acceleration structure, which enables tuneability and controllability of the injected
”designer” electron beams (”witness beams”) by tuning the plasma photocathode laser parameters. This ap-
proach therefore addresses the challenge of electron beam quality enhancement in plasma-based accelerators as
the above mentioned central obstacle towards potential light source applications e.g. via X-ray free-electron
lasers (X-FEL), inverse-Compton scattering and ion-channel lasers. Recently, an experimental breakthrough has
been achieved by the E-210: Trojan Horse collaboration at the Stanford Linear Accelerator (SLAC) Facility
for Advanced Accelerator Experimental Tests (FACET), by demonstrating the feasibility of the plasma photo-
cathode method for the first time.7 This breakthrough, combined with the development of novel conceptual
techniques for energy chirp compensation are very encouraging milestones towards laboratory-scale ultra-high
brightness electron beam accelerators. The combination of ultra-high energy gain and ultra-high beam quality
thus constitute game-changing advances which may allow, for example, driving future light sources with unique
features, and other applications such as in high energy physics.

2.1 Generation of Ultrahigh 6D Brightness Electron Beams

Ultralow emittance, and correspondingly ultrahigh 5D brightness are key parameters for many applications
utilizing particle accelerators. In addition, the energy spread of the produced electron witness beams is a crucially
and equally important parameter. The enormous ”sawtooth”-like shaped accelerating electric field gradient in
plasma-based accelerators comes at the price of an intrinsic by-product, namely the inherent correlated energy
spread (energy chirp) causing a time-energy correlation in the longitudinal phase space of a witness beam
as shown in Fig. 1 (left). The energy chirp arises because the electric field at the head of the accelerated
witness beam is substantially lower than at the tail, and consequently, the witness beam head has lower energy
than the witness beam tail. This leads to the negative energy chirp typical to plasma wakefield accelerators.
This deep-seated characteristic is generally detrimental as it can compromise or even prevent key applications
such as X-FEL. Further, already the extraction of such chirped witness beams from the plasma accelerator
stage will be more difficult, and electron beam transport optimization and matching may lead to significant
quality degradation due to chromatic aberration effects.8,9 The energy spread and chirp is indeed an important
bottleneck and compensation (”dechirping”) techniques are of paramount importance for the application of
plasma-based accelerators.

A recent conceptual breakthrough10 suggests that the energy chirp of a witness beam can be removed in a
single plasma accelerator stage, without compromising the witness beam quality in terms of emittance, by means
of tailored beam-loading11,12 of a second high-charge electron beam which we call ”escort beam”. In proof-
of-concept 3D Particle-In-Cell (PIC) simulations10 performed with VSim,13 a FACET-II-like14 10GeV-energy
electron beam sets up a typical dephasing-free PWFA stage in a preionized plasma channel of nominal density
n0 =1.1 × 1017 cm−3 corresponding to a plasma wavelength of λp(µm) = 2πc × 103(m0ε0/e

2n0(cm
−3))1/2 ≈

100µm, where c is the speed-of-light, m0 is the electron mass, e and ε0 are the electron charge and the electric
constant, respectively. Its charge density nd = Nd/[(2π)

3/2σzσ
2
r ] is optimized such that the dimensionless beam

charge15 Q̃ = (2π)3/2(nd/n0)σzσ
2
rk

3
p exceeds the blowout condition Q̃ > 1, where Nd is the total number of

electrons in the driver beam, σz and σr are the driver beam longitudinal and radial dimensions, respectively,
and kp = 2π/λp is the inverse plasma skin depth. At the same time, it is ensured that the PWFA-stage can
be operated dark-current-free16 by avoiding unwanted hot spots within the effective trapping volume. Once the
blowout structure is formed, a co-propagating, low intensity plasma photocathode laser pulse releases electrons
with negligible transverse momentum directly within the blowout structure. The electric field accelerates the



witness beam quickly to relativistic energies Wmean in few millimetres, see Fig. 2 (solid black line). Because the
space charge force decreases with γ−2, where γ is the relativistic Lorentz factor associated with the beam energy,
space charge induced emittance degradation effects are quickly suppressed. The initial nm rad-scale electron
beam emittance produced by the plasma photocathode release process therefore can be largely preserved, which
in turn allows production of electron beams of very high quality and energy. At a later stage of witness beam
acceleration, for the same γ−2-scaling, its emittance is further ”relativistically stabilized”. Now, a second electron
beam population can be released, for example by a second plasma photocathode, which liberates a high charge
density escort beam nb such that it spatially overlaps with the witness beam when trapped. The charge density
of the escort beam shall be sufficiently high to overload the wakefield at the witness beam trapping position,
thus flipping its local gradient. Now, the witness beam head is accelerated at a higher rate than the witness
beam tail, as predicted by a simplified 1D cold-fluid model in Fig. 1 (right). This reversed accelerating gradient
induces a counter-clockwise rotation of the longitudinal phase space of the witness beam and consequently, the
energy spread ∆Wrms decreases with the propagation distance. Fig. 2 (left) depicts the evolution of the energy
spread ∆Wrms during the acceleration, characterized by a decreasing energy spread after the escort beam is
released. The witness beam energy spread is minimized to ∆Wrms,min = 2.56MeV at the acceleration distance
zacc = 2.4 cm at a mean energy of Wmean ≈ 774MeV. After this point, the energy spread increases because the
witness beams starts accumulating positive energy chirp.

Figure 1. Semi-analytical solution of the electrostatic wake potential exited by an electron beam driver in a 1D cold
fluid model. A Gaussian charge distribution driver beam (red solid line) propagates to the right and excites a parabolic
electrostatic wake potential (black dashed line) resulting in a saw-tooth shaped plasma wakefield (solid blue line). In the
left panel, a low charge witness beam (purple) is loaded into the back of the wake and accumulates the typical negative
energy chirp during its acceleration, indicated by the longitudinal phase space inset (purple). In the right panel, a high
charge escort beam (solid green line) is additionally trapped at the witness beam position and overloads the wakefield such
that the witness beam head is accelerated stronger than its tail, which manifests in counter-clockwise longitudinal phase
space rotation. The black dashed line shows the electrostatic potential which gives rise to the longitudinal wakefield.
Data adapted from Ref. 10.

Fig. 2 (right) shows the corresponding witness beam longitudinal phase space at the optimum dechirping
point with key slice parameters along the bunch. Because the energy chirp is removed completely from head to
tail, the projected relative energy spread of ∆Wrms,min/Wmean ≈ 0.3% is very close to the counterpart mean
slice energy spread (∆Wrms,min/Wmean)slice ≈ 0.26%. The normalized emittance of the witness beam popula-
tion is unaffected by the dechirping method, hence, the ultrahigh 5D-brightness combined with the minimized
energy spread leads to unprecedented ultrahigh 6D-brightness beam B6D = B5D/0.1%∆Wrms,min/Wmean ≈
5.5× 1017 A/m−2/0.1%bw. The remaining residual energy spread ∆Wrms,min ≃ ∆Wres,max obtained in this sim-
ulation can be further reduced by decreasing the ionisation volume with smaller laser spot sizes and operation
at lower plasma wave medium densities n0, because in the first order approximation the absolute energy spread
scales as ∆Wres,max ∝ w2

0

√
n0 ;10 this scaling has been confirmed in Ref. 17. Although computationally more

costly to simulate, experimentally such operation at lower plasma densities is in many ways easier as it naturally
improves the spatiotemporal precision of injection. At higher witness beam energies, the relative energy spread
will be further reduced because of the adiabatic damping with the energy ∆Wres,max/Wmean. This can be simply





plasma photocathode and tailored beam loading for low energy spreads is thus capable to produce sub-micron
emittance values in both planes, the lowest emittance values and highest 6D brightness values are obtainable from
the escort beam method. We foresee the single-bunch beam-loading plasma photocathode as an intermediate
regime and simplified pathway to be realized e.g. as a milestone for plasma-based hard X-ray FEL’s.

2.2 E210: Experimental Demonstration of Plasma Phothocathode PWFA at SLAC
FACET

The Stanford Linear Accelerator Center hosted a dedicated test facility for novel and advanced plasma wake-
field acceleration experiments called FACET. At SLAC, pioneering R&D work has been conducted in advanced
plasma accelerator concepts since the 1990’s with many experimental breakthroughs in PWFA. These break-
throughs include, for example, demonstration of multi-GeV energy gain in PWFA,2 high efficiency acceleration
of an electron bunch in PWFA,3 acceleration of positrons in a self-loaded PWFA,23 and positron acceleration
in a hollow plasma channel.24 In 2011/12, the ”E-210: Trojan Horse PWFA” undertaking was approved as a
proof-of-principle experiment for FACET, aiming to explore and demonstrate the feasibility of the plasma pho-
tocathode concept. SLAC FACET is an ideal test facility for PWFA, as the accelerator provides high current
electron beams, suitable for driving strong, non-linear plasma wakes. The combination of suitable experimental
environment and the added installation of a synchronized laser system for preionization and plasma photo-
cathode capability, PWFA expertise at FACET, and extensive in-depth theoretical and experimental work by
academics and researchers from a multi-national collaboration mainly from Europe (University of Strathclyde,
University of Hamburg, DESY, University of Oslo) and the US (RadiaBeam Technologies, UCLA, RadiaSoft,
University of Colorado Boulder, University of Texas at Austin, Tech-X) eventually allowed to unlock the plasma
photocathode injection scheme experimentally.7,14,25 This was realized in 90◦ geometry between electron driver
beam axis and plasma photocathode laser pulse for reasons described below. This achievement marks a major
milestone towards producing ultrahigh brightness electron beams in PWFA, has triggered the co-development of
many auxiliary techniques e.g. for spatiotemporal alignment and synchronization of high-intensity beams and
has comprehensively increased the confidence in feasibility and potential of the scheme.

The path towards successful demonstration of the plasma photocathode required the implementation and
commissioning of various novel capabilities at FACET. For example, previous PWFA experiments at FACET
utilized alkali vapour ovens where lithium or rubidium were self-ionized by the electric field of the driver electron
beam to set up the plasma cavity. However, for more stable and efficient acceleration and plasma photocathode
realization, a wide laser-preionized plasma channel based on more manageable media (e.g. noble gases) than
aggressive alkali metals, is desirable, and the plasma photocathode injection naturally also requires an ionizing
laser pulse for injection. A 10-TW scale Ti:Sapphire laser system was therefore installed and synchronized to
the FACET linear accelerator for preionization, to power the plasma photocathode and for various diagnostics.
A long plasma channel was attained by selectively ionizing hydrogen in the interaction chamber, flooded by
a multi-component gas mixture consisting of hydrogen and helium, making use of the high-power fraction of
the laser pulse. An axicon/axilens optic was implemented and has been tuned such that it tunnel ionized the
hydrogen fraction of the gas to produce the plasma channel, while keeping the ambient background helium with
its substantially higher ionization threshold in neutral state, such that it could be used for the injection laser
pulse. The combination of hydrogen and helium is comparably straightforward to manage experimentally, and a
key advantage of a flooded chamber approach is the easy optical access for diagnostics and injection. Ideally, the
laser-preionized plasma channel should be wide enough to reliably sustain the blowout structure without plasma
channel boundary effects for a stable and robust acceleration. Note that in ion-channel laser applications (see
Sec. 3.3), it may be desirable to locally narrow down the the channel width in order to switch to the ”wakeless”
regime where acceleration of the witness beam is switched off. The huge electron driver beam density at FACET
in excess of 10 kA is easily sufficient to support trapping of electrons released by laser triggered injection inside
the plasma cavity even at low plasma wavelengths. However, the preionized plasma channel width was limited as
result of the employed laser system, restrictions of spatial footprint of the setup and employed optics. Therefore,
to fit the plasma cavity into the comparably thin plasma channel with a width of order of 100 µm, comparably
large plasma densities (n0 ≈ 1017 cm−3) had to be used. At high plasma and large driver electron bunch densities,
the electric fields around the drive beam as well as at the wakefield vertex are large. Only a small range of plasma
densities permitted sufficiently large plasma cavities on the one hand, and avoidance of hot spots which would



lead to driver beam or wakefield ionization of helium16 on the other hand, or at least to suppress trapping of
such hot spot-generated sources of dark current. Operation at longer plasma wavelengths reduces the wakefield
strength and hence enables safely to prevent potential wake ionization of helium. Longer plasma wavelengths
also relax demands on synchronization and alignment between injection laser pulse and electron driver beam for
stable operation, however in turn require plasma channels with larger diameter to accommodate the blowout
structure. Hence, production of wide plasma channels for stable operation is one of the key technical challenges
in PWFA in general.

In order to access the plasma photocathode injection scheme, a laser pulse perpendicular to the driver
electron beam propagation axis in 90◦ geometry was spatiotemporally synchronized and aligned at fs and µm
scale precision to the driver beam by means of a novel technology based on optically accessible plasma afterglow
response. This method was supported and benchmarked by state-of-the-art methods of electro-optical sampling
(EOS) for time-of-arrival (TOA) and bunch duration and spacing measurements. EOS was another capability
which was first installed as part of the E-210 program, then crucially serving also other experiments such as for
positron acceleration.

To achieve controlled laser-triggered injection into the PWFA, we first generated a plasma filament in the
intersection region with the driver electron beam before its arrival by ionizing an approximately 100 micron-
wide helium plasma filament with the laser pulse in the 90◦ geometry. When properly aligned, the associated
plasma density spike then triggered density downramp injection – a concept long sought for in PWFA and here
realized for the first time as part of E-210. This method is called ”Plasma Torch” injection26,27 and is an all-
optical version of plasma density downramp injection which we used as a stepping stone towards the plasma
photocathode injection method: by delaying the injection laser pulse arrival, and by reducing the laser pulse
energy, we successively approached and entered the Trojan Horse mode.7 Both related laser-triggered injection
methods are tuneable and flexible, and constitute experimental firsts. A challenge specifically to the Trojan Horse
method is the inherent shot-to-shot temporal jitter between the FACET linac-generated driver electron beam
and the plasma photocathode laser pulse. This jitter arises in part from the thermal cathode used in the SLAC
linac and the strong compression requirements to attain driver beam densities for Q̃ > 1 to drive a nonlinear
wakefield. Additionally, the limited plasma channel width introduced highly complex wakefield dynamics along
the acceleration direction, and even wakefields which became decelerating during passage through the plasma
.7 The inadequate plasma channel width also amplified sensitivity to shot-to-shot jitters of preionization laser
intensity, pointing etc., and driver electron beam and injector laser jitters. The small plasma blowout size with the
comparably long electron driver beam, and the 90◦ geometry with the comparably long plasma photocathode
laser pulse Rayleigh length, furthermore increase the emittance as explained e.g. in Ref. 7. These technical
challenges will be addressed in upcoming experimental runs e.g. at FACET-II, aiming to realize the full reach
of plasma photocathodes with regard to emittance and brightness. It is very encouraging, that even under
suboptimal experimental boundary conditions at FACET both injection methods – Plasma Torch and Trojan
Horse – could be clearly demonstrated.

2.3 Upcoming Experimental Challenges and Programmes

The E-210: Trojan Horse PWFA experimental programme at FACET has demonstrated feasibility of the plasma
photocathode technology, and has established pathways on how to realize them experimentally. However, exper-
imental boundary conditions such as drive beam and injector laser beam jitter and limited preionized channel
width restricted the accessible parameter range and stability of electron beam output substantially. These re-
strictions are well understood and evaluated. The lessons learned have significantly contributed to the design
of FACET-II to resolve these restrictions, for example, by implementing state-of-the-art photocathode electron
gun to produce the driver beam.14 We developed various methods and techniques which address and allow
to overcome the limitations of previous experiments in the future.7,14,25 The flagship experiment for this at
FACET-II is the ”E-310: Trojan Horse-II” collaboration, dedicated to explore and realize the full potential of
the Trojan Horse scheme, and to realize tunable ”designer” electron bunches with nm-rad scale emittances and
associated brightness orders of magnitude better than state-of-the-art. This can be obtained by operating at
substantially reduced plasma wavelengths and/or by using shorter plasma photocathode laser Rayleigh lengths or
methods such as simultaneously space-time focused laser beams18 or similar techniques to confine the ”effective”
Rayleigh length of the laser beam, and/or by moving towards smaller angles between driver particle beam and







for example, Compton scattering processes are used to generate energetic γ-photon quanta. At the same time,
the temporal pulse duration of such X-ray and γ-ray pulses are significantly decreased to typically tens of
femtoseconds.35,36 This scientific effort of producing shorter wavelength and duration radiation pulses is driven
by many potential applications in fundamental science, medicine and industry .37–39 For example, structural and
physical state evolution in pump-probe experiments of materials and bio-samples may have a time span of tens
of femtoseconds (10−15 s), and even more fundamental processes such as ionisation, isomerization, and ultrafast
charge transfer in atoms, molecules, and nanostructures can occur on timescales down to the attoseconds (10−18 s)
.40–42 The underlying fundamental principle of radiation generation is based on utilizing electrons or electron
beams of modest to ultrarelativistic energies in various ways to emit radiation at the desired wavelength. This
has motivated the development of increasingly advanced dedicated electron injectors and accelerator structures
based on rf technologies in order to produce the high quality electron beams required for high quality radiation
production. For example, the path towards realizing the LCLS X-FEL required a fundamental improvement
of the electron beam quality such as emittance obtainable from conventional accelerators by introducing novel
photocathode technologies.

The plasma photocathode PWFA technology as discussed in Sec. 2 may allow a step change by producing
electron beams with emittance and brightness many orders of magnitude better when compared to these high
performance state-of-the-art accelerators. Such an improvement in particular in emittance and brightness there-
fore has huge potential, and e.g. may enable university laboratory-size hard X-ray free-electron lasers, high
brightness γ-rays from Inverse-Compton Scattering, or X-ray Ion-Channel Lasers in compact m-scale setups and
with inherent synchronization capabilities e.g. for pump-probe experiments. Such ultrahigh brightness elec-
tron beams may even enable to explore novel light source regimes not accessible by purely rf-cavity accelerator
based technology. In the following sections, the impact of plasma photocathode-level brightness beams on FEL,
ICS, and betatron/ICL type light sources will be discussed, and the specific challenges and prospects will be
highlighted.

3.1 Trojan Horse PWFA Driven Hard X-ray FEL

The X-ray free-electron lasers are capable of producing fs-duration coherent radiation sources with very high
power density, tunable in a wide range of the electromagnetic spectrum from extreme ultraviolet (XUV) to
hard X-rays. FEL’s enable novel research capabilities, for example the investigation of ultra-fast electronic and
structural dynamics of ultra-small structures down to the atomic level. The FEL process is based on relativistic
electron beams oscillating in an alternating magnetic field of an undulator. At the turning points of the resulting
undulating trajectories, the electron beam emits spontaneous undulator radiation at the resonant wavelength:

λr =
λu

2γ2

(

1 +
K2

u

2

)

, (1)

where λu is the undulator period, γ is the Lorentz factor of the electron beam associated with its energy and
Ku = 0.934λu[cm]B0[T ] is the undulator parameter with B0 being the magnetic field amplitude.35,43 The opening
angle θ = Ku/γ of the thus produced radiation depends upon the undulator parameter and the Lorentz factor
of the electron beam. Thus, at highly relativistic energies when γ ≫ 1 and Ku < 1 the spontaneous synchrotron
radiation becomes strongly forward-directed and collimated. This induces energy/density modulation within
the electron beam at the resonance wavelength which in turn leads to more coherent emission. This positive
feedback loop is initiating a collective instability resulting in microbunch formation.35 The radiation power
grows exponentially P (z) ∝ exp(zL−1

g,1D) along the undulator axis, where Lg,1D = λu(4π
√
3ρFEL)

−1 is the one

dimensional gain length and ρFEL is the FEL Pierce parameter35,43,44 which approximates the energy extraction
efficiency and is typically of the order of ρFEL ∼ 10−3 − 10−4 for hard X-ray FELs. This is the high gain FEL
regime known as the Self Amplified Spontaneous Emission (SASE) FEL .44 However, a hard X-ray FEL demands
very high quality electron beams. In order to drive a hard X-ray FEL the following key thresholds and criteria
have to be fulfilled:

• Emittance criterion (”Pellegrini criterion”):35,44 ǫn . γλr/4π. The normalized emittance of the electron
beam has to be low in order to achieve lasing at the resonant wavelength λr at a given electron beam



Lorentz factor γ. Because in rf-based linacs typical obtainable emittances are at the ǫn ∼ 1µm rad-level,
this requires multi-GeV electron energies to satisfy this condition.

• Energy spread criterion (Pierce parameter):44 The relative energy spread of the electron beam has to be
strictly smaller than the FEL Pierce parameter ∆Wrms/Wmean < ρFEL. In conventional rf-based accelera-
tors this is also facilitated by accelerating the electron beam to multi-GeV energies in km-size linacs.

• Compactness of the X-FEL:1,6, 45 The gain length Lg,1D scales favourably with the electron beam brightness

Lg,1D ∝ B
−1/3
6D such that ultrastrong gain, and ultrashort FEL gain lengths can be realized by improving

the electron beam brightness.

In the past decades, significant effort has been invested to improve the output energy characteristics of
plasma-based accelerators and to get close to reaching FEL gain.46,47 First steps have been reached by showing
spontaneous undulator radiation in the visible46 and soft X-ray range48 from electron beams produced via LWFA,
but the threshold of realizing FEL gain, let alone gain in an X-FEL, remains very challenging. This is because
of the above discussed minimum demands on the electron beam quality for an FEL, and the optimum parameter
reach of conventional LWFA-based electron beams, which hardly overlap. In addition to the need to improve key
characteristics such as energy spread and emittance of plasma accelerator output substantially to overcome the
key thresholds required for X-FEL by a sufficient margin, precise control over the electron beam parameters such
as energy, energy spread, emittance, current and pointing is required to maintain stable X-FEL performance on
a shot-to-shot basis. For example, variation of electron beam energy ∆γ will result in strong variation of the
resonance wavelength because of the λr ∝ γ−2-scaling which in turn can change the FEL operation parameter
regime from shot-to-shot. The positioning and pointing jitter of the electron beam may cause a spread in the
undulator parameter ∆Ku which will alter the resonance wavelength λr ∝ (1 +K2

u/2) as well. These very basic
considerations clearly emphasize the need and importance of ultrahigh quality and stable electron beams for
FEL/X-FEL applications.

The Trojan Horse PWFA method and its further enhancement by the escort bunch dechirping approach
are developed to overcome these thresholds and challenges amply, and in a controlled and flexible fashion (see
Sec. 2.1). With regard to emittance, nm-rad normalized emittance levels enabled by the plasma photocathode
allow to satisfy the Pellegrini criterion already at few GeV energies even for hard X-ray wavelengths and at the
same time, the relative energy spread reach of the witness beam extends to as low as 0.01% or even lower. Such
low energy spread is clearly sufficient to beat the FEL energy spread criterion, but also facilitates electron beam
extraction from the plasma stage and its transport in electron beam optics transport lines towards the undula-
tor without quality degradation. Finally, due to the ultrahigh 6D brightness of these electron beams, the FEL
gain length is expected to be very short, enabling saturation in university and industry scale laboratories, and
substantially reducing the spatial footprint and costs of such systems. The stability aspect can be resolved by
operating at longer plasma wavelengths (100−500µm) because then the synchronisation and alignment stability
requirements of plasma photocathode injection are significantly reduced.7,10 These considerations motivated a
dedicated beginning R&D programme on ”PWFA-FEL” funded by the UK Science and Technology Facilities
Council (STFC) which will explore the generation of ultrahigh (5D and 6D) brightness beams via plasma pho-
tocathodes, extraction, transport and utilization for advanced X-FEL operation, including ultimately aiming
at sub-femtosecond ultrabright X-ray pulses, which may allow for the first time to observe electronic motion
inside matter on natural timescales. From a viewpoint more focused on high energy physics, such a compact
plasma-based accelerator driven X-FEL can be considered as an extremely high impact milestone towards a po-
tential future plasma-based linear collider. These two major community goals therefore constructively mutually
reinforce each other,49 since they share major goals such as ultralow emittance and controllability.

3.2 Inverse Compton Scattering

Another method for generation of X- or γ-ray pulses from relativistic electron beams substitutes the typically
permanent magnetic field based undulators in FELs by the counterpropagating electromagnetic field of an intense
laser pulse. This configuration is known as inverse Compton scattering. It allows for considerable energy transfer
because the laser oscillation period is orders of magnitude smaller compared to to the magnetic alternative.50



The strong scaling resulting from this substitution substantially boosts the energy EL of incident laser photons

given by the well-known relation
Eγ

EL

= 4γ2

1+γ2θ2 . Here, γ denotes the electron Lorentz factor, and θ represents

the scattering angle within a cone opening with ∼ 1/γ centered on the electron beam axis. Thus, comparably
low-energetic electrons of the order of several hundred MeV already suffice for generation of directed MeV-class
photons within a pulse length given by the electron beam duration.These properties particularly emphasize the
application of plasma electron accelerators for ICS sources, as they routinely reach these energies in very compact
setups, and inherently produce ultra-short electron beams.

Capabilities of X-ray pulses for controlled excitation and characterization of nuclear processes such as nuclear
resonance fluorescence depend on their absolute and relative bandwidth.51,52 This quantity is determined by
the phase space properties of electron beam and laser pulse. Combining the latter, namely natural bandwidth,

pulse diffraction and intensity dependencies ,53 yields a single term ∆σL
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Monochromatic X-ray pulses therefore generally demand for low electron beam energy spread, as it defines
the minimal bandwidth obtainable in any interaction regime. Elevated electron energies, furthermore, couple
substantially with the beam’s divergence σθ and cause spectral broadening for typical electron beams from plasma
accelerators. Summarizing, these considerations express the considerable influence of electron beam 6D brightness
on the scattered photon pulse brilliance. Beams generated by a plasma photocathode wakefield accelerator
fortunately inherit the short duration and suitable energies typical for plasma accelerators accompanied by its
unique features of low energy spread10 and ultra-low emittance.45 Particularly the latter guarantees small beam
divergence associated to narrow bandwidth in the range of 1-10% even at high beam energies as displayed in
Fig. 5. ICS sources based on plasma photocathode-generated beams therefore offer outstanding prospects among
other plasma-based ICS approaches and may provide complementary γ-rays with high brilliance per shot without
spectral filtering. Similar to other plasma-based ICS sources, technological progress allowing highly increased
repetition rates are necessary for generating the average flux already produced in conventional facilities. The
high flexibility unique to the plasma photocathode combined with its confined ionisation and trapping volumes
offers controlled injection of multiple high-quality beams. Due to the trapping dynamics associated to ionization
injection in non-linear plasma waves ,54 these beams can be trapped spatially separated if electrons are released
at different longitudinal positions. Additionally tuning the corresponding lab-frame injection position generates
beams at different times, which facilitates arbitrary spectral separation. In an ICS scattering event, this witness
beam pair generates well-defined, clearly separated and inherently synchronized multi-color radiation pulses.

3.3 From Betatron Radiation to Ion Channel Laser

The plasma itself can also provide the undulating forces which can be exploited for light source production and
diagnostics, since the immobile ion background provides a linear restoring force pointing transversely towards
the propagation axis inside the plasma cavity. This serves as an inherent focusing channel which keeps injected
and accelerating electron bunches transversely compressed, but can also manifest in a plasma wiggler/undulator
if an electron beam is injected off-axis into the plasma cavity or if it is otherwise kicked transversely. Such an
electron beam will then start wiggling around the propagation axis and thereby emits incoherent synchrotron-
like radiation known as plasma betatron radiation.42,56,57 In the collinear (or countercollinear) Trojan Horse
scheme, injected electrons are typically released on-axis in order to minimize the injected electron beam emittance
(see Fig. 6 (left)), while misalignment of the plasma photocathode laser pulse with respect to the driver beam
consequently realizes off-axis injection, as demonstrated in the 3D PIC simulation in Fig. 6 (right) and as shown
in Ref. 45. The electrons born by the plasma photocathode off-axis are immediately attracted back to the
propagation axis by the linear restoring force of the plasma cavity, and are accelerated in the forward direction.
While the initial residual transverse momentum of the plasma photocathode process itself is negligible, the
transverse momentum from the restoring force of the plasma channel makes the electrons overshoot the axis
transversely, and they then continue oscillating in the transverse electric fields at their trapping position inside







which currently is beyond the reach of conventional as well as plasma-based accelerators. However, the plasma
photocathode allows achieving the demanding emittance requirements as discussed above, as well as the energy
spread requirement. The experimental feasibility of such an ICL can also potentially be explored in upcoming
experiments at the FACET-II facility.

4. SUMMARY AND OUTLOOK

Beam-driven plasma wakefield accelerators have passed the proof-of-concept phase and are evolving into mature
technology supporting accelerating gradients three to four orders of magnitude higher than rf-based conventional
accelerators. The GV/m-scale electric fields inside the wakefield allow, consequently, acceleration of charged
particles to multi-GeV energies in metre-scale acceleration distances compared with kilometer-size state-of-the-
art technologies. This capability combined with the plasma photocathode 45 injection mechanism enables not only
to facilitate ultrahigh accelerating gradients but at the same time paves the way to produce ’designer’ electron
beams of ultrahigh 5D brightness. Further development of the plasma photocathode mechanism with the escort
beam energy chirp compensation method 10 may support production of electron beams with unprecedented 6D-
brightness with relative energy spread values down to the 0.01%-level already at few GeV electron energies in a
single acceleration stage.

The SLAC FACET E-210: Trojan Horse PWFA experiment has demonstrated two distinct injection methodes
in PWFA for the first time, namely the plasma photocathode ’Trojan Horse’ injection in 90◦-geometry and all-
optical ’Plasma Torch’ downramp injection.7 These proof-of-concept experiments are encouraging pioneering
milestones on the way towards generation of plasma-based ultrahigh brightness electron beams. Research on
this will be driven forward further, at SLAC emerging from E-210 at FACET into an expanded programme
at FACET-II in the E-310–317 experiments towards highest quality electron beam production via the plasma
photocathode injection PWFA scheme, but also will include research on novel plasma-based diagnostics. The
underlying idea here is that while plasma-based wakefield acceleration can sustain orders of magnitude larger
accelerating fields than state-of-the-art, and is aiming for production of electron beams orders of magnitude larger
than state-of-the-art, also requires diagnostics which are orders of magnitude more sensitive than state-of-the-art.
For example, there is currently no method known which would allow measurement of nm-scale emittance kA-
level current beams or their associated brightness. The formation of plasma via exponentially sensitive tunneling
ionization, and its collective response to such beams, could be a pathway to measure important parameters of
these extreme beams, analogical in nature to how collective motion of plasma electrons and tunneling ionization
based plasma photocathodes enable to produce such extreme beams which exceed damage thresholds of normal
matter in the first place.

Figure 7. Conceptual overview of the Trojan Horse PWFA acting as gateway to boost brightness of linac-generated and
LWFA-produced electron beams for key light source applications such as X-FEL, ICL, and ICS.



At the same time, R&D will also be expanded to further linac-based PWFA-capable facilities, and to hybrid
LWFA→PWFA approaches .29,30 This will accelerate the development and prototyping of plasma photocathode
electron guns as standardized ultrahigh brightness electron beam source technology, and will allow harnessing
of the impact which is expected from ultrabright electron beams for applications such as light sources. Figure 7
provides a schematic overview on the plasma photocathode PWFA method as brightness transformer stage for
electron beams from LWFA as well as from conventional linacs, in order to unlock realization of transformative
light source applications such as X-FEL, ICS, and ICL on university- and industry-laboratory scale.
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