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Abstract

We argue that the Standard Model (SM) in the Higgs phase does not suffer from

a “hierarchy problem” and that similarly the “cosmological constant problem” re-

solves itself if we understand the SM as a low energy effective theory (LEET)

emerging from a cutoff-medium at the Planck scale. We actually take serious Velt-

man’s “The Infrared - Ultraviolet Connection” addressing the issue of quadratic

divergences and the related huge radiative correction predicted by the SM in the

relationship between the bare and the renormalized theory, usually called “the hi-

erarchy problem” and claimed that this has to be cured. We discuss these issues

under the condition of a stable Higgs vacuum, which allows extending the SM

up to the Planck cutoff. The bare Higgs boson mass then changes sign below the

Planck scale, such that the SM in the early universe is in the symmetric phase. The

cutoff enhanced Higgs mass term, as well as the quartically enhanced cosmological

constant term, provide a large positive dark energy that triggers the inflation of the

early universe. Reheating follows via the decays of the four unstable heavy Higgs

particles, predominantly into top-antitop pairs, which at this stage are massless.

Preheating is suppressed in SM inflation since in the symmetric phase bosonic de-

cay channels are absent at tree level. The coefficients of the shift between bare

and renormalized Higgs mass as well as of the shift between bare and renormal-

ized vacuum energy density exhibit close-by zeros at about 7.7× 1014 GeV and

3.1×1015 GeV, respectively. The zero of the Higgs mass counter term triggers the

electroweak phase transition, from the low energy Higgs phase and to the symmet-

ric phase above the transition point. Since inflation tunes the total energy density
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to take the critical value of a flat universe and all contributing components are pos-

itive, it is obvious that the cosmological constant today is naturally a substantial

fraction of the total critical density. Thus taking cutoff enhanced corrections seri-

ously the Higgs system provides besides the masses of particles in the Higgs phase

also dark energy, inflation and reheating in the early universe. The main unsolved

problem in our context remains the origin of dark matter. Higgs inflation is possi-

ble and likely even unavoidable provided new physics does not disturb the known

relevant SM properties substantially. The scenario highly favors understanding the

SM and its main properties as a natural structure emerging at long distance. This

in particular concerns the SM symmetry patterns and their consequences.

Keywords: Higgs vacuum stability hierarchy problem cosmological constant prob-

lem inflation
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1 Prelude: Higgs inflation in a nutshell

In order to give a quick overview of what will be the essential conclusion of the analysis

I start with this prelude (see [1, 2]). The Standard Model (SM) hierarchy problem [3]

is well known and addressed very frequently to motivate Beyond the Standard Model

(BSM) scenarios in general and a supersymmetric extension of the SM in particular.

The renormalized Higgs boson mass is small, at the ElectroWeak (EW) scale, the bare

one is huge due to radiative corrections growing quadratically with the ultraviolet (UV)

cutoff, which is assumed to be given by the Planck scale ΛPl ∼ 1019 GeV 1. The cutoff

1The Planck medium, which we may call ether, somehow gets shaped by gravity and quasi-particle

interactions emergent in the SM at low energies. It is characterized by the well known fundamental Planck

cutoff ΛPl or equivalently the Planck mass MPl, which derive from the basic fundamental constants, the speed

of light c characterizing special relativity, the Planck constant h̄ intrinsic to quantum physics and Newton’s

constant GN the dimensionful key parameter of gravity. Unified they provide an intrinsic length ℓPl, the

Planck length, which also translates into the Planck time tPl and the Planck temperature TPl:

Planck length: ℓPl =

√
h̄GN

c3 = 1.616252(81)×10−33cm ,

Planck time: tPl = ℓPl/c = 5.4×10−44sec ,

Planck (energy) scale: MPl =

√
ch̄

GN
= 1.22×1019 GeV ,
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Figure 1: The square of the effective Higgs-field mass as a function of the log of the

scale µ, in units of Λ2
Pl

. The effective mass is given by the bare mass at short distances

and by the renormalized one at low energy.

dependence is illustrated in Fig. 1 assuming the cutoff as a renormalization scale and

the SM Renormalization Group (RG) ruling the scale dependence of the SM couplings

(see below). It is the RG improved version of Veltman’s “The Infrared - Ultraviolet

Connection” [4], where the SM renormalization of the Higgs boson mass (m0 the bare,

m the renormalized mass)

m2
0 = m2+δm2 ; δm2 =

Λ2
Pl

(16π2)
C(µ) , (1)

has been addressed (see also [5–8]). The coefficient function C(µ) depends on the di-

mensionless SM couplings, which depend on the renormalization scale logarithmically

only. For an early discussion of the impact of running couplings to the Higgs mass

term and the problem of fine-tuning see [9]. The Higgs mass counterterm is huge when

we adopt the Planck scale as the cutoff to regulate UV singularities. Is this a problem?

Is this unnatural? In the first instance, it is a prediction of the SM! At low energy, we

see what we see (what is to be seen): the renormalizable, renormalized SM [10–12]

as it describes close to all we know up to LHC energies. But what does the SM look

like if we go to very high energies even to the Planck scale? Not too far below the

Planck-scale, we start to see the bare theory i.e. the SM with its bare short distance

effective parameters, so in particular a very heavy Higgs boson, which likely is moving

at most very slowly. The potential energy

V(φ) =
m2

2
φ2+

λ

24
φ2 (2)

then is large, while the kinetic energy 1
2
φ̇2 is small, as a dedicated calculation shows.

Here we have in mind the cosmological solutions of Einstein’s General Relativity The-

Planck temperature:
MPlc

2

kB
=

√
h̄c5

GN k2
B

= 1.416786(71)×1032◦K .

In our context, they define a shortest distance ℓPl and a beginning of time tPl . i.e. t > tPl . The Planck era

energy scale equivalently is set by EPl = ΛPl ≡ MPl or temperature TPl, as for most time in the evolution

of the early universe, when elementary particle physics is at work and before the epoch of formation of

hadrons, particle processes are in thermal equilibrium, with well-known exceptions during inflation and the

electroweak phase-transition.
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ory (GRT) for an isotropic universe of constant spatial curvature, parametrized by the

Robertson-Walker metric2. The field φ is then a function of the cosmic time t only

and φ̇ is the corresponding time derivative. The Higgs boson contributes to the energy-

momentum tensor by providing the pressure p = 1
2
φ̇2 −V(φ) and the energy density

ρ = 1
2
φ̇2 + V(φ) . As we approach the Planck scale (bare theory) the slow–roll con-

dition 1
2
φ̇2 ≪ V(φ) is satisfied during some window in the time evolution and then

p ≈ −V(φ) ; ρ ≈ +V(φ) implies p ≈ −ρ, which closely approximates the equation of

state pΛ = −ρΛ of Dark Energy (DE) ρ = ρΛ, the equivalent of a Cosmological Con-

stant (CC) Λ. DE follows a very special equation of state, only observed indirectly

through Cosmic Microwave Background (CMB) [13–17] pattern and through Super

Novae (SN) counts [18, 19]. No lab system observation so far has been reported to

my knowledge, although statistical mechanics system like the Ising model obey such

a ground state equation (see e.g. [20]). Thus, as a consequence of the hierarchy boost,

the SM Higgs boson in the early universe delivers a huge dark energy that is inflating

the universe and, which mimics strong anti-gravity at work. The Friedmann equations

together with energy conservation read

(
ȧ

a
)2+ k/a2 =

8

3
πGNρ ;

ä

a
= −4

3
πGN (3p+ρ) ; ρ̇ = −3

ȧ

a
(ρ+ p) (3)

and indeed if DE dominates we have (3p+ ρ) ≈ −2ρ such that we have an acceler-

ated expansion ä/a > 0 and da
a
= H(t)dt which implies an exponential growth a(t) =

exp Ht of the radius a(t) of the universe. H(t) = ȧ(t)/a(t) is the Hubble constant where

H ∝
√

V(φ) in a DE dominated era. Inflation stops quite quickly as the field decays

exponentially. The field equation

φ̈+3Hφ̇ ≃ −V′(φ) , (4)

for a potential dominated by the mass term V(φ) ≈ m2

2
φ2 represents a harmonic oscil-

lator with friction and leads to Gaussian inflation as established by an analysis of the

CMB pattern by the Planck mission [21]. One of the reasons why the inflation phe-

nomenon must have happened in the early universe is that the universe looks flat today,

while a flat universe in the absence of DE is exponentially unstable in its time evolution.

This because then formally the strong energy condition ρ+3p ≥ 0 holds, which implies

ä/a ≤ 0. So, different types of solutions of the Friedmann equations at ρΛ = 0 deviate

2Einstein’s field equation for the metric tensor gµν, which incorporates the gravitational field, is given by

Gµν = κTµν where κ =
8πGN

c2 is the effective interaction constant, Gµν = Rµν − 1
2

Rgµν is the Einstein curvature

tensor (geometry) and Tµν is the energy-momentum tensor (matter and radiation). Cosmology is shaped

by Einstein gravity, which together with Weyl’s postulate, that radiation and matter (galaxies etc.) on the

cosmological scale behave like an ideal fluid, and the cosmological principle, assuming isotropy of space

(implying homogeneity), fixes the form of the metric and of the energy-momentum tensor: 1) the metric

(3-spaces of constant curvature k = ±1,0) takes the form ds2 = (cdt)2 −a2(t) [dr2/(1− kr2)+ r2 dΩ2], where,

in the comoving frame ds = cdt with t the cosmic time; 2) the energy-momentum tensor takes the form

Tµν = (ρ(t)+ p(t)) (t)uµuν − p(t)gµν ; uµ � dxµ

ds
where ρ(t) is the density and p(t) the pressure of the fluid. As

a differential equation for the geometry factor a(t) one obtains Friedmann’s equations (3). One needs ρ(t) and

p(t) (which are related by an equation of state characterizing the medium) in order to get the radius of the uni-

verse a(t) and its evolution in time. The Higgs potential contributes Tµν = Θµν = V(φ)gµν+ derivative terms,

where Θµν is the symmetric energy-momentum tensor of the SM (or extensions of it). Only a scalar potential

can contribute a term proportional to gµν, which mimics a cosmological constant.
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dramatically during the 13.8 billion years life of the universe after the Big Bang. The

“flattenization” by inflation is evident as the curvature term k/a2(t) ∼ k exp(−2Ht)→ 0

drops exponentially independent of the curvature type. The latter, characterized by the

normalized curvature k = 0,±1, distinguishes flat infinite, spherical closed or hyper-

bolic open geometries. It is very important to note that the CC given by the Higgs

potential V(φ) in the symmetric phase is positive in any case, very different from the

(much smaller) contribution from the Higgs-field vacuum expectation value (VEV) in

the broken phase, which is negative [22]. This already shows that dynamical effects and

in particular possible phase transitions make the CC depend on time, although it does

not depend explicitly on a(t), i.e., ρΛ ∝ a(t)0. As we know the matter density scales

like ρm ∝ a(t)−3 while the radiation density decreases like ργ ∝ a(t)−4 since radiation

gets red-shifted in addition to its spatial dilution3.

Inflation tunes the total energy density to be that of a flat space (as if k = 0), which

according to (3) for k = 0 requires a specific “critical” energy density

ρ0,crit = 3H0/(8πGN) = µ4
crit where µcrit ≈ 0.00247 eV . (5)

With H0 the present Hubble constant ρ0,crit is the present total energy density. For an

arbitrary mixture of dark energy, matter and radiation the first of the equations (3) reads

ρ = ρ0,crit

[
ΩΛ+Ωm

(
a0

a

)3

+Ωγ

(
a0

a

)4
]
, (6)

where Ωi = ρ0,i/ρ0,crit are the present fractional densities and a0 = a(t0) the spatial

metric scale factor at present time t0. Including the curvature term Ωk = −k/(a2
0
H2

0
) we

have

ΩΛ+Ωm+Ωγ +Ωk = 1 (7)

as an exact equation, and when the curvature term is exponentially suppressed we very

accurately have

ΩΛ+Ωm+Ωγ � 1 , (8)

which is supported strongly by observation (CMB). Whatever constitutes the universe,

the curvature constant is k = +1, k = 0 or k = −1 according to whether the present

density ρ0 is greater than, equal to, or less than ρ0,crit . A higher density ρ0 > ρ0,crit

implies a re-contraction of the initially (at the Big Bang) expanding universe, a lower

density ρ0 < ρ0,crit would not be able to stop the expansion forever.

We know that ρ0Λ = µ
4
0Λ

today is about µ0Λ = 0.00171 eV which in a flat universe

must be a fraction of the critical density, and actually has been determined to amount

to 69.2±1.2 %. Since the non-DE components drop with a power of the radius a(t) as

3Matter here includes dark matter (DM) and normal baryonic-matter (BM), the non-relativistic stuff;

radiation includes all relativistic degrees of freedom: photons, neutrinos and at high energies other SM

particles besides the Higgs bosons, which get boosted to be heavy because of their missing naturalness.

Note that normal baryonic matter only emerges after the QCD [12] hadronization phase-transition,i.e. after

protons and neutrons have been formed. In contrast, cold dark matter looks must have existed much earlier

not too long after Planck time.
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time goes on, the asymptotic behavior is determined by ρΛ solely. Friedmann solutions

in GRT with non-vanishing cosmological constant have been discussed in [23, 24].

We note that the large positive cosmological constant provided by the SM Higgs

sector, on the one hand, effectuates the inflation that is needed to tune the total energy

density into the critical density of flat space. This tells us that on the other hand, the

cosmological constant has to be some fraction of the critical density, i.e. it is self-tuned

to be small. So also the cosmological constant problem may turn out to get its natural

explanation (see below).

Since inflation is strongly supported to have happened by observation, we must

assume the existence of an appropriate scalar field, and the Higgs field is precisely such

a field we need and within the SM it has the properties that promote it to be the inflaton

field. In contrast to other inflation models, Higgs inflation is special because of almost

all properties are known or predictable! Below, I will argue that the SM in the Higgs

phase does not suffer from a “hierarchy problem” and that similarly, the “cosmological

constant problem” resolves itself if we understand the SM as a low energy effective

theory emerging from a cutoff-medium at the Planck scale.

Adopting a bottom-up approach, I discuss these issues under the condition of a sta-

ble Higgs vacuum, by predicting the behavior of the SM when approaching the Planck

era at high energies. SM Higgs inflation as exposed in this prelude may look pretty

simple but in fact is rather subtle, because of the high sensitivity to the SM param-

eters and high sensitivity to higher order SM effects. In any case, my preconditions

are: (i) a stable Higgs vacuum and a sufficiently large Higgs field at MPl, (ii) physics

beyond the SM should not spoil the main features of the SM. This means that SM

extensions like SuperSymmetry (SUSY), or Grand Unified Theories (GUT) etc., pre-

tending to solve the hierarchy problem and/or affecting the SM RG-flow substantially,

are to be excluded! Here we have to assume that a kind of desert in the heavy particle

spectrum is extending effectively up to the Planck scale. This is not so far beyond the

“grand desert” usually assumed to exist in the context of GUTs. This does not exclude

new physics that we know to exist, like dark matter, Majorana neutrinos or axions, for

example.

Slow-roll inflation in general has been investigated in [25–30] in the 80’s mostly as

a top-down approach. An alternative “non-minimal gravity” Higgs-inflation approach

has been advocated in [31–37]. Yet a different “eternal” Higgs inflation ansatz has

been investigated within the context of superstring theory [38]. A time-dependent cos-

mological constant has been obtained also in a model which is based on a dilatation

symmetry anomaly, where one assumes the Newton “constant” to be a time-dependent

dynamical degree of freedom [39].

In this prelude, I have outlined what a correct interpretation of the “hierarchy prob-

lem” likely looks like, i.e. the predicted SM hierarchy pattern is not a problem, rather

it is the solution for what we need to trigger inflation in the early universe. In the

following I will consider the hierarchy issue in a broader context and discuss in some

detail the intricacies of the cosmological constant problem and Higgs boson inflation. I

will try to convince the reader that the Higgs boson inevitably delivers dark energy and

the consequent inflation is well supported by a self-consistent perturbative SM calcu-

lation [1, 2]. The approach is highly predictive and limited mainly by the uncertainties

of the knowledge of the SM parameters and the accuracy of the perturbative calcula-
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LHC

Figure 2: Left: the SM Higgs system remains perturbative up to ΛPl if MH

is light enough (upper bound= avoiding Landau pole) and the Higgs poten-

tial remains stable (λ > 0) if MH is not too light [parameters used: Mt =

175[150 − 200] GeV; αs = 0.118]. [Reprinted with permission from [50]

http://dx.doi.org/10.1103/PhysRevD.55.7255. Copyright (1996) by the American

Physical Society]. Right: A plot of the stability range in the MH −Mt plane. Courtesy

of G. Degrassi et al. http://dx.doi.org/10.1007/JHEP08(2012)098, (License: CC-BY-

4.0). Reproduced from [58]

tions of the matching conditions between measured and MS parameters and the MS

renormalization group coefficients.

2 The Higgs boson discovery – the SM completion

With the discovery of the Higgs boson by ATLAS [40] and CMS [41] in 2012 a last

major but often questioned building block of the electroweak SM has been experimen-

tally verified. The existence of an elementary scalar has been found to be required to

render the electroweak massive gauge theory renormalizable in 1964 by Englert and

Brout [42] and by Higgs [43]. The key mechanism turned out to be a Spontaneous

Symmetry Breaking (SSB) mechanism of the non-Abelian SU(2)L gauge sector re-

sponsible for the weak interactions. The corresponding Higgs mechanism generates

masses for all massive particles while not affecting the renormalizable UV behavior of

the massless unbroken theory. Now, remarkably, the SM Higgs boson mass has been

found in very special mass range 125.18± 0.16 GeV, which seems to match the pos-

sibility to extrapolate the SM up to the Planck scale. Knowing the Higgs mass MH

and using the mass coupling relation valid in the Higgs phase, we also know the Higgs

self-coupling λ and hence the renormalized Higgs potential V = m2

2
H2 + λ

24
H4 , which

is the object in our focus. Perturbativeness and vacuum stability of the Higgs poten-

tial are the key issues in this context (for early considerations see [44–49]). Fig. 2

adopted from an analysis by Hambye and Riesselmann in 1996 [50] illustrates the pos-

sible impact to have a Higgs mass in a window extending up to the Planck scale. The

possibility that the SM may be extended right up to the Planck scale has been analyzed

also in [51–57]. Later estimates have been improved after more precise SM parameters

like the QCD coupling αs and top-quark mass Mt became available, see e.g. [58–62].
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Given the Higgs self-coupling, all relevant SM parameters are known. While the RG

evolution equations in the symmetric phase of the SM have been known for a long

time to two loops, recently also the three-loop coefficients in the MS scheme have been

calculated [63–65]. The MS input parameters, which are most suitable to parametrize

the high energy tail, have to be calculated via the matching conditions from the experi-

mentally measured ones (see [58,61,62,66–71] and references therein). The matching

conditions are based on more or less complete two-loop calculations that require the

knowledge of the two-loop renormalization counterterms. Besides the electromagnetic

vertex correction δe, all others are mass renormalization counterterms δM2
b

for bosons

and δM f for fermions, all given in terms of comparatively simple two-point functions,

which are completely known to two loops4.

So far so good. One important point is missing however: the physical on-shell

parameters are determined from experimental data by unfolding the raw data from

radiation and detector effects. They represent pseudo-observables depending on theory

input that relies on approximations. One has to keep in mind that most LEP, Tevatron

and LHC results are based on incomplete two-loop calculations at best. Exceptions are

the extraction of Gµ [74] and of sin2Θ
lept

eff
for which complete two-loop calculations

exist [75]. Complete two-loop calculations have not been available at LEP times. For

Bhabha scattering, which plays a key role for luminosity monitoring, the two-loop QED

corrections became available only lately (see e.g. [76] and references therein). Full

two-loop electroweak corrections to 2→ 2 processes either are still missing or have

not been available when parameters were extracted from the data. There are persisting

discrepancies at the 2 σ level in the determination of sin2Θ
lept

eff
between SLD and LEP

as well as for sin2Θbb̄
eff

and so there remain questions about the size of the estimated

uncertainties of some of the input parameters.

Precision physics at LEP has been a great achievement also thanks to continuous

progress in QCD and electroweak higher order calculations. Much progress has been

achieved since. The SM is established with unprecedented accuracy. Activities now are

focusing on LHC physics for obvious reasons. But more effort is needed to keep alive

gained expertise on electroweak precision physics. Projects for future e+e− colliders

like the International Linear Collider (ILC), which started with the unrealized TESLA

project [77], and the Future Circular Collider (FCC) project at CERN, are boosting

efforts to reach much higher precision in Z-peak, W-pair, top-quark and Higgs-boson

physics [78]. The possibility that progress in this direction can establish the Higgs

vacuum to be stable and the Higgs boson to be the inflaton in fact may be the strongest

motivation to go on in realizing a next e+e− machine probing physics at the electroweak

scale at much higher precision.

The most serious conceptual problem concerns the measurement of the top-quark

mass and the related determination of the top Yukawa coupling. On the theory side,

one is operating with the perturbative concept of an on-shell top-quark mass, which is

4A complete two-loop calculation has been performed independently by Veretin and Kalmykov in the

context of [68]. Two-loop integrals exhibiting Higgs propagators have been expanded in M2
V
/M2

H
, assuming

the Higgs to be heavier than the W and Z bosons. After the Higgs mass has been found this expansion turned

out to be obsolete, and the relevant integrals had to be evaluated numerically. This has later been performed

partially in [69] and “exact” in [72] such that a complete two-loop evaluation is available. For independent

calculations of the matching conditions also see [73] and references therein.
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not an observable. Usually, the on-shell mass is identified with the Monte Carlo mass

MMC
t . The latter is the kinematic mass parameter used Monte Carlo event generators

that are utilized to extract the top-quark mass from top-quark production processes.

The non-perturbative color screening effects obscure the precise determination of Mt

so far (see e.g. [62,79]). In addition, most of the Monte Carlo programs used at present

do not take into account the electroweak radiative corrections.

My quintessence: while the matching conditions are known to two loops, the input

parameters have not yet been determined at the same level of accuracy, i.e. likely

reported errors are underestimated. These issues have to be reminded before one can

claim that metastability of the electroweak vacuum is a proven fact.

2.1 Matching conditions: MS parameters in terms of physical pa-

rameters

We want to solve the RG equations up to very high scales, where mass effects are

supposed to be negligible, in regions where physical thresholds play no role. The mass

independent MS scheme is the most simple choice, and under these circumstances

likely a rather physical one, because it reflects the true UV structure of the SM in terms

of quasi-bare quantities. In order to solve the MS RG-equations we need the input

MS values of the basic couplings g′,g,g3, yt and λ. While g3(M2
Z
) =

√
4παs(M2

Z
) is a

standard MS reference parameter, the key parameters yt and λ are known actually only

through the related masses Mt and MH:

y2
t = 2

√
2Gµ M2

t (1+δt(α, · · · )) ; λ = 3
√

2Gµ M2
H (1+δH(α, · · · )) , (9)

where δi represent the corresponding radiative corrections. The relations between

the renormalized on-shell masses and their MS versions are provided by the natural

matching conditions m2
b ren
= M2

b ren
+

(
δM2

b
−δm2

b

)
, for bosons and m f ren = M f ren +(

δM f −δm f

)
, for fermions5. Formally we obtain them by writing the relation between

the renormalized and the bare masses (in the bare Lagrangian) in the two schemes:

m2
bbare

OS
= M2

b ren+δM2
b

MS
= m2

b ren+δm
2
b ,

for bosons and

m f bare
OS
= M f ren+δM f

MS
= m f ren+δm f ,

for fermions, i.e. the mass shift is given by the MS finite part prescription applied to

the (UV singular) OS mass counterterm:

m2
b

∣∣∣
MS
= M2

b

∣∣∣
OS
+ δM2

b

∣∣∣ 2
ε−γ+ln4π+lnµ2

0
→lnµ2 , (10)

5We denote on-shell masses by capital, MS masses by lower case letters as in [1]
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for bosons and

m f

∣∣∣
MS
= M f

∣∣∣
OS
+ δM f

∣∣∣ 2
ε−γ+ln4π+lnµ2

0
→lnµ2 , (11)

for fermions.

Here it is important to keep in mind: for the renormalized theory the MS parametriza-

tion is not a parametrization in terms of observables but serves as a convenient inter-

mediate (auxiliary) parametrization. The MS scheme is a purely perturbative concept

(no non-perturbative definition) and corresponding parameters are not measurable.

However, if we take the bare theory to be the physical one in the sense of a low

energy effective theory exhibiting a physical cutoff, then the MS parameters in the

perturbative regime are representing the bare parameters. Crucial for the extrapolation

to the Planck scale, if possible, it is to keep the relationships between bare, MS and

physical OS parameters gauge invariant and preserving the UV structure (see e.g. [66,

67]).

So in principle, on a conceptual level, we are confronted with a well-defined prob-

lem of calculating the massive physical particle self-energies exact to two loops, in

addition to the e.m. vertex, in order to find the appropriate input for the three-loop MS

RG running.

In the symmetric phase of the SM, except the m2–term in the Higgs potential, all

masses vanish and the RG coefficient calculations and the solution of the RG equations

are straight forward. This insofar that there are no special mass-coupling relations and

the decoupling of heavy states (the four Higgs scalars) is given as requested by the

Appelquist-Carazzone theorem (AC) [80], which in the broken phase only holds in the

QCD and QED sectors.

In contrast, in the Higgs phase of the SM, there are some tricky points to be taken

care of.

1) The tadpole issue: if we require the bare parameters, now represented by the MS

parameters, as physical we have to respect Ward-Takahashi and Slavnov-Taylor identi-

ties. This requires to take into account tadpole contributions according to Fig. 3, which

mostly are omitted in calculations (see e.g. [71, 73, 81]), because a theorem [82, 83]

states that tadpoles cancel in physical quantities provided they are expressed in terms

of physical quantities within the renormalized theory (see [69] for a recent discussion).

2) The lack of decoupling issue: while in QED and QCD, heavy particles decouple,

within the SM heavy states do not decouple when the mass-coupling relations come

into play. Masses and couplings are one-to-one interrelated, because all masses are

generated by the Higgs mechanism. For the given VEV v a mass can only get large

iff the corresponding coupling gets large. The couplings are active at scales below the

related mass thresholds. Within the MS scheme, which respects gauge invariance but

has deficiencies like the lack of decoupling of heavy states, decoupling has to be im-

posed by hand, and one is working with effective field theory including only the active

flavors at the given scale, in place of full theory. Most of the matching analyses are

inspired by techniques that are well established in QCD. Typically, one is matching the

N f with the N f + 1 flavor effective QCD at the N f + 1 flavor threshold. This is well

justified in the time-like regime where corresponding thresholds are manifest. While

physical observables are naturally sharing decoupling properties, within the full SM

10



〈H〉 = + = 0

Π
µν
V (k2) ≡ +

Σf (k
2) ≡ +

ΠH(k2) ≡ +

Figure 3: Tadpoles show up in the broken phase as diagrams contributing to the Higgs

field VEV. They contribute to self-energies as depicted. Tadpoles are gauge dependent

and UV singular and have to be taken into account as shown in order to preserve the

gauge symmetry [66].

the lack of automatic decoupling is a serious shortcoming of the MS parametrization

when applied below the highest SM threshold at 2 Mt.

The most prominent non-decoupling effect is due to the large top Yukawa coupling,

which we know to be interrelated with the heavy top-quark mass. It yields the leading

correction of the EW ρ-parameter, defined by the neutral to the charged current ratio of

the corresponding low energy effective Fermi couplings, which is given by

ρ =GNC/GCC(0) = 1+
NcGµ

8π2
√

2

m2
t +m2

b−
2m2

t m2
b

m2
t −m2

b

ln
m2

t

m2
b

 ≈ 1+
Ncy

2
t

32π2
, (12)

where Nc = 3 is the number of colors. It is quadratic in yt and measures weak-isospin

breaking by the Yukawa couplings of the heavy fermions at zero momentum. So, the

top Yukawa coupling is at work down to zero momentum and not being active starting

above the top mass threshold only. This type of effect measured for the first time at

LEP in 1995 far below the top-pair threshold, allowed to derive a bound on Mt before

the top-quark discovery at the Tevatron in 1996.

This shows that “decoupling by hand” cannot be applied for weak contributions,

i.e., we cannot parametrize and match together effective theories by switching off fields

of mass M > µ at a given scale µ.

Only a direct measurement of yt and λ at a facility like FCC-ee or ILC above the

top-quark mass threshold can provide us the precise input parameters we need.

3) The Fermi constant issue: the Higgs-field VEV v determines the Fermi constant

via

GF =
1
√

2v2
or
√

2Gµ = v
−2 =

e2

4

M2
Z

M2
W

1

M2
Z
−M2

W

.

For the on-shell counterterm we then have the relation (c2
W
= M2

W
/M2

Z
, s2

W
= 1− c2

W
)

δGF

GF

= 2
δv−1

v−1
and

δv−1

v−1
=
δe

e
− 1

2 s2
W

(
s2

W

δM2
W

M2
W

+ c2
W

δM2
Z

M2
Z

)
. (13)
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Potentially, the Higgs-field VEV v could be particularly affected by non-decoupling

effects. However, here we may take advantage of the fact that tadpole contributions

drop out in relations between physical (on-shell) parameters and physical transition

amplitudes. To be compared are

• low energy – Gµ =Gµ(Q2 ≈ 0) determined by the muon lifetime,

• W mass scale – Ĝµ = Gµ(Q2 ≈ M2
W

) =
12πΓWℓν√

2M3
W

given by leptonic W decay rate.

Indeed Ĝµ ≈Gµ with good accuracy as expected6.

Finally we need the MS version of GF . Again, evaluating GF bare = Gµ + δGF in

both schemes we have

GMS
F =Gµ+

(
δGF |OS

)
2
ε−γ+ln4π+lnµ2

0
→lnµ2 .

We calculate it equivalently by using (13) in the respective schemes. Then the MS

top-quark Yukawa coupling is given by

yMS
t (M2

t ) =
√

2
mt(M2

t )

vMS(M2
t )

; vMS(µ2) =

(√
2GMS

F

)−1/2

(µ2) . (14)

A good matching scale is MZ using α(MZ),αs(MZ) and Ĝµ as input. The non-perturbative

contribution ∆α
(5)

had
(M2

Z
) to the shift in α(MZ) is taken from [84]. I have outlined the

points that can lead to slightly different input values for the MS parameters as listed in

Table 1. Our evaluation is documented in more detail in Refs. [1,2,69]. One difference

concerns the use of the Fermi constant, which in a number of analyses is taken to be

the low energy Gµ, assumed not to be running below the top-quark mass threshold, and

often a difference between its OS and MS version is not made (see e.g. [58, 70]). A

second cause for a difference is related to a different account of the tadpole contribu-

tions (see e.g. [71, 73]). Given the MS input, the RG-equations are then solved in

the MS scheme to three loops by also including four- and five-loop results in the QCD

sector. Concerning the RG-running, there is full agreement between the different stud-

ies available in the literature for a given set of input parameters. The only parameter

which does not agree within quoted uncertainties is the top-quark Yukawa coupling yt

(9), which apparently is the parameter which decides about the stability of the vacuum.

Another important point, which is only partially taken care of in estimating the un-

certainties of the physical input parameters, is the following:

4) The scheme dependence issue: perturbative predictions are renormalization scheme

dependent due to truncation errors of the perturbative expansion. A typical example is

provided by the electromagnetic fine structure constant. At very low energy the value

in the Thomson limit α ≃ 1/137 is adopted as an input parameter, while at the Z bo-

son mass scale α′ = α(MZ) = α
1−∆α(MZ )

≃ 1/127 is a more appropriate input parameter,

because it represents an universal type large correction requiring RG resummation,

and which enters radiative correction calculations at many places. To one-loop order

6A LO estimate with MW = 80.385± 0.015 GeV, ΓW = 2.085± 0.042 GeV and B(W → ℓνℓ) = 10.80±
0.09% yields Ĝµ = 1.15564(55)×10−5 GeV−2 to be compared with Gµ = 1.16637(1)×10−5 GeV−2, i.e. the

on-shell Fermi constant at scale MZ appears reduced by 0.92% relative to Gµ .
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α′ = α (1+aα). If we calculate a matrix-element including one-loop corrections

M(1) = αn C (1+bα) ,

in terms of α′ we obtain

M′(1)
= α′n C (1+b′α′) ,

and hence

M′(1)
= M(1)+δM ,

where, inserting b′ = b−na ,

δM = αn C

((
1

2
n(n−1)a2+ (n+1)ab′

)
α2+ · · ·+an+1b′αn+2

)
. (15)

Thus the result differs by δM. If we do not actually calculate the higher orders

δM = M′(1)−M(1)

must be considered as an uncertainty due to unknown higher order effects. Actually, re-

sults can differ non-negligibly when different parameter sets are used as independent in-

put parameters, like α,MW ,MZ , · · · , Gµ,MW ,MZ , · · · or the preferred LEP parametriza-

tion in terms of the most precisely known parameters α,Gµ,MZ , · · · , the scheme which

is usually applied (see e.g. [85]).

I am mentioning the scheme dependence uncertainties here because, to my knowl-

edge, they are not fully taken into account in standard extractions of on-shell param-

eters from the data. One more reason why strong statements concerning a proof of

metastability and “just failing vacuum stability”, it seems to me can hardly be justified

in view of the strong sensitivity of vacuum stability on precise input parameters.

I remind that the most important difference between my “cutoff extended” SM

and the most often discussed metastability path to high energies (discussed within the

framework of the renormalized SM) lies in the fact the I have to take care that my

MS parametrization is equivalent to the bare parametrization. This is what makes the

inclusion of tadpoles mandatory. We have explicitly checked in [68] that only by in-

cluding tadpoles the MS RG equations in the broken phase agree with the ones in the

symmetric phase7.

2.2 The SM running parameters

In Fig. 4 we plot the evolution of the SM couplings as a function of the log of the

energy scale. As we learn from Fig. 4 the amazing thing is that the perturbation ex-

pansion turns out to work up to the Planck scale! In our analysis, for the input pa-

rameters specified below, we have no Landau pole or other singularities and the Higgs

potential remains stable. This likely opens a new gate to precision cosmology of the

7Obviously, in electroweak theory, what is called MS scheme may refer to two different versions, depend-

ing on whether tadpoles are dropped or not [81]. This only concerns calculations in the broken phase where

mass effects play a role, as for the matching conditions (see [69]). Note that RG coefficients are calculated

in the massless symmetric phase where they are unambiguous, since tadpoles are absent.
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Figure 4: The SM dimensionless couplings in the MS scheme as a function of the log

of the renormalization scale for MH = 124−126 GeV (shaded band). Input parameters

as in Table 1

early universe [1,58,61]. The remarkable interrelations between SM couplings may be

summarized as follows: the U(1)Y coupling g1 is screening (IR free), the SU(2)L cou-

pling g2 and the SU(3)c coupling g3 are anti-screening (UV free=Asymptotic Freedom

(AF)) as expected [86]. In contrast the top-quark Yukawa coupling yt and the Higgs

self-coupling λ, which are screening if standalone (IR free, like QED), within the SM

change their behavior from IR free to UV free, such that perturbation theory works

the better the higher the energy in these couplings as well. What happens is that QCD

effects dominate the behavior of the top-quark Yukawa coupling RG provided g3 >
3
4
yt

in the gaugeless (g1,g2 = 0) approximation, which is satisfied. Similarly, the top-quark

Yukawa effect dominates the Higgs coupling RG provided λ < 3
2

(
√

5− 1)y2
t , which

also holds in the gaugeless (g1,g2 = 0) limit. These conditions are satisfied in the SM

with the given parameters and extend to higher orders as far as these are known. We

note that the Abelian hypercharge coupling g1, although increasing with energy, stays

small up to ΛPl such that it does not affect perturbativeness. Note that in spite of its in-

creasing behavior g1 < g3 < g2 at Planck scale. Interestingly there we have an inverted

g3 < g2 hierarchy of the non-Abelian gauge couplings. In the focus is the Higgs self-

coupling, because it may not stay positive λ > 0 up to ΛPl. In fact a 3 σ significance

for meta-stability is claimed e.g. in [58, 61] (see right panel of Fig. 2). Calculating

previously missing two-loop contributions to the matching conditions the significance

for missing stability could be reduced to a 1 σ gap in [71]. The existence of a zero in

λ(µ) crucially depends on the precise size of the top-quark Yukawa coupling yt, which

actually seems to decide about the stability of our world. Note that λ = 0 would be an

essential singularity! Uncertainties here have to be reduced by more precise input pa-

rameters and better established EW matching conditions. For our input parameters, the

Higgs coupling decreases up to the zero of the beta–function βλ at µλ ∼ 3.5×1017 GeV,

where λ is small but still positive and above µλ increases with energy up to µ = MPl.

I think our discussion shows that ATLAS and CMS results may have revolution-

ized particle physics in an unexpected way, namely showing that the SM has higher
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self-consistency (conspiracy) than expected and previous arguments for the existence

of new physics may turn out not to be compelling. Also, the absence so far of any

established new physics signal at the LHC may indicate that commonly accepted ex-

pectations may not be satisfied. On the one hand, it seems to look completely implau-

sible to assume the SM to be essentially valid up to Planck energies, on the other hand,

the flood of speculations about physics beyond the SM have been of no avail. Within

the context of GUTs, a large gap in the particle spectrum, the “grand desert” up to the

GUT scale at about 1016 GeV, still is a widely accepted hypothesis. So why the “grand

desert” could not extend a little further namely to 1019 GeV? The central issue for

the future is the very delicate “acting together” between SM couplings, which makes

the precision determination of SM parameters more important than ever. This mainly

challenges accelerator physics, the LHC experiments, and the future ILC and FCC-ee

projects (top-quark and Higgs-boson factories), which could improve the precision val-

ues for λ, yt and αs. Still important are lower energy hadron facilities, which should

provide more precise hadronic cross sections in order to reduce hadronic uncertain-

ties in α(MZ) and α2(MZ). This could open a new gate to precision cosmology of the

early universe, in case the Higgs boson inflation scenario outlined in Sect. 1 could be

hardened.

3 Thoughts on guiding principles and paradigms in par-

ticle physics

In last decades “solving the hierarchy problem” has been a strong motivation to find

possible extensions of the SM. Guiding principles often have played an important role

in progress in science although they afterward turned out to miss the point they sug-

gested natural laws should follow. Most prominent are symmetry principles. Related

group theory is beautiful mathematics but is not always mapping the real or supposed

physical problem it was proposed to describe. Kepler already dreamed of the Platonic

bodies (regular polyhedra) to rule celestial mechanics of planets. After his attempt to

prove this by analyzing celestial data, finally, Kepler’s laws resulted from his inves-

tigation. Kepler’s model is completely false, the interplanetary distances it predicts

are not sufficiently accurate, and Kepler was scientist enough to accept this eventu-

ally. But it is an excellent example of how truth and beauty do not always fit together.

The widespread string theory paradigm assumes that a simple highly symmetric stringy

structure at and beyond the Planck scale8 could explain what we observe down on earth,

actually a rather complex real world. That something simple looks complicated when

seen from far away is certainly not a very natural expectation. A solid macroscopic

may look to be perfectly rotational symmetric, zooming in on its microscopic structure

can uncover a lattice of atoms exhibiting all kinds of lattice defects and domain pat-

8String theory is motivated by the requirement to ’quantize gravity’. Note that in string theory the Planck

energy level represents the ground state on top of which an infinite tower of harmonics at En = n MPl (n =

2, · · · ,∞) resides. The algebra of the spectral raising and lowering operators can be closed to a Kac-Moody

algebra (infinite dimensional analogs of semi-simple Lie algebra) only in a particular space-time dimension

D. The unique supergravity string theory requires D=11, where 7 of them are assumed to be compactified

(see e.g. [87]). For me it is hard to believe that this is what shapes our real world.
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terns. The “the closer you look the more there is to see” pattern of thought looks to me

less artificial than expecting some harmonic oscillator “heaven”. In any case concepts

like the ones we are discussing here: Naturalness, Hierarchy and Fine-Tuning make no

sense without specifying the context in which they are addressed.

While “solving the hierarchy problem” seems to fail as a route to new physics, in

contrast, the concept of the minimal renormalizable extension of Fermi’s weak inter-

action theory turned out to be impressively successful in constructing piece by piece

the electroweak SM. It has lead to the introduction of the massive intermediate spin 1

bosons W± in charged current processes, the prediction of neural currents and the need

for a Z boson. The resulting U(1)Y ⊗SU(2)L gauge theory, renormalizable in the mass-

less case, requires a scalar spin 0 boson, the Higgs boson, as a trick to generate masses

of the weak gauge bosons and the fermions, without spoiling renormalizability. Sponta-

neous symmetry breaking, a mechanism known from condensed matter physics, turned

out to be the key mechanism for a renormalizable massive gauge theory. Another ex-

ample concerning minimality versus non-minimality we have when considering GUTs,

where fermions are necessarily populating higher representations while the fundamen-

tal ones are not occupied. Therefore the typical leptoquarks necessarily showing up in

GUTs are unnatural as an emergent phenomenon9.

A convincing solution of the SM’s hierarchy problem is known to be provided by

a supersymmetric extension of the SM. SUSY cannot be an exact symmetry because

it would predict a degenerate mass spectrum while phenomenologically the states of

the SUSY mirror world all must be heavier than the SM particles. This leads to a very

complicated world as a broken SUSY scenario not only is doubling the spectrum at

once but also leaving too much freedom, with about 100 unknown symmetry break-

ing parameters. This makes such extensions not really predictive without additional

assumptions. At the end phenomenological constraints require a SUSY version that

would not be solving the hierarchy problem really, rather it would only be shifting the

amount of fine-tuning required.

In addition, the hierarchy fine-tuning problem if being solved by a supersymmetriza-

tion of the SM creates new problems as we know. First, a second Higgs doublet field

needs to be introduced, which as such is an interesting option. However, in order

not to be in conflict with the absence of tree-level Flavor Changing Neutral Currents

(FCNC) 10 one has to impose R–parity, which is not less a fine tuning, although FCNCs

can be forbidden by a simple discrete symmetry. R–parity is not required by renormal-

izability, it is not naturally emergent in a low energy effective theory and thus looks to

be ad hoc11. A generic SUSY extension as such would be in contradiction with obser-

9The unification paradigm celebrated its triumphal success in Maxwell’s electromagnetism, which unified

electrical and magnetic laws and predicted electromagnetic waves. In contrast, as we know the electroweak

theory is not a true unification, it rather regulates the mixing of electromagnetic and weak interaction phe-

nomena. At the heart is γ−Z mixing and Z resonance (a kind of “heavy-light”) physics, which manifests

itself most convincingly in electron-positron annihilation into Z bosons. All further unification attempts so

far are missing confirmation.
10FCNCs are automatically absent in the SM by the GIM mechanism [88], as it is also highly established

by experiment.
11Similarly, a global lepton flavor symmetry U(1)e⊗U(1)µ⊗U(1)τ, which would imply exact lepton flavor

conservation is not emergent because renormalizability does not dependent on it. That it is a surprisingly

accurate approximate symmetry is due to the smallness of the neutrino masses, which likely results as a
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vation right away. This also illustrates that naturalness is a doubtful concept: R-parity

is a symmetry which forbids FCNCs but what is natural about it?

In my opinion, the dogma surrounding the so-called hierarchy or fine-tuning prob-

lem turned out to be a complete failure. Similarly, the GUT paradigm has not been

leading to any experimentally confirmed predictions that would support this concept. I

think the minimal renormalizable QFT paradigm is back. Thereby “minimal” is crucial,

many higher renormalizable structures like a GUT extension of the SM are not natu-

ral in that sense. Interestingly, a missing third fermion family or an additional fourth

family would spoil important properties of the SM, such as the RG flow, and the Higgs

boson then could not be a candidate for the inflaton. Another very important special

feature of the SM is its tree level accidental custodial symmetry. The latter is violated

by many of the proposed extensions of the SM, which then create a different fine tuning

problem [89], in all cases that violate the tree level SM relation cos2ΘW M2
Z
/M2

W
= 1.

This relation is strongly supported by experimental data, which precisely confirm SM

predictions of the radiative corrections.

One also has to keep in mind that precision tests of the SM already revealed a

test in-depth of its quantum structure. The largest corrections come from the running

fine structure constant α(s), the running of the strong coupling αs(s) and the large top

Yukawa y2
t (s) effects. As contribution to the ρ = GNC/Gµ(0) parameter, for example,

subleading corrections amount to a 10 σ deviation from the SM prediction when taking

into account the largest corrections only. Thus the SM is on very solid grounds better

than everything else we ever had.

On the other hand, the view that the SM is a low energy effective theory of some

cutoff system at the Planck energy scale MPl appears to be consolidated. This also puts

QFT on a firm mathematical basis. A crucial point is that MPl, providing the scale for

the low energy expansion in powers E/MPl, is exceedingly large, very far from what

we can see! A dimension 6 operator at LHC energies is suppressed by (ELHC/ΛPl)
2 ≈

10−30 . This seems to motivate a change in paradigm from the view that the world

looks simpler the higher the energy to a more natural scenario which understands the

“cutoff SM” as the “true world” seen from far away, with symmetries emerging from

not resolving the details of the short distance structure. In the low energy expansion,

one is “throwing away” an infinite tower of shorter distance information carried by the

suppressed so-called irrelevant operators.

The hierarchy problem requires to take the relationship between the bare UV and

the renormalized IR regime as testable physics. Here Wilson’s RG comes into play.

Kenneth Wilson 1971 [90] has been able to solve the problems surrounding the critical

indices of phase transitions in condensed matter systems, which have been persisting

for about 75 years. His work has shed new light on the role cutoffs may play in phys-

ical laws. Wilson’s renormalization semi-group, based on integrating out irrelevant

details of the short distance structure opened the quantitative approach of construct-

ing low energy effective quantum field theories that derive from systems whose short

distance structure has an intrinsic cutoff, like an atomic lattice or an atomic gas or

fluid (see e.g. [91]). The key low energy emergent structure notably turned out to

reveal renormalizable Euclidean quantum field theory. The latter exhibits analyticity

consequence of a see-saw mechanism at work.
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in a way which makes it equivalent to a Minkowski quantum field theory. The latter

hence is incorporating quantum mechanics as an emergent structure. As I will argue

in the following, cutoffs in particle physics are unavoidable in understanding the re-

lationship between a bare and a renormalized theory (see e.g. [92]). In such context,

renormalizability is an emergent property like all structures required in order renor-

malizability to be manifest. In our context cutoffs are indispensable for understanding

early cosmology in a bottom-up way [1]. This opens the possibility of an alternative

understanding of inflation, reheating, baryogenesis and all that [25–30]. As in con-

densed matter physics the connection between macroscopic long distance physics (at

laboratory scales) and the microscopic underlying cutoff system (high energy events as

they were natural in the early universe) turn out to have a physical meaning.

I remind that the SM’s naturalness problems and fine-tuning problems have been

made conscious by G. ’t Hooft [3] long time ago as a possible problem in the relation-

ship between macroscopic phenomena that follow from microscopic laws (a condensed

matter system inspired scenario). Soon later the “hierarchy problem” had been dogma-

tized as a kind of fundamental principle. In fact, the hierarchy problem of the SM had

been the key motivation for a number of types of extensions of the SM. It is therefore

important to reconsider the “problem” in more detail.

One of my key points concerns the different meaning a possible hierarchy problem

has in the symmetric and in the broken phase of the SM. In order to understand the

point, we have to remember why we need the Higgs particle in the SM. The Higgs bo-

son is necessary to get a renormalizable low energy effective electroweak theory [10].

Interestingly, one scalar particle is sufficient to solve the renormalizability problems

arising from each of many different massive fields in the SM, of which each causes the

problem independently of the others. The point is that this one particle has to exhibit

as many new forces as there are individual massive states [11]. All required new in-

teractions are in accordance with the SM symmetry structure in the symmetric phase

as we know. The taming of the high energy behavior, of course, requires the Higgs

boson to have a mass in the ballpark of the other given heavier SM states, if it would

be much heavier it would not serve its purpose in the low energy regime. It would lead

to the so-called “delayed unitarity” phenomenon [93]. Note that the Higgs boson has

to cure the unphysical mass effects for the given gauge boson masses MW , MZ and

fermion masses M f via adequate Higgs exchange forces, where the coupling strength

is proportional to the mass of the massive field coupled. A very heavy Higgs boson

eventually would decouple and thus miss to restore renormalizability of the massive

vector-boson gauge theory. Interestingly, in the symmetric phase the SM gauge-boson

plus chiral fermions sector is renormalizable without the Higgs-boson and Yukawa

sectors and scalars are not required at all to cure the high energy behavior because it is

renormalizable by its own structure. Therefore, in the symmetric phase, the mass de-

generate Higgs fields in the complex Higgs doublet can be as heavy as we like. Since

unprotected by any symmetry, naturally we would expect the Higgs particles indeed

to be very heavy. In fact the “origin” of the Higgs mass is very different in the bro-

ken phase, where all the masses, including the Higgs mass itself, are generated by the

Higgs mechanism [42, 43]. This we learn from the relation m2
H
= 1

3
λv2, holding in the

broken phase. In the symmetric phase, the effective Higgs mass is dynamically gener-

ated by the Planck medium, as we will argue below. Therefore, the usual claim that the
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SM requires to be extended in such a way that quadratic divergences are absent has no

foundation. Purely formal arguments based on perturbative counterterm adjustments

do not lead any further.

The hierarchy problem in particular addresses the presence of quadratic UV diver-

gences related to the SM Higgs mass term. Infinities in physical theories are the result

of idealizations and show up as singularities in a formalism or in models. UV singular-

ities in general plague the precise definition as well as concrete calculations in quantum

field theories (QFT) 12. A closer look usually reveals infinities to parametrize our ig-

norance or mark the limitations of our understanding or knowledge. One particular

consequence of UV divergences in local QFT is that the vacuum energy is ill-defined

as it is associated with quartically divergent quantum fluctuations.

This is another indication that tells us that local continuum QFT has its limitation

and that the need for regularization is actually the need to look at the true system

behind it. In fact the cutoff system is more physical and does not share the problems

with infinities resulting from the idealization realized in the large cutoff limit or lattice

continuum limit. In any case, the framework of a renormalizable QFT, which has been

extremely successful in particle physics up to highest accessible energies is not able

to give answers to the questions related to vacuum energy and hence to all questions

related to dark energy, accelerated expansion, and inflation of the universe.

Since the SM exhibits non-AF couplings like the U(1)Y coupling g1 or the Higgs

self-coupling λ at scales beyond the zero of the βλ function, also lattice calculations [96–

98] strongly suggest that in fact, the theory requires a finite cutoff, because the contin-

uum limit at infinite cutoff would be trivial.

It is thus natural to consider the SM to be what we observe as the Low Energy

Effective SM (LEESM), the renormalizable tail of the real cutoff system sitting at the

Planck scale. As a consequence all properties required by renormalizability, gauge

symmetries, chiral symmetry, anomaly cancellation, and the related fermion family

structure, as well as the existence of an elementary scalar, the Higgs boson, naturally

emerge as a consequence of the low energy expansion13. We remind that the emer-

gence of SM structures in a low energy expansion is a well investigated subject (see

e.g. [99] and references therein). It is often advocated as a tree-unitary requirement

but is easily reinterpretable as a low energy expansion where non-renormalizable ef-

fects are suppressed by inverse powers in the cutoff. These mechanisms are calculable

within perturbation theory [100–106]. As SM perturbation theory works at the Z mass

scale and gets better with increasing energy these perturbative derivations of gauge

symmetry and Higgs structure attain the status of proofs. The infinite tower of higher

order operators is suppressed to be invisible. Only a few operators are non-irrelevant

12Taming the infinities we encounter in the theory of elementary particles, i.e. of quantum field theories,

by completing them with a cutoff, often called the UV–completion of a QFT is as old as QFT itself. Actually,

it took 20 years from Dirac 1928 (Dirac hole theory of relativistic electron-photon interaction [pre-QED]) to

Feynman, Schwinger and Tomonaga in 1948 who found how to deal with the large cutoff limit and making

QED a predictive theory. For non-Abelian gauge theories proposed by Yang and Mills in 1954 [94] it

took another 17 years until a renormalizable formulation was found by ’t Hooft in 1971 [95] (actually by

circumventing a cutoff regularization).
13It is interesting to note that statistical mechanical systems with short-range exchange and long-range

multipole interactions exhibit vector bosons and graviton modes that follow from a multipole expansion of a

static potential [100]. In this sense the emergence of gauge-bosons looks pretty natural.
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and effectively observable, and this is what makes the world look much simpler than

a possibly chaotic Planck medium. In reality, infinities related to the relevant oper-

ators are replaced by eventually very large but finite numbers, and I will show that

sometimes such huge effects are needed in order to understand the real world. I will

argue that cutoff enhanced effects are responsible for triggering the Higgs mechanism

not very far below the Planck scale and the inflation of the early universe, as outlined

already in Sect. 1.

The history of our universe we can trace back 13.8 billion years close to the Big

Bang, when the expansion of the universe was ignited in a “fireball”, an extremely hot

and dense state when all structures, and in the end, all atoms, nuclei, and nucleons were

disintegrated into a world of elementary particles only. So the SM provides the key

information for what has happened in the early universe, and high energy accelerator

experiments are testing processes that only took place in nature in the early history of

the universe. If the Higgs boson is the source of dark energy that triggered inflation,

its discovery could mark a milestone in our understanding of the dynamics of the very

early universe. The origin of cold dark matter remains a mystery, which can have many

different explanations.

I think that questions concerning the early universe can be addressed only within a

LEESM “extension” of the SM, e.g. given by the SM supplied with a cutoff structure

in a minimal way. As we know, in a renormalizable QFT all renormalized quantities

as a function of the renormalized parameters and fields in the limit of a large cutoff

are finite and devoid of any cutoff relicts! Here we should remember the Bogoliubov-

Parasiuk renormalization theorem that states that order by order in perturbation theory

the renormalized Green’s functions and matrix elements of the scattering matrix (S-

matrix) are free of ultraviolet divergences. The theorem specifies a concrete procedure

(the Bogoliubov-Parasiuk R-operation) for the subtraction of divergences, establishes

the correctness of this procedure, and guarantees the uniqueness of the obtained re-

sults, modulo reparametrizations, which are controlled by the renormalization group.

In other words, in the low energy world cutoff effects are not accessible to experiments.

Consequently, the hierarchy problem cannot be addressed within the renormalizable,

renormalized SM, which encodes all observables. In this framework, all independent

parameters are free and have to be supplied by experiments. In this sense, within the

renormalized QFT the hierarchy problem is a pseudo-problem.

To my knowledge, the only non-perturbative definition of a renormalizable local

quantum field theory is the possibility to put in on a lattice by discretization of space-

time. This again may be taken as an indication that the need for a cutoff actually

is an indication that the cutoff exists in the real world. In this sense, lattice-QFT is

closer to the true system than its continuum tail. Of course, there are many ways to

introduce a cutoff and actually, we cannot know what the cutoff system looks like truly.

This is not a real problem if we are interested in the long-range patterns mainly. The

only thing we have to take care of is that the underlying system is in the universality

class of the SM. This in particular concerns the observable degrees of freedom and the

emergent symmetries at work, which require the particles to be grouped predominantly

in the simplest (lowest dimensional) representation of the corresponding symmetry

groups. The simplest symmetry groups with singlets, doublets, and triplets are the

most natural ones to emerge, as realized within the SM’s U(1)Y ⊗ SU(2)L ⊗ SU(3)c
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gauge symmetry pattern [101–106]. More on how the SM may emerge the reader may

find in the Appendix.

4 The Hierarchy Problem revisited

In [107] already, I outlined the flaws I see in the common reasoning concerning the

hierarchy issue. As argued above, I am addressing the hierarchy problem within the

LEESM “extension” of the SM. Specifically, I have in mind an implementation of the

SM on a Planck lattice (see e.g. [108]). The only important point is that we can perform

a low energy expansion in the corresponding cutoff. It is an accepted fact that the SM

predicts a huge gap between the renormalized and the bare Higgs boson mass. From

the LEESM point of view, this prediction is what promotes the Higgs boson to be a

promising candidate for the inflaton. The hierarchy gap showing up is not something

we have to avoid. Now, would-be infinities are replaced by eventually very large but

finite numbers, and I will show that sometimes such huge effects provide what we need

to understand established phenomena like inflation.

One thing we should remind here: the bare suitably regularized theory has always

been the true one. Renormalization always has just been a reparametrization. The bare

theory assumed to exhibit a cutoff of some sort, shows a cutoff dependent large-cutoff

tail, sometimes called “preasymptote” [1, 92], which is equivalent to a renormalized

local QFT in the universality class of the cutoff-system. Thereby it is not important

that the bare cutoff system exhibits all symmetries the long-range tail will have because

most of the symmetries of the LEET are emergent. In fact, by a reparametrization of

parameters and fields of the preasymptotic theory (renormalizable tail) the residual

cutoff-dependence is completely removable (see [92] and references therein). Because

the renormalized tail has lost all information about the cutoff, it is nonsensical to say

that in the LEET we would naturally expect the Higgs mass to be of the order of the

cutoff.

However, in the LEESM “extension” of the SM, bare parameters turn into physical

parameters of the underlying cutoff-system being the “true world” at short distances.

Then the hierarchy problem is the problem of “tuning to criticality”, which concerns

the dim < 4 relevant operators, in particular the mass terms. In the symmetric phase

of the SM, there is only one mass to be renormalized, the others being forbidden by

the known chiral and gauge symmetries. For the Higgs field mass which appears in the

Higgs potential the fine-tuning to criticality has the familiar form

m2
0(µ1 = MPl) = m2(µ2 = MH)+δm2(µ1,µ2) ;

δm2 =
Λ2

Pl

16π2
C(µ) , (16)

with a coefficient typically C = O(1). To keep the renormalized mass at some small

value, which can be seen at low energy, formally m2
0

has to be adjusted to compensate

the huge number δm2 revealed by the perturbative SM calculation such that about 35

digits must be adjusted in order to get the observed value below the electroweak scale.

Is this a problem?
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One thing is obvious: our fine-tuning relation exhibits quantities (in the LEESM all

observable in principle) at very different scales, the renormalized ones at low energy

and the bare ones when approaching the Planck scale. As long as we have no direct

access to the Planck physics there is no proven conflict.

Actually, a closer look reveals that in the Higgs phase there is no hierarchy problem

in the SM! Why? It is true that in the relation (16) both m2
0

and δm2 formally may be

expected many many orders of magnitude larger than m2 . Even worse, in the broken

phase δm2 has a huge negative value and hence m2
0

must be tuned to be huge negative

as well. However, in the broken phase, m2 ∝ v2(µ0) is O(v2) not O(M2
Pl

). Since v is the

result of spontaneous symmetry breaking (non-symmetric ground state) it is per se a

low energy parameter related to the emergence of long-range order. Thus in the broken

phase, the Higgs boson is expected to be natural light. That the Higgs mass likely is

O(MPl) in the symmetric phase is what realistic inflation scenarios are demanding.

In the broken phase, characterized by the non-vanishing Higgs field VEV v(µ) , 0,

all the masses are determined by the well-known mass coupling relations

m2
W

(µ2) = 1
4
g2

2
(µ2)v2(µ2) ; m2

Z
(µ2) = 1

4
(g2

2
(µ2)+g2

1
(µ2))v2(µ2) ;

m2
f
(µ2) = 1

2
y2

f
(µ2)v2(µ2) ; m2

H
(µ2) = 1

3
λ(µ2)v2(µ2) .

(17)

Here we consider the parameters in the MS renormalization scheme, µ is the MS

renormalization scale, which we have to identify with the energy scale of the physi-

cal processes or equivalently with the corresponding temperature in the evolution of

the universe. The RG equation for v2(µ2) follows from the RG equations for masses

and massless coupling constants using one of these relations. The evolution of the MS

versions of m and v are shown in Fig. 5. As a key relation we use [68]

µ2 d

dµ2
v2(µ2) = 3µ2 d

dµ2


m2

H
(µ2)

λ(µ2)

 ≡ v2(µ2)

[
γm2 −

βλ

λ

]
, (18)

where γm2 ≡ µ2 d

dµ2 lnm2 and βλ ≡ µ2 d

dµ2 λ. We write the Higgs potential as V = m2

2
H2+

λ
24

H4, which fixes our normalization of the Higgs self-coupling. When the m2-term

changes sign and λ stays positive, we know we have a first order phase transition (see

below). Funny enough, the Higgs particle gets its mass from its interaction with its

own condensate! and thus gets a mass in the same way and in the same ballpark as the

heavier SM species, which couple strongest to the Higgs field. As mentioned before

the Higgs mass cannot be much heavier than the other heavier particles if renormal-

izability is to be effective at low and moderate energies. The interrelations (17) also

show that for fixed v, as determined by the Fermi constant Gµ = 1/(
√

2v2), the Higgs

cannot get too heavy if perturbation theory should remain applicable. Also note that

the conspiracy between those couplings relevant to stabilize the vacuum only can work

if these couplings are of comparable size.

Often an extreme point of view is taken: all particles naturally should have masses

O(MPl) i.e. v = O(MPl). This would mean that the symmetry is not recovered at the

high (=bare) scale and the notion of spontaneous symmetry breaking would be ob-

solete! Of course, this makes no sense. In a perturbative calculation within a cutoff
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Figure 5: Dimensionful SM running MS parameters m and v =
√

6/λm. Error bands

include SM parameter uncertainties and a Higgs boson mass range 125.5± 1.5 GeV

which essentially determines the widths of the bands

regulated theory formally one finds v = O(MPl) but in the broken phase δm2
H

is huge

negative, which requires a non-perturbative vacuum rearrangement revealing the men-

tioned mass coupling relations in terms of a renormalized effective v also for the Higgs

particle. Since v ≡ 0 above the EW phase-transition point, it makes no sense to say that

one naturally has to expect v(µ=MPl)=O(MPl) . The Higgs-field VEV v is an order pa-

rameter, related to the spontaneous breaking of the discrete symmetry14 Z2 : H↔−H,

and is resulting from long range collective behavior. It can be as small as we like.

Its value is a function of the effective temperature (energy scale) with its maximum

at T = 0, monotonically decreasing with increasing temperature and vanishing at the

second order phase transition point Tc above which v(T ) ≡ 0 vanishes identically (non-

analyticity).

A well known prototype for long range order is the magnetization in a ferromag-

netic spin system15 illustrated in Fig. 6.

The analogy shows us that v/MPl ≪ 1 is not unnatural since v , 0 emerges only

below a critical temperature, which is not in a simple way related to MPl. The EW

scale is set by v(µ) and depends on µ. As we learn from Fig. 5, at low energy v(0) =

1/(
√

2Gµ)1/2 ≈ 246 GeV, but interestingly, in contrast to the magnetization of a fer-

romagnet, v(µ) is increasing rather than monotonically decreasing with increasing µ.

14In the unitary gauge, we can avoid problems related to Elitzur’s theorem [109], which claims that an

order parameter cannot be associated with SSB of a non-Abelian gauge theory. In a physical gauge, on

physical Hilbert space, Higgs ghost fields are absent and a Mexican hat potential is a phantom as it only exist

if ghost space is taken into the display. A physical Mexican hat potential would imply the existence of three

Nambu-Goldstone bosons.
15As an example we may consider an Ising ferromagnet in D = 2 dimensions, J is the nearest neighbor

(n.n.) spin coupling between the spins on a lattice

H(σ) = −J
∑

<i j>

σiσj ; Pβ(σ) =
e−βH(σ)

Zβ
; Zβ =

∑

σ

e−βH(σ) .

Here β = 1
kBT

where kB is the Boltzmann constant. The Onsager solution for the critical temperature reads

sinh2
(

2J
kBT

)
= 1; Tc =

2J

kB ln(1+
√

2)
and the magnetization is given by M =

(
1− [

sinh2βJ
]−4

) 1
8 , depending on

temperature T and n.n. spin interaction strength J. For more details see e.g. [91]
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Figure 6: Spontaneous magnetization M = M(T ) as a function of temperature T . Tc is

the critical temperature above which M(T ) ≡ 0 for all T > Tc. Furthermore, M(T )→ 0

as T <→Tc may be as small as we like depending on the distance T −Tc from criticality.

Note that M(0) is not given by what would correspond to the cutoff of the ferromagnetic

system, even if it would be measured in units of the cutoff

This is because of the rich conspiring dynamics of the SM encoded in the RG equation

(18)16, yet v(µ) is vanishing at µ0 ∼ 1016 GeV: v(µ)→ 0 when µ<→µ0, as we will see

later. The second order phase transition (PT) point is a point of non-analyticity i.e.

exhibits singular behavior and physics in the ordered phase and the disordered phase

are very different.

Considering a ferromagnet one has to tune the temperature T to criticality in order

to find the PT point. What is tuning the temperature to criticality in the SM? The

answer is the expansion of the universe, which provides a scan in temperature (see

also [110]). The maximum value of v(µ) is achieved in the low energy limit at µ = 0.

Why should the magnitude of v(0) be of the order of the Planck scale, given the fact that

above the phase transition point, in the disordered phase, the VEV is actually vanishing

identically?

This shows that the Higgs boson mass renormalization equation is not a static equa-

tion but is subject to a sophisticated dynamics driven by the expansion of the universe.

In the symmetric phase at very high energy, we see the bare system. There the

Higgs field is a collective field exhibiting an effective mass generated by radiative ef-

fects within the Planck system such that m2
0
≈ δm2 at MPl. In particle physics, a radia-

tively induced mass is known from the Coleman-Weinberg mechanism [111], now in

the symmetric phase and applied to the Planck medium. Such a mechanism, which is

natural in this context, eliminates a possible fine-tuning problem at all scales. There

are many examples in condensed matter systems, like the effective mass of the photon

in the superconducting phase (Meissner effect) or the effective mass of the effective

field which encodes the spin-singlet electron pairs (Cooper pairs) in the Ginzburg-

Landau (GL) model [112] of superconductivity17. The latter directly corresponds to

16Fig. 5 shows that the Higgs mass parameter m is varying little in the broken phase, while v =
√

6/λm

increases substantially because λ decreases rapidly.
17Originally the Ginzburg-Landau theory of superconductivity has been proposed as a macroscopic phe-

nomenological effective theory describing type-I superconductors without reference to microscopic prop-

erties. Later Bardeen-Cooper-Schrieffer could explain superconductivity from its microscopic structure in
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the Abelian Higgs model. Emerging as an effective field from the hot Planck system,

which exhibits all types of excitations, it is also pretty obvious that the Higgs field cou-

ples to all these modes that we see as Yukawa and Higgs to gauge boson couplings in

the SM. That these couplings exhibit the symmetries of the SM is again due to the fact

that only the renormalizable tail can be seen at low energies. All Planck system modes

that do not conspire, as SM degrees of freedom and their couplings do within the SM,

are not perceivable at long distances. The SM emerges as a self-organized system.

On the one hand, we know that astronomy and astrophysics are unthinkable without

the input from laboratory physics in general and particle physics in particular. On

the other hand, it is not new that particle physics is learning from cosmology. What

is required to explain inflation, baryogenesis, nucleosynthesis, CMB patterns, dark

matter, etc. ? If the SM has an extrapolation up to the Planck scale, evidently one

is able to confront SM predictions with physics established to have happened in the

early universe. In contrast to the old paradigm of an empty vacuum: we know that

the ground state of the world is filled with dark energy, with a Higgs condensate and

quark and gluon condensates. All these effects have been showing up at certain times

and play a key role in the evolution of the universe. Obviously, there are plenty of

questions to be answered in order to get a better understanding of how the universe has

been shaped after the Big Bang.

5 Running SM parameters trigger the Higgs mecha-

nism

In Sect. 2.2 already, we have discussed how the Higgs boson discovery has been re-

vealing a peculiar value for the Higgs boson self-coupling, which largely clarified the

path of extrapolating the SM to higher energies. We remind that all dimensionless cou-

plings satisfy the same RG equations in the broken and in the unbroken phase and are

not affected by any power cutoff dependencies. This is as it has to be because the Higgs

mechanism (SSB) does not alter the UV behavior. The evolution of the SM couplings in

the MS scheme up to the Planck scale has been investigated in [50,58–65,70,116,117],

and has been extended to include the Higgs-field VEV and the masses in [1, 69]. Ex-

cept for g1, which increases very moderately, all other couplings decrease and stay

positive up to the Planck scale. This strengthens the reliability of perturbative argu-

ments and reveals a stable Higgs potential up to the Planck scale [1, 69]. While most

analyses [58,61,62,70,116,117] find that for the given Higgs mass value range vacuum

stability is nearby only (meta-stability) 18, and the SM actually fails to persist up to the

their BCS-theory [113]. Afterward, Gor’kov derived the GL-theory [114] showing that in some limit all GL

parameters have a microscopic interpretation. In addition, Abrikosov showed that GL-theory also models

type-II superconductors [115]. The effective GL-theory thus efficiently describes a rich variety if supercon-

ducting systems, without the need for a detailed microscopic understanding.
18Most groups are adopting essentially the same input parameters presented in [58,61,70] and a radiatively

corrected effective potential and find the vacuum to lose stability at about a surprisingly low scale of about

µ ∼ 109 GeV [input not independent]. Keep in mind: the Higgs boson mass miraculously turns out to have

a value very close to what was expected from vacuum stability. It looks like a tricky conspiracy with other

couplings to reach this “purpose”. Assuming vacuum stability, the narrow stability window actually makes

the Higgs mass to be a predictable quantity if we consider the other SM parameters as given. Also imposing
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Table 1: Comparison of MS parameters at various scales: Running couplings for MH =

126 GeV and µ0 ≃ 1.4× 1016 GeV. Note that λ = 0 is an essential singularity and the

theory cannot be extended beyond a possible zero of λ. Remind that v =
√

6m2/λ i.e.

v(λ)→∞ as λ→ 0. Besides the Higgs boson mass mH =
√

2m all masses mi ∝ gi v→∞
would yield a different cosmology

my findings [Jeg] Degrassi et al. 2013 [Deg]

coupling \ scale MZ Mt µ0 MPl Mt MPl

g3 1.2200 1.1644 0.5271 0.4886 1.1644 0.4873

g2 0.6530 0.6496 0.5249 0.5068 0.6483 0.5057

g1 0.3497 0.3509 0.4333 0.4589 0.3587 0.4777

yt 0.9347 0.9002 0.3872 0.3510 0.9399 0.3823√
λ 0.8983 0.8586 0.3732 0.3749 0.8733 i 0.1131

λ 0.8070 0.7373 0.1393 0.1405 0.7626 - 0.0128

Planck scale, our evaluation of the matching conditions yields initial MS parameters

at the Z boson mass scale which evolve preserving the positivity of λ. Thereby the

critical parameter is the top-quark Yukawa coupling, for which we find a slightly lower

value, which is based on the analysis [69]. My MS input at MZ is [1] g3 = 1.2200,

g2 = 0.6530, g1 = 0.3497, yt = 0.9347 and λ = 0.8070. At MPl I get g3 = 0.4886,

g2 = 0.5068, g1 = 0.4589, yt = 0.3510 and λ = 0.1405 (see Table 1). In view of the

fact that the precise meaning of the experimentally extracted value of the top-quark

mass is not free of ambiguities, usually, it is identified with the on-shell mass Mt (see

e.g. [62, 69, 118] and references therein), it may be premature to claim that instabil-

ity of the SM Higgs potential is a proven fact already [71]. As I have elaborated in

Sect. 2.1, the implementation of the matching conditions is not free of ambiguities,

while the evolution of the couplings over many orders of magnitude is rather sensitive

to the precise values of the initial couplings. Accordingly, all numbers presented in

this article depend on the specific input parameters adopted, as specified in [1, 69]. In

case the Higgs self-coupling has a zero λ(µ2) = 0, at some critical scale µc below MPl,

we learn from Eq. (18), or more directly from v(µ2) =
√

6m2(µ2)/λ(µ2)
λ→+0→ ∞ that the

SM loses its “being well-defined” above this singular non-analytic point19.

For our input parameters, Table 1 shows that the relevant running MS parameters at

the Planck scale are of comparable size in the range 0.51 for g2 being the largest here

and 0.35 for yt being the smallest, with
√
λ at 0.375 slightly larger in our normalization.

It tells us that approximations like the gaugeless limit (g1 = g2 = 0) or assuming λ ≈ 0

Planck-scale boundary conditions may be argued to fix the Higgs boson mass [59, 60]. If the Higgs boson

misses to stabilize the vacuum, why does it just miss it almost not?
19As we have argued earlier we consider the bare Higgs potential to be the true potential, except that

the bare parameters have to be calculated bottom-up from the known values at low energy. A low energy

reparametrization also affects the form of the potential by radiative corrections as we know from Coleman-

Weinberg [111]. The correspondingly modified effective potential plays a crucial role when the potential

gets unstable and actually can turn instability into meta-stability [37, 58]. This will be discussed in Sect. 5.1

below. The Planck medium, from which the SM derives as a long distance tail, certainly exhibits a stable

ground state. This we infer from our mere existence.
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relative to other couplings are not viable approximations near MPl.

For what follows we take up what Shaposhnikov et al. [37] say about vacuum sta-

bility in their conclusion: “Although the present experimental data are perfectly con-

sistent with the absolute stability of the Standard Model within the experimental and

theoretical uncertainties, one should not exclude the possibility that other experiments

will be able to establish the meta-stability of the electroweak vacuum in the future.”

But, based on a slightly modified evaluation of MS parameters [69] (which revealed

vacuum stability), we adopt the view: “Although other evaluations of the matching

conditions seem to favor the meta-stability of the electroweak vacuum within the ex-

perimental and theoretical uncertainties, one should not exclude the possibility that

other experiments and improved matching conditions will be able to establish the ab-

solute stability of the Standard Model in the future.”

Running couplings can affect dramatically the quadratic divergences and the inter-

pretation of the hierarchy problem. Quadratic divergences have been investigated at

one-loop in [4] (see also [5, 119, 120]), at two loops in [6–8]. At n loops the quadratic

cutoff-dependence is of the form

δm2
H =

Λ2

16π2
Cn(µ) , (19)

where the n-loop coefficient only depends on the gauge couplings g1, g2, g3, the

Yukawa couplings y f and the Higgs self-coupling λ. Neglecting the numerically in-

significant light fermion contributions, the one-loop coefficient function C1 may be

written as

C1 = 2λ+
3

2
g2

1+
9

2
g2

2−12y2
t (20)

and is uniquely determined by dimensionless couplings. The latter are not affected

by quadratic divergences such that standard RG equations apply. Surprisingly, as first

pointed out by Hamada, Kawai and Oda in [7], taking into account the running of the

SM couplings, the coefficient of the quadratic divergences of the bare Higgs mass cor-

rection can vanish at some scale, given the specific SM couplings that became available

after the Higgs boson discovery. In contrast to our evaluation Hamada et al. actu-

ally find the zero to lie above the Planck scale, having adopted input MS parameters

from [58]. In our analysis, relying on matching conditions for the top-quark mass ana-

lyzed in [69], we get a scenario where λ(µ2) stays positive up to the Planck scale and

looking at the relation between the bare and the renormalized Higgs mass we find C1

and hence the Higgs mass counterterm to vanish at about µ0 ∼ 1.4× 1016 GeV, not

very far below the Planck scale. The next-order correction, first calculated in [6,8] and

confirmed in [7] reads

C2 = C1+
ln(26/33)

16π2
[18y4

t +y
2
t (−7

6
g2

1+
9

2
g2

2−32g2
3)

−87

8
g4

1−
63

8
g4

2−
15

4
g2

2g
2
1+λ (−6y2

t +g
2
1+3g2

2)− 2

3
λ2] , (21)

and numerically does not change the one-loop result significantly. The same results ap-

ply for the Higgs potential parameter m2, which corresponds to m2=̂ 1
2

m2
H

in the broken
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Figure 7: The Higgs mechanism transition in the SM. Left: the zero in C1 and C2

for MH = 125.9± 0.4 GeV. Right: shown is X = sign(m2
bare

)× log10(|m2
bare
|), which

represents m2
bare
= sign(m2

bare
)×10X

phase. For scales µ < µ0 we have δm2 large negative, which is triggering spontaneous

symmetry breaking by a negative bare mass m2
0
=m2+δm2, where m again denotes the

renormalized mass. The phase transition is illustrated in Fig. 7. The jump taking place

here in the vacuum energy is given by20

∆V(φ0) = −
m2

eff
v2

8
= −λv

4

24
∼ −9.6×108 GeV4 ≈ −(176.0 GeV)4 . (22)

As a CC contribution it is of negative sign and 50 orders of magnitude off relative

to what corresponds to the observed ΛCMB (see also [22]). However, the effect is

small relative to the O(M4
Pl

) size V(0) = 〈V(φ)〉, which will be discussed in Sect. 6. At

µ = µ0 we have δm2 = 0 and the sign of δm2 flips, implying a phase transition to the

symmetric phase. Finite temperature effects [121–124], which must be included in a

realistic scenario, turn out not to change the gross features of our scenario, unless µ0

would turn out to lie much closer to ΛPl [1]. A different effect is due to the change

in the effective mass resulting from the Wick reordering of the Lagrangian by a non-

vanishing 〈Φ+Φ〉. This will be discussed in Sect. 6. It produces a larger shift of the

transition point as one may learn from Fig. 8, where the finite temperature effects are

displayed. What do we learn from this analysis? The Higgs mechanism is dynamically

triggered as the temperature in the universe drops below µ0. In the low energy phase,

the Higgs boson mass MH substitutes
√

2m and in fact has to be calculated from the

vacuum rearrangement (see Fig. 12). Now mH turns into an emergent mass, which is

determined by the mass-coupling relation (17) like for all other massive particles in

the Higgs phase. At the transition point, we have δm2 = 0 and no hierarchy problem.

While above µ0 the shift δm2 is physical and emergent from the interaction in the

Planck medium, below µ0, the shift δm2 looses its physical meaning. This is because at

µ= µ0 the enhanced cutoff-effects are nullified. At this point, the access to cutoff effects

gets lost and we enter the renormalizable renormalized low energy phase. Below µ0,

we still use δm2
H

in perturbative mass renormalization, where it is now large negative if

20Note that this is a finite prediction independent of quadratic cutoff effects. The transition point µ0 is a

matching point where bare and renormalized quantities at scale µ0 agree, i.e. λ = λ(µ0) and v = v(µ0).
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Figure 8: X as displayed in the right panel of Fig. 7 including leading finite tem-

perature correction to the potential V(φ,T ) = 1
2

(gT T 2 +m2
0
)φ2 + λ

24
φ4 + · · · with gT =

1
16

[
3g2

2
+g2

1
+4y2

t +
2
3
λ
]

from [125] affecting the phase transition point. Left: for the

bare case [m2,C1]. Right: with adjusted effective mass from vacuum rearrangement

[m′2,C′
1
=C1+λ]. In the case µ0 sufficiently below MPl, the case displayed here, finite

temperature effects affect the position of the phase transition little, while the change of

the effective mass by the vacuum rearrangement is more efficient. The finite tempera-

ture effect with our parameters is barely visible

we still insist on using the now physics-wise inaccessible Planck scale as a UV cutoff.

I would say that argumentations based on (16) now turn into formal nonsense. Not

only the magnitude of the cancellation is arbitrary, but it also has the wrong sign, for

what could be related to a physical mass. The physical mass is determined by the

curvature at the minimum of the potential. The key outcome of our calculation is the

observation that the SM at high enough sub-Planckian energies undergoes a transition

into the symmetric phase [1], presuming a stable vacuum. Fig. 1 displays the SM

prediction for the effective Higgs mass as a function of the energy scale. This profile

promotes the Higgs boson to act as an inflaton as discussed in Sect. 1 already.

5.1 Vacuum stability and effective potential

The classical Higgs potential (2) for λ > 0 is bounded from below and has a trivial

minimum for m2 > 0 at φ0 = 0, and a non-trivial minimum at φ2
0
= −6m2

λ
for m2 < 0.

When the classic potential turns unstable, because λ is running to be negative, the

analysis of the vacuum stability has to be based on the effective potential, which is
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obtained by including the quantum corrections [111, 126] 21. The effective potential is

gauge- and scale-dependent and not an observable. In the Landau gauge and the MS

scheme it can be written as [127–130] (also see [51]) 22

Veff(φ(t)) =
1

2
m2(t)φ2(t)+

1

24
λ(t)φ4(t)+V1+V2+V3+Vrem , (23)

with

V1 = κ


3

2
m4

W (t)

ln
m2

W
(t)

µ2(t)
− 5

6

+
3

4
m4

Z(t)

ln
m2

Z
(t)

µ2(t)
− 5

6

−3m4
t (t)

[
ln

m2
t (t)

µ2(t)
− 3

2

]

+
1

4
m4

H(t)

ln
m2

H
(t)

µ2(t)
− 3

2

+
3

4
m4

G(t)

ln
m2

G
(t)

µ2(t)
− 3

2



 , (24)

where κ = 1/(4π)2 and mi are the masses of different particles in the background of the

classical Higgs source field φc of the generating functional for the irreducible Higgs

vertex functions, which upon renormalization is given by φ(t) = Zφ(t)φc. Thus we have

m2
W (t) =

1

4
g2

2(t)φ2(t) , m2
Z(t) =

1

4
[g2

2(t)+g2
1(t)]φ2(t) , m2

t (t) =
1

2
y2

t (t)φ2(t) ,

m2
H(t) = m2+

1

2
λφ2(t) , m2

G(t) = m2+
1

6
λφ2(t) . (25)

The effective potential as derived in the symmetric phase include the would-be Higgs

ghosts G contribution as physical degrees of freedom, in the broken phase Higgs ghosts

are massless in the Landau gauge (would-be Nambu-Goldstone bosons). In the sym-

metric phase they contribute as three additional Higgs particles. As we know the Higgs

boson mass in the broken phase (m2 < 0) is M2
H
= −2m2 = 1

3
λv2, where v refers to the

EW vacuum. Two-loop corrections V2 have been calculated in [128, 129] and may

21Being a part of the SM Lagrangian the Higgs potential term considered so far gets reparametrized by a

change of the effective parameters and the effective Higgs field and by appropriate counterterms only, as long

as perturbation theory does not break down. All perturbative physics is obtained as usual by means of the

renormalizable Lagrangian, written in terms of the quantized fields, and the corresponding Feynman rules.

Also note that the Higgs contribution to the energy-momentum tensor of Einstein gravity is represented by

the symmetric energy-momentum tensor

Θ
µ
ν =

∂L
∂(∂µφ)

∂νφ−δµνL , where L(φ) =
1

2
gµν ∂µφ∂νφ−V(φ) ,

in terms of the Higgs part of the bare SM Lagrangian.
22As shown in [111], the potential satisfies the RG equation

µ
∂

∂µ
+

∑

i

βi
∂

∂λi
+γφ

∂

∂φ

 V = 0

where λi = m2,λ,g′ = g1,g = g2,gs = g3, yt with corresponding beta-functions βi and γ the anomalous di-

mension of the Higgs field. The RG as usual is solved along characteristic curves where t parametrizes the

position on the curve. The solution reads

V(µ,λi,φ) = Z4
φ(t)V(µ(t),λi(t),φ) ,

with Zφ(0) = 1, λi = λi(0) and φ = φ(0) .
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be found in more condensed form in [58]. V3 includes the leading three-loop correc-

tions computed in [131]. The remainder Vrem represents the higher-order contributions,

which include also the higher dimension operators starting at four loops [129,132,133]:

Vrem ∼ λφ4
∑

L>4


λ2

M2
Pl

φ2


L−3

, (26)

where L is number of loops.

The wavefunction renormalization of the Higgs field takes the form

φ(t) = Zφ(t)φc = exp

{∫ t

0

γ(τ)dτ

}
φ(0) , φ(0) = φc , (27)

where γ(t) = dlnZφ/dt is the anomalous dimension of the Higgs field:

γ = κ

[
9

4
g2

2+
3

4
g2

1−3y2
t

]
+ κ2

[
y2

t

(
27

4
y2

t −20g2
3−

45

8
g2

2−
85

24
g2

1

)

+
271

32
g4

2−
9

16
g2

2g
2
1−

431

96
g4

1−
1

6
λ2

]
+ · · · (28)

Finally, the scale µ(t) is related to the running parameter t by

µ(t) = µet, i.e. t = lnµ(t)/µ , (29)

where µ is a fixed scale, that we will take equal to the physical top-quark mass, Mt as a

reference point. Observable physical predictions up to perturbative truncation errors do

not depend on the choice of the renormalization scale. This can be used in order to keep

radiative corrections moderate by choosing µ(t) = φ(t) which avoids large logarithms

at any given t, since then ln m2
W

(t)/µ2(t) = ln g2(t)/4 etc. (see [129]). One also may

choose µ(t) = φc in which case ln m2
W

(t)/µ2(t) = ln g2(t)/4+ 2Γ etc. The correction

Γ =
∫ φ

Mt
γ(µ)d ln(µ) stems from the field renormalization factor Zφ.

As elaborated in [51] for high Higgs fields the effective potential may be cast into

the simple form where it is dominated by the quartic term

Veff ≈
λeff(φ)

24
e4Γ(φ)φ4

c (30)

and λ(φ) depends on φ the same as the running coupling λ(µ) depends on the running

scale µ = φc with modified coupling [70]

λeff ≈ λ+ κ


9

4
g4

2 (ln
g2

2

4
− 5

6
+2Γ)+

9

8
(g2

2+g
2
1)2 (ln

g2
2
+g2

1

4
− 5

6
+2Γ)

−18y4
t (ln

y2
t

2
− 3

2
+2Γ)+

3

2
λ2 (ln

|λ|
2
− 3

2
+2Γ)+

1

2
λ2 (ln(

|λ|
6
− 3

2
+2Γ)

]

+ κ2 6y4
t

[
8g2

3 (3r2
t −8rt +9)− 3

2
y2

t (3r2
t −16rt +23+

π2

3
)

]
+ · · · , (31)
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Figure 9: The bare versus the effective Higgs coupling and the effective potential for

the parameter set [Jeg] of Table 1. Left: the effective Higgs self-coupling λeff governing

the SM effective potential Veff ∼ λeff

24
φ4 for large fields. “CEQ” is one-loop improved

from [51], “Deg” is two-loop improved from [58]. The correction ∆λeff represents the

corrections included in “Deg” relative to λbare. Right: the bare potential compared

with different approximations of the effective potential: one-loop improved “Deg-1”,

two-loop improved “Deg-2” and three-loop improved “Mar-3” [131].

up to less relevant corrections. The crucial point is that for parameters as [Deg] in

Table 1 the correction term is positive all up to the Planck scale. At the EW scale

the leading positive λ-term dominates λeff up to scales where λ approaches a zero and

there changes the sign, if such a zero exists, which depend on the precise input values

at the EW scale. In the vicinity above the zero of λ actually λeff remains positive and

such stabilizes the Higgs vacuum to somewhat higher scales but also turns negative

to a metastable state before reaching the Planck scale (see Fig. 3 in [58]). In contrast

for the parameter set [Jeg] the correction ∆λeff also starts positive but at higher scales

takes negative values. These are small, however, and are not affecting the positivity of

λeff itself as seen in the left panel of Fig. 9. In the stable vacuum scenario radiative

corrections of the effective potential are moderate and do not affect the main pattern

as long as λ remains positive. The cutoff power enhanced effects are always much

larger than the standard radiative corrections to the effective potential, provided the

formers are taken into account. This we will have to remind also for the discussion to

follow in Sect. 6. The quantum corrections modify the shape of the potential such

that a second minimum at some higher (Planck) scale may be induced (see Fig. 10 and

Fig. 7 in [58]). As first discussed in [129], a second minimum is also obtained when

a transient instability emerges above our Higgs transition point µ0 when the bare mass

term gets positive and actually gets huge because of the quadratic cutoff-enhancement.

For especially fine-tuned parameters this may happen also if radiative corrections are

not yet included. In any case, the existence of a second minimum depends significantly

on the higher order corrections. Depending on the values of the Higgs boson and top-

quark masses the lifetime of the EW vacuum can be larger or smaller than the age of

the Universe. The first case corresponds to the metastable scenario.

For stationary points φ0 much larger than the electroweak scale one has λeff ≪ 1
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Figure 10: The form of the effective potential for the Higgs field φwhich corresponds to

the stable, critical and metastable electroweak vacuum. The pattern displayed, admit-

ting for two minima at non-zero field values requires the effective potential to exhibit

even powers of φ up to φ8. v is the location of the EW minimum and φmin ≫ v is the

value of a new minimum.

and the curvature of the potential is given by [52]

∂2Veff

∂φ2(t)

∣∣∣∣∣∣
φ=φ0

=
1

2
(βλ−4γλ) φ2

0 ≈
1

2
βλφ

2
0 . (32)

Therefore, in order that the potential exhibits a second minimum, the function βλ must

have passed a zero because we know that βλ is negative at EW scales. For the parameter

set [Jeg] a zero is found at about µλ ≃ 1017 GeV. What happens for the two parameter

sets [Jeg] and [Deg] is shown in Fig. 11, which also illustrates the significance of

the radiative corrections. In the stability case the effective potential does not alter

the main picture, while in the metastable case a second minimum is also missing and

the potential turns unbounded from below way below the Planck regime. Since the

tunneling rate to the Planck regime is exceedingly low, the EW vacuum still looks

to be stable. As follows from the SM RG, because βλ contains parts which are not

proportional to λ, the Higgs self-coupling λ is the only SM dimensionless coupling

that can change the sign with increasing energy scale.

In our case, where λ(µ) > 0 up to MPl, in the early phase of the expanding universe,

the effective potential is approximated by

V(φ) ≈ V(0)+
m2

eff

2
φ2+

λeff

24
φ4 , (33)

and the correction turns out not to be significant for what concerns the scenario as such.

Actually, the upshot of the two-loop analysis in [129] has been that “the requirement

that the electroweak vacuum remains stable turns out to be essentially identical to the

requirement that λ remains positive”.

One has to keep in mind that a metastable EW ground-state in a globally unstable

potential, as found in commonly accepted analyses [37, 58, 70], very likely does not

model what truly happens at the Planck scale. It could signal the need for an extension

of the SM including new physics or that the analysis underestimates uncertainties.
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Figure 11: The effective potential including 1-,2-, and leading 3-loop [58, 131] correc-

tions, with µ = φ as a scale. Left: for parameter set [Jeg] (stable vacuum). Right: for

parameter set [Deg] (metastable case); the EW vacuum is tunneling into the bottomless

potential. The tunneling time by far exceeds the age of the universe and hence looks

very stable for us.

6 The cosmological constant – dark energy provided by

the Higgs scalar

It is crucial that in the early universe both terms in the Higgs potential are positive in

order to condition slow-roll inflation during long enough time. In fact the quadrati-

cally and quartically cutoff enhanced terms in the Higgs potential enforce the condi-

tion 1
2
φ̇2 ≪ V(φ) and given the Higgs boson pressure pφ =

1
2
φ̇2 −V(φ) and the Higgs

energy density ρφ =
1
2
φ̇2 +V(φ), we arrive at the equation of state w = p/ρ ≈ −1 char-

acteristic for dark energy and the equivalent CC (see e.g. [20, 134–136] and references

therein). A first remarkably precise measurement of the dark energy equation of state

w = −1.01±0.04 has been obtained by the Planck mission [16, 17] recently (for an ac-

tual review see [137]). A more detailed study [2] shows that the enhanced Higgs boson

effective mass alone actually does not provide a sufficient amount of inflation, which is

required to inflate the causal CMB cone to include the full CMB sky23.

One important quantity we have not taken into account so far is the vacuum energy

V(0) = 〈V(φ)〉. A key point is that in the LEESM scenario the vacuum energy is a cal-

culable quantity. In the symmetric phase SU(2) symmetry implies that while 〈Φ(x)〉 ≡ 0

the composite field Φ+Φ(x) is a singlet such that the invariant vacuum energy is given

just by simple Higgs field loops

〈H2〉 =: ; 〈H4〉 = 3 (〈H2〉)
2
=:

where

〈0|Φ+Φ|0〉 = 1

2
〈0|H2|0〉 ≡ 1

2
Ξ ; Ξ =

Λ2
Pl

16π2
. (34)

23This is the Horizon problem: the finite age t of the universe together with the finite speed of light c

allows us to see to distances Dhor = c t at most. The CMB sky is much larger [dtCMB
≃ 4 · 107 ℓy] than the

causally connected patch [DCMB ≃ 4 ·105 ℓy] at the time of last scattering tCMB ≃ 380000 yrs when the CMB

decoupled from matter. As we know, no DCMB spot shadow is distinguishable at the full CMB sky.
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This provides a CC given by

V(0) = 〈V(φ)〉 = m2

2
Ξ+

λ

8
Ξ2 . (35)

A Wick ordering type of rearrangement of the Lagrangian also leads to a shift oft the

effective mass

m′2 = m2+
λ

2
Ξ . (36)

For our values of the MS input parameters the zero in the Higgs mass counter term and

hence the phase transition point gets shifted downwards as follows

µ0 ≈ 1.4×1016 GeV→ µ′0 ≈ 7.7×1014 GeV . (37)

The shift is shown in the right panel of Fig. 8. We notice that the SM predicts a huge

CC at MPl:

ρφ ≃ V(φ) ∼ 2.77 M4
Pl ∼ 6.13×1076 GeV4 (38)

exhibiting a very weak scale dependence (running couplings) and we are confronted

with the question how to get rid of this huge quasi-constant? Remember that ρφ has

no direct dependence on a(t). An intriguing structure again solves the puzzle. The

effective CC counterterm has a zero, which again is a point where renormalized and

bare quantities are in agreement:

ρΛ0 = ρΛ+δρΛ ; δρΛ =
Λ4

Pl

(16π2)2
X(µ) (39)

with X(µ) ≃ 1
8

(2C(µ)+λ(µ)) which has a zero close to the zero of C(µ) when 2C(µ) =

−λ(µ). Note that C(µ) = −λ(µ) is the shifted Higgs transition point.

Again we find a matching point ρΛ0 = ρΛ between the low-energy and the high-

energy world. At this point, the memory of the quartic Planck scale enhancement gets

lost, as it should be since we know that the low energy phase does not provide access

to cutoff-effects.

Crucial point is that

X(µ) = 2C+λ = 5λ+3g2
1+9g2

2−24y2
t (40)

acquires positive bosonic contribution and negative fermionic ones, with different scale-

dependence24. X can change a lot (pass a zero), while individual couplings are weakly

scale-dependent with yt(MZ)/yt(MPl) ∼ 2.7 the biggest and g1(MZ)/g1(MPl) ∼ 0.76 the

smallest change. Obviously, the energy dependence of any of the individual couplings

would by far not be able to sufficiently diminish the originally huge cosmological con-

stant. Only the existence of a zero in the coefficient function X(µ) is able to provide the

dramatic reduction of the effective CC, by nullifying the huge cutoff-sensitive prefactor.

At the Higgs transition point, as soon as m′2 < 0 for µ < µ′
0
, the vacuum rearrange-

ment of the Higgs potential takes place. As a result at the minimum φv of the potential,
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Figure 12: Vacuum rearrangement by the Higgs phase transitions. The large offset V(0)

essentially gets nullified at the transition point.

we should get V(0)+V(φv) ∼ (0.00171 eV)4 about the observed value of today’s CC

(see Fig. 12). How can this be? Indeed, at the zero of X(µ) we have ρΛ0 = ρΛ and one

may expect that like the Higgs boson mass another free SM parameter is to be fixed

by experiment here25. One might expect ρΛ to be naturally small, since the Λ4
Pl

term

is nullified at the matching point. Note that the huge cutoff prefactors act as amplifiers

of small changes in the effective SM couplings. But how small we should expect the

low energy effective CC to be? In fact, in the LEESM scenario, neither the Higgs bo-

son mass nor the CC is really a free parameters in the low-energy world. Given the

other relevant SM parameter, the Higgs self-coupling has to be constrained to a win-

dow where the Higgs potential remains stable up to the Planck scale. Similarly, the

originally large CC, which is required to provide a sufficient amount of inflation, has to

get tuned down such that inflation ends up at the critical density of a flat universe. The

late CC as part of the critical density then only can be a fraction of the latter.

6.1 A self-organized cosmological constant?

Implications of inflation we already outlined in Sect. 1 after Eq. (5). Our analysis of

the LEESM showed that the CC is very much time dependent especially through the

running of the SM parameters and phase transitions taking place in the evolution of the

universe (see also the Quintessence scenario advocated in [39]). The typical problem is

that in general one gets a CC that is way too big, and this looks to create a tremendous

fine-tuning problem. For the SM this concerns the contribution to the vacuum density

via the Higgs-field VEV in the broken phase, as well as the contributions from sponta-

neous breakdown of chiral symmetry, which both are much too big and even of wrong

sign. Interestingly, our Higgs inflation scenario predicts a large positive DE, which

actually implies that ρtot≫ ρcrit before inflation sets in. This means that at Planck time

k = +1 and Ωk in Eq. (7) evaluated at Planck time is large negative if a(tPl) is of Planck

size. It is important to keep in mind that in Big Bang cosmology ρtot at the beginning is

always dominated by the radiation density since ρrad ∝ a(t)−4 grows fastest when a(t)

24Unbroken SUSY would require a perfect cancellation to happen at all scales. Broken SUSY would

largely diminish the quadratic and quartic enhancements which are key effects in our scenery.
25The appearance of an non-vanishing v provides a large negative contribution, which however by far does

not compensate the large positive offset 〈V(φ)〉 we have from the symmetric phase. A more accurate analysis

would have to take into account subleading effects from the chiral phase transition of QCD as-well.
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Figure 13: The Higgs potential effective m2
eff

[left] and the dark energy density ρΛ
[right], in units of ΛPl, as functions of “time”, represented here by 1/ log10 µ , where

µ represents the energy at that time. Below the matching point µCC, where ρΛ ≃ 1.6×
10−47 in Planck mass units, we show a scaled up ρΛ × 1013 value of the present dark

energy density µ4
0Λ

with µ0Λ ≃ 0.00171 eV. Note: ρΛ(t) includes besides the large

positive V(0) also negative contributions from vacuum condensates, like ∆ρEW from

the Higgs mechanism and ∆ρQCD from the chiral phase transition

gets smaller as we are going back in time. Because they also scale with inverse powers

in a(t), also the matter-density and the curvature terms first overshoot the CC supplied

by Higgs boson system. This is possible because ρΛ ∼ (1.29 MPl)
4 is of comparatively

moderate size, although extremely big relative to the critical density. However, if in-

flation is at work, the final vacuum density is fixed, whatever the initial density has

been. Given that Ωtot = ΩΛ +ΩDM +ΩBM +Ωrad = 1 with 1 > ΩDM > ΩBM > Ωrad > 0

we know that ΩΛ being positive must be of order Ωtot, actually a fraction of it. As a

non-vanishing ρΛ0 at Planck time is needed, it is not unlikely that the other components

contributing to the total energy density do not saturate the bound. Actually, we know

that normal matter including the tiny radiation density represents about 5% of the crit-

ical density only. This means that the fine-tuning is dynamically enforced by inflation

and the value of today’s dark energy density

ρ0Λ = µ
4
0Λ ; µ0Λ = 0.00171 eV (41)

looks all but exotic. While Ωrad and very likely ΩBM are essentially LEESM predic-

tions if we include the B+L violating dimension 6 four-fermion operators, ΩDM is the

only missing piece which remains an open problem and definitely requires additional

beyond the SM physics. This also concerns contributions from quark- and possible

gluon-condensates, which we do not explicitly consider here.

Provided SM parameters indeed support a stable Higgs potential up to MPl, inflation

and the CC itself are SM ingredients leading to a highly self-consistent conspiracy

which shapes the universe. Fig. 13 shows the development of the quadratically and the

quartically enhanced terms in the symmetric phase of the SM, and its matching to the

low energy world.
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7 Inflation and reheating

In contrast to standard scenarios of modeling the evolution of the early universe, SM

cosmology is characterized by the fact that almost everything is known, within uncer-

tainties of the parameters and perturbative approximations. In LEESM cosmology the

form of the potential is given by the bare Higgs potential V(φ) = m2

2
φ2 + λ

24
φ4 as part

of the SM Lagrangian, the parameters are known, calculable in terms of the low energy

parameters, the only unknown is the magnitude of the Higgs field. The latter must be

large – trans-Planckian – in order to get the required number of e-folds N given by

N ≡ ln
a(te)

a(ti)
=

∫ te

ti

H(t)dt ≃ − 8π

M2
Pl

∫ φe

φi

V

V′
dφ. (42)

The second form is obtained using the field equation (4). Note that N is determined

entirely by the scalar potential. Needed is N >∼60 in order to cover the CMB causal

cone. By definition, exp N is the expansion factor a(te)/a(ti) = exp H (te − ti), where

a(t) is the Friedmann-Robertson-Walker radius of the universe at cosmic time t, ti de-

notes the begin of inflation and te the end of inflation and H the Hubble constant.

For our set of MS input parameters we require φ0 = φ(µ = MPl) ≈ 4.5 MPl. Shortly

after start the slow-roll condition V(φ) ≫ 1
2
φ̇2 is well satisfied, by the fact that in

the symmetric phase the mass term as well as V(0) = 〈V(φ)〉 are huge and start to

dominate quickly. Because of the large initial field strength φ0, however, the in-

teraction term is actually dominating for a short time after the initial Planck time

tPl. The field equation φ̈+ 3Hφ̇ = −V′(φ) then predicts a dramatic decay of the field,

φ(t) = φ0 eE0 (t−t0) with E0 =
√

2λ/(3
√

3ℓ) ≈ 4.3× 1017 GeV , Vint ≫ Vmass and shortly

after E0 = m2/(3ℓ
√

V(0)) ≈ 6.6× 1017 GeV , Vmass ≫ Vint [ℓ2 = 8πGN/3], such that

in almost no time, still under slow-roll conditions, the mass term dominates and for

what follows the field equation predicts an exponential decay followed by harmonic

oscillation setting in. The universe thus undergoes an epoch of Gaussian inflation as

confirmed by observation [21]. The time evolution is displayed in Fig. 14 and it is very

interesting to see which term dominates during which time slice. Obviously, the fast

decay of the Higgs field stops inflation (see Fig. 15), in spite of the fact that a CC V(0)

persists to be substantial at first.

A highly non-trivial challenge is the calculation of the spectral indices

ε ≡
M2

Pl

8π

1

2

(
V ′

V

)2

; η ≡
M2

Pl

8π

V
′′

V
, (43)

which sensitively depend on the form of the potential and which have been extracted

from the observed CMB radiation fluctuation spectrum. From the theory point of view

the indices are constrained by the slow-roll criteria ε≪ 1, ensuring p≃−ρ, and ε,η≪ 1,

which ensures that the slow-roll condition hold for long enough time, while maintain-

ing φ̈ ≪ 3 Hφ̇ before oscillations start. These conditions also should be satisfied in

order to ensure the required amount of inflation. In our case, we are confronted with

a SM prediction modulo the unknown Higgs field φ0 = φ(µ = MPl). The calculation

presented in [2] shows that a prediction of η is delicate, but present uncertainties in

predicting the bare Higgs potential at post-inflation times certainly do not allow us the
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Figure 14: The evolution of the universe before the Higgs phase transition. Left: dur-

ing inflation times – the mass-, interaction- and kinetic-term of the bare Lagrangian in

units of M4
Pl

as a function of time. Right: evolution until symmetry breakdown and van-

ishing of the CC. After inflation the scene is characterized by a free damped harmonic

oscillator behavior

draw definite conclusions. Given that there are many predictions that look to work

surprisingly well, I would be surprised if the Higgs boson inflation would not work in

predicting also the spectral exponents in agreement with observation at the end.

7.1 Reheating by Higgs boson decays

In the symmetric phase, all four Higgs fields are physical and very heavy and rather

unstable. The Yukawa couplings at inflation times are pretty well known and the

Higgs bosons decay predominantly (largest Yukawa couplings) into as yet massless

top-antitop pairs and lighter fermion-antifermion pairs H,φ0→ tt̄, bb̄, · · · ,H+→ tb̄ · · · ,H−→
t̄b · · · and are thereby reheating the young universe, which just had been cooled down

dramatically by inflation. Preheating is suppressed in SM inflation as in the symmet-

ric phase bosonic decay channels like H→WW and H→ ZZ are absent at tree level.

The CP-violating decays H+ → td̄ [rate ∝ ytyd Vtd] H− → bū [rate ∝ ybyu Vub] likely

are important for baryogenesis. Closely following the Higgs transition, where m2 in

the Higgs potential changes sign, the electroweak phase transition takes place. After it,

the now heavy top-quarks decay into normal matter as driven by CKM [138] couplings

and phase space. At these scales the B+ L violating dimension 6 operators [139–141]

can still play a key role for baryogenesis and together with decays like t→ de+ν pro-

vide CP violating reactions during a phase out of thermal equilibrium26. For details

see [1, 2, 107].

A very different model of Higgs inflation, which has barely something in com-

mon with our LEESM scenario, is the Minkowski-Zee-Shaposhnikov et al. [31–37]

so-called non-minimal SM inflation scenario. It is based on the following points: i)

26We note that, in contrast to claims that the SM cannot explain baryogenesis, the latter looks to be well

possible within the LEESM scenario, provided the EW phase-transition happens not too far below the Planck

scale, at a scale µ0 where the mentioned dimension 6 four-fermion operators can be sufficiently effective i.e.

(µ0/ΛPl)
2 ∼ 1.4×10−6 is not too small. The observed baryon asymmetry is ηB ∼ 10−10. Remains the question

of whether CP violation as given by the SM is big enough and sufficiently efficient in the new context.
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Einstein gravity has to be extended by adding Gµν→Gµν+ ξ (Φ+Φ)Rgµν to Einstein’s

equation. On the source side the model is assuming the renormalized low energy Tµν
supplied by the renormalized SM (no relevant operator enhancement). The new term is

a direct coupling of the gauge invariant Higgs field singlet operator Φ+Φ to the scalar

Ricci curvature R. This extra term violates the equivalence principle, yet so far without

observable consequences. ii) Choose ξ large enough in order to get a sufficient amount

of inflation, which requires a rather large value ξ ∼ 104. The entire inflation pattern

then essentially depends on ξ only (inflation “by hand”). In case ξ = O(1) the added

non-minimal coupling term is tiny and does not affect our LEESM or standard infla-

tion scenarios. iii) Assume quadratic and quartic SM divergences are absent (argued

by their absence in dimensional regularization (DR) and MS renormalization, which

is a misleading purely formal argument in my opinion). iv) Assume the SM to be in

the broken phase at the Planck scale, which looks unnatural since SSB is a low energy

phenomenon, which assumes the symmetry to be restored at the short distance scale!

Note: 1) It is well possible maybe even likely that such non-minimal gravity cou-

plings of the Higgs field exist and could play a role when curvature is very high. How-

ever, the coupling ξ would rather be O(1) than fine-tuned to be about ξ ∼ 104. 2)

Dimensional regularization and MS renormalization both are possible in perturbation

theory only. There is no corresponding non-perturbative formulation (simulation on a

lattice) or measuring prescription (experimental procedure). The MS scheme is based

on a finite part prescription (singularities nullified by hand), which can only be used

to calculate quantities that do not exhibit any singularities at the end. As elaborated

earlier in Sect. 4, the hierarchy problem cannot be addressed within the dimensionally

regularized SM or adopting the MS scheme in a renormalized environment. In other

words, dimensional renormalization by no means explains the absence of power en-

hanced terms in a LEET scenario. These terms are there and have to be accounted

for.

8 Remark on trans-Planckian Higgs fields

If the SM Higgs boson is the inflaton, sufficient inflation requires trans-Planckian mag-

nitude Higgs fields at the Planck scale. At the cutoff scale, the low-energy expansion

obviously gets obsolete and likely we cannot seriously argue with field monomials and

the operator hierarchy appearing in the low energy expansion. What is important is

that the field is decaying very fast (see Fig. 15). Formally, given a truncated series of

operators in the potential, the highest power is dominating when approaching the trans-

Planckian regime. One then expects that for some time the φ4 term of the potential is

dominating, the decay of the field is then exponential, for higher dimensional operators

it is faster than exponential, such that the field very rapidly reaches the Planck- and

sub-Planck regime. This means that the mass term is dominating after a very short pe-

riod and before the kinetic term becomes relevant and slow-roll inflation ends. So fears

that higher order operators in low energy effective scenarios with trans-Planckian fields

would mess up things are unfounded27. Obviously, without the precise knowledge of

27As mentioned earlier, the constructive understanding of LEETs is Wilson’s renormalization semi-group,

based on integrating out short distance fluctuations. This produces all kinds, mostly of irrelevant higher
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Figure 15: The trans-Planckian Higgs field at tPl decays very fast and inflation gets

stopped soon. Left: the decaying Higgs field. Right: the inflating a(t).

the Planck physics, very close to the Planck scale we never will be able to make a pre-

cise prediction of what is happening. This, however, seems not to be a serious obstacle

to quantitatively describe inflation and its properties as far as they can be accessed by

observation. The LEESM scenario in principle predicts not only the form of the ef-

fective potential not far below the Planck scale but also its parameters and the only

quantity not fixed by low energy physics is the magnitude of the field at the Planck

scale. We also have shown that taking into account the running of the parameters is

mandatory for understanding inflation and reheating and all that.

Trans-Planckian fields are not unnatural in a low energy effective scenario as the

Planck medium exhibits a high temperature and temperature fluctuations imply amply

of higher excitations forming a chaotic state. While the Planck medium will never be

accessible to direct experimental tests, a phenomenological approach to constraining

its effective properties is obviously possible, especially by CMB data [142].

In the extremely hot Planckian medium, the Hubble constant in the radiation dom-

inated state with effective number g∗(T ) = gB(T )+ 7
8
g f (T ) = 102.75 of relativistic de-

grees of freedom is given by H = ℓ
√
ρ ≃ 1.66 (kBT )2

√
102.75 M−1

Pl
, at Planck time

Hi ≃ 16.83 MPl such that a Higgs field of size φi ≃ 4.51 MPl, is not unexpectedly large

and could as well also be larger.

Often it is argued that trans-Planckian fields are unnatural in particular in a LEET

scenario [143]. I cannot see any argument against strong fields and LEET arguments

(ordering operators with respect to a polynomial expansion and their dimension) com-

pletely lose their sense when E/ΛPl >∼ 1.

As mentioned already, provided the Higgs field decays fast enough, towards the end

of inflation, we expect the mass term to be dominant such that a Gaussian fluctuation

spectrum prevails. The quasi-constant CC V(0) at these times mainly enters the Hubble

constant H and does not affect the fluctuation spectrum. As the originally large V(0)

get nullified at µCC also the Hubble constant suffers a jump down to a value as known

order interactions. A typical example is an Ising model, which by itself seen as the basic microscopic system

has simple nearest neighbor interactions only and by the low-energy expansion develops a tower of higher

order operators, which at the short distance scale are simply absent altogether. Such operators don’t do any

harm at the intrinsic short distance scale. As a minimal fairly realistic Planck system representative in the

universality class of the SM, we may consider the lattice SM, a SM generalization of lattice QCD, which

also is expected to behave decently at the short distance scale.
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from standard ΛCDM cosmology.

9 Remarks for the skeptic

How do our results depend on the true UV completion? In other words, how realistic

are the numbers I have presented?

In order to answer these questions, we have to stress once more the extreme size of

the cutoff, MPl >>>> ... from what we can see! This let us look what we can explore

to be ruled by fundamental principles like the Wightman axioms (the “Ten Command-

ments” of QFT) or extensions of them as they are imposed in deriving the renormal-

izable SM. In the LEESM approach, many things are much more clear-cut than in

condensed matter systems, where cutoffs are directly accessible to experiments. In

other words, in condensed matter systems the gap between the microscopic structure

and its macroscopic manifestation is by far nowhere nearly as big as in our LEESM

case. Also lattice QCD simulations differ a lot, as cutoffs are always close-by, such

that lattice artifacts affect results throughout before the extrapolation to the continuum

has been performed.

We also have to stress that taking actual numbers too serious is premature as long

as even the realization of vacuum stability is in question. Detailed results evidently

depend sensitively on accurate input values and on the perturbative approximations

used for the renormalization group coefficients as well as for the matching relations

needed to get the MS input parameters in terms of the physical (on-shell) ones. After

all, we are attempting to extrapolate over 16 orders of magnitude in the energy scale.

Such an attempt may look to be megalomaniacal, but it is a bottom-up approach that

appears to lead to a reasonable and very possible scenario that is able to explain and

predict inflation and reheating. And it is a very modest step in relation to attempts to

construct a TOE for example.

The next question is how close to MPl can we trust our extrapolation? It is very

important to note that above the EW scale [v ∼ 250 GeV] perturbation theory seems

to works the better the closer we are near the Planck-cutoff, vacuum stability pre-

supposed. As long as we are talking about the perturbative regime we can expand

perturbative results in powers of E/ΛPl up to logarithms. Then we have full control

over the cutoff-dependence to order O((E/ΛPl)
2), corresponding to dim ≥ 6 operator

corrections. Effects O((E/ΛPl)), related to dim 5 operators, only show up in special

circumstances e.g. in scenarios related to generating neutrino masses and mixings and

the see-saw mechanism.

The true problem comes about when we approach the Planck scale, where the ex-

pansion in E/ΛPl completely breaks down. Especially, it does not make sense to talk

about a tower of operators of increasing dimensions. This does not mean that every-

thing gets out of control. If the “ether” would be something that can be modeled by

a lattice SM, implemented similar to lattice QCD, one could still make useful pre-

dictions, which eventually could be tested in cosmological phenomena. In condensed

matter physics it is well known that an effective Heisenberg Hamiltonian allows one

to catch essential properties of the system, although the real structure cannot be ex-

pected to be reproduced in the details. One also should keep in mind that models like
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the mentioned Ginzburg-Landau effective theory of superconductivity perfectly models

the phase transition between type I, type II superconductivity and normal state, without

reference to the true microscopic structure. In any case, it is always possible to find out

to what extent the description fits reality.

It is well known that long-range physics manifests itself as field theory naturally

from underlying classical statistical systems exhibiting short-range exchange interac-

tions (e.g. nearest-neighbor interactions on a lattice system) [90] (for lectures on the

topic see e.g. [91]). However, the Planck system not only shows typical short-range

interactions. We know that it also features a long-range gravitational potential, which

develops multipole excitations showing up as spin 1, spin 2 and higher modes at long

distances [100].

In our context what is important is that the quadratic and quartic enhancements are

persisting, as well as the running (screening or anti-screening effects) of couplings and

their competition and conspiracy. Together these elements manifest themselves in the

existence of the zeros of the enhanced terms, provided these zeros are not to close to

the cutoff. A look at Fig. 7 shows that such effects can be dramatic fairly well below

the cutoff. Again, the perturbativeness, together with the fact that leading corrections

to these results are by dim 6 operators, let us expect that results are reliable at the 10−4

level up to 1017 GeV, which is in the middle of the symmetric phase already. Once the

phase transition has happened, the running is anyway weak and even when cutoff-effect

are starting to play a role they cannot spoil the relevant qualitative features concerning

triggering inflation, reheating and related phenomena.

Lattice SM simulations in the appropriate parameter range of vacuum stability,

keeping top-quark Yukawa and Higgs self-coupling to behave asymptotically free,

which requires to include simultaneously besides the Higgs system also the top-quark

Yukawa sector and QCD, could help to investigate such problems quantitatively. Expe-

rience from lattice QCD simulations may not directly be illustrative since usually the

cutoff is rather close and a crucial difference is also the true non-perturbative nature of

low energy QCD.

In any case, not to include the effects related to the relevant operators (dim < 4) sim-

ply must give wrong results. Even substantial uncertainties, which certainly show up

closer to the cutoff in power-like behaved quantities, seem to be an acceptable short-

coming in comparison to not taking into account the cutoff-enhancements at all (as

usually done).

10 Summary and conclusions

A cutoff regularized SM with the Planck mass as a cutoff is considered to exhibit the

relevant features of the physical Planck world in the sense that it resides in the same

universality class with respect to its long-range behavior. The SM we observe at low

energy is then the emergent renormalizable effective theory of the Planck medium. All

conditions that usually have to be imposed, as principles to ensure renormalizability,

are emergent as a result of the low energy expansion. The relation between long dis-

tance physics and short distance physics can be controlled in principle via Wilson’s

renormalization semi-group. Taking into account renormalization effects and the “run-
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ning” of the parameters are mandatory in order to understand what has been happening

in the evolution of the universe. The key outcome of the LEESM setting is that for

appropriately tuned parameters the quadratic as well as the quartic “singularities” are

nullified at a specific energy, where bosonic and fermionic effects cancel28. In the SM

the corresponding zeros happen because the bosonic and the fermionic contributions

are running differently, according to their respective renormalization groups, and at

some point turn out to be of equal magnitude.

In this scenario the Higgs field/particle has two different functions in our world:

1) it has to render the effective low energy electroweak theory (massive vector-boson

and fermion sector) renormalizable. In place of fermion mass terms, we have fermion

Yukawa couplings to start with, while gauge boson mass terms enter via the kinetic

Higgs term through the covariant derivative that has to include the gauge fields. In the

broken low energy phase, the Higgs field forms a vacuum condensate, which provides

masses to all massive fields including the Higgs boson itself. The key point is the

many new Higgs field exchange-forces necessary to render the low energy amplitudes

renormalizable. 2) in the symmetric phase there exist four very heavy Higgs bosons

(H,φ0,H±) that generate a huge positive dark energy, as required to triggers inflation.

After inflation has ended and we are out of equilibrium the Higgs bosons are decaying

predominantly into the fermions pairs with largest Yukawa couplings (predominantly at

this stage still massless top-antitop pairs), which provides the reheating of the inflated

universe. The universe cooling further down then pushes the universe into the Higgs

phase, where the particles acquire their masses. The predominating heavy quarks decay

into the lighter ones, which later form the baryons and normal matter. This scenario

is possible because of the quadratically enhanced Higgs boson mass which together

with the quartically enhanced dark energy, shows up in the symmetric phase of the SM

before the transition into the Higgs phase. The existence of such relevant operator ef-

fects, in my opinion, is supported by observed inflation patterns. Both, the hierarchy

“problem” as well as the cosmological constant “problem” reflect important properties

of the SM needed to understand the evolution of the early universe (for different opin-

ions see [144–148]). Consolidation of our bottom-up path to physics near the Planck

scale will sensibly depend on progress in high precision physics around the EW scale

v. Especially, Higgs boson and top-quark factories (like FCC-ee or ILC) will play a

key role in this context.

Concerning the presumed fine-tuning problem: the scales MPl and v stand for dif-

ferent regimes and there is no reason why they should not be vastly different; one is

related to gravity (Planck medium) the other to long-range order at low energies. It

is the energy dependence of the SM interactions that triggers spontaneous symmetry

breaking. The emergent SM symmetry apparently only three orders of magnitude be-

low MPl gets broken by a non-symmetric ground state rearrangement. The critical point

nevertheless is the actual value of v that is non-vanishing only below a critical tempera-

ture. While in a condensed matter system one is adjusting the temperature by hand, the

key problem seems to be that in particle physics we cannot adjust the temperature. But

this the expanding universe is doing for us. In fact, the hot big bang universe provides

28Note that the locations of the nearby zeros of δm2
H

Eq. (19) and δρΛ Eq. (39) are independent of the

value of the cutoff Λ, but they depend very sensitively on the input parameters specified in Tab. 1.
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a scan of the temperature spectrum and automatically triggers the phase transition at

some point, as the calculations show. Temporary out of equilibrium phases do not dis-

turb the gross behavior of this scan, but they will have to be investigated in any case.

For more details I refer to my original articles [1,2] and to my Krakow Lectures [149].

The scenario I advocate requires a change of paradigm, to one where the SM

with its structure is emergent from a Planck cutoff-medium following a minimal self-

organized “strategy”, i.e. conspiracies are taking place to make structures to show up

at large distances (for a short history of development of the emergence paradigm see

e.g. [152]) . This looks like a version of an anthropic principle at work. It lets look

the SM to be more natural than many of the BSM scenarios we have heard about dur-

ing the last about 45 years. Although the SM started to turn out to work well and to

work better than ever expected, we know it cannot explain a number of observationally

established facts. Yes, the SM misses dark matter, singlet neutrinos, axions and likely

more, but all of these have room in an emergent scenario. This is in contrast to the

top-bottom philosophy behind the most popular BSM physics scenarios like string the-

ory, supersymmetry or grand unification, which assume that the short distance world is

intrinsically highly symmetric and symmetries are broken spontaneously only because

renormalizability is always assumed to be a basic law of nature. We know that the SM

as seen at low energies is a spontaneously broken gauge theory, which gets more sym-

metric as we go to higher energies because mass operators in a high-energy expansion

turn into irrelevant operators. This may have lead to a wrong perception concerning

what we have to expect on the path to higher energies. This view overlooks the fact

that a tower of possible symmetry breaking irrelevant operators of the low energy ex-

pansion turn into relevant contributions at high energies. Thus symmetries as seen at

low energy usually do not persist at higher energies. The dream that an eternal highly

symmetric “theory of everything” should sit at and above the Planck scale may not be

very realistic. The opposite very probably is true, the world looks more complex the

closer we look, and symmetries emerge from not resolving the detailed structure be-

hind. And the final truth remains something we can get closer only but will never be

reached.

Between my Higgs inflation scenario and the metastability scenery favored in [58,

61, 70, 71], the major difference is that for me understanding the relationship between

the physical low energy parameters and the bare parameter, assumed to become the

physical ones at short distances, is the mandatory premise. Most other analyses are

working with a renormalized effective potential in the broken phase all the way up

towards the Planck scale and do not consider cutoff effects to be physical. Power en-

hanced cutoff-effects, in my scenario, are triggering a phase transition between an early

symmetric and a later broken phase. Higgs system conditioned inflation is possible

only if in the early universe the SM is in the symmetric phase.

I think the LEESM scenario has a good chance to find its confirmation along with

the lines described in this article. Many aspects need to be checked and possibly mod-

ified. Admittedly, there are many open questions, which should be investigated more

thoroughly. One conclusion seems to be unavoidable, namely that the SM Higgs sector

provides dark energy that affects early as well as late cosmology. Obviously, discov-

ering SUSY, a GUT, extra-dimensions, a little Higgs extension, Technicolor or similar

extensions of the SM would spoil the scene. Notably, also one more fermion family
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or one less would completely mess up everything. The sharp dependence of the Higgs

vacuum stability on the SM input parameters and on possible SM extensions and the

vastly different scenarios which can result as a consequence of minor shifts in parame-

ter space makes the stable vacuum case a particularly interesting one and it could reveal

the Higgs particle as “the master of the universe”. After all, it is commonly accepted

that dark energy is the“stuff” shaping the universe both at very early as well as at the

late times.

11 Appendix: How natural is the minimal SM?

Often it is considered that it would be more natural to have a left-right symmetric

world including mirror fermions. The following consideration, which goes back to

Veltman [150], is instructive as it helps to understand why parity violation is quite

natural and why QED conserves parity. It has a lot to do with the assumption of a

minimal Higgs system. I reproduce a version, which I had presented in [151] some

time ago. Actually, within the context of our LEESM scenario, we gain a much deeper

insight, because the assumptions made are now emergent properties resulting from the

low energy expansion.

In order to try to derive the SM let us make the following assumptions:

1) local field theory

2) interactions follow from a local gauge principle

3) renormalizability

4) masses derive from the minimal Higgs system

5) νR which we know must exist does not carry hypercharge.

Note that all points besides the last one are emergent structures in a LEESM as we may

learn from [100–106] (see also Sect. 3). We admit that the last assumption looks some-

what ad hoc, but nevertheless we make it. From the above assumptions the following

picture develops:

• For the gauge interactions, the simplest non-trivial possibility is that the funda-

mental massless matter fields group according to the simplest possibilities, into

doublets and triplets, which are the fundamental representations of SU(2) and

SU(3), besides possible singlets.

• Since fields are massless all fields can be chosen left-handed. Left-handed parti-

cles and left-handed antiparticles at this stage are uncorrelated.

• We must have pairing for particles that are going to be massive, since a mass

term (we ignore the possibility to have Majorana fields here) has the form ψ̄ψ =

ψ̄LψR+ ψ̄RψL. Notice that for massive particles only, we know which left-handed

antiparticle belongs to which left-handed particle to form a Dirac field.

• For SU(3)c triplets we must have pairing in order to avoid axial anomalies. SU(3)

is the simplest group having complex representations. This allows putting parti-

cles in 3 and antiparticles in the inequivalent 3∗. As a consequence a rich color

singlet structure (≡ hadron spectrum) results. Furthermore, confinement requires

SU(3)c to be unbroken!
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• SU(2)L is anomaly free and hence there is no anomaly condition associated with

this group. To generate mass we have to break SU(2)L by a Higgs mechanism.

The simplest and natural possibility is to choose one Higgs field in the funda-

mental representation of SU(2)L. There is no hypercharge for the moment. The

Higgs field may be written in the form

Φb = Φ̃χb ; χb =

(
0

1

)

in terms of a 2×2 matrix field (τi , i = 1,2,3 the Pauli matrices)

Φ̃ =
1
√

2
(Hs+ iτiφi) .

The covariant derivative being given by

DµΦb = (∂µ− i
g

2
τaWµa)Φb ,

and the SU(2) invariant renormalizable Higgs system

LHiggs =
(
DµΦb

)+ (
DµΦb

)−λ
(
Φ+bΦb

)2
+µ2

(
Φ+bΦb

)
, (44)

exhibits an extra global SU(2)R-symmetry χb → V+χb. One easily checks that

the transformation

Φ̃→ U(x) Φ̃V+ ,

with U(x) ∈ SU(2)L,local,V ∈ SU(2)R,global leaves the Higgs Lagrangian invari-

ant. This implies that the fields (W+,W3,W
−) form a weak isospin triplet with

MZ = MW± .

Now consider the fermions (still no hypercharge). Since L f and Φb are SU(2)

doublets there also must exist singlet fermions R f , otherwise we would not be

able to write down an invariant and renormalizable fermion-Higgs coupling.

Therefore SU(2)L must be parity violating of V-A-type! The Yukawa term has

the general form

LYukawa = −L̄ f Φ̃

(
g11 g12

g21 g22

)
R f +h.c. ,

with 4 complex couplings gi j and R f a “doublet” having two right-handed sin-

glets as entries. Although we have not used hypercharge to restrict these cou-

plings the existence of a global SU(2)R-symmetry of the Higgs system allows us

to transform the Yukawa couplings

Φ̃ (·)R f → Φ̃V+(·)WR f

to standard form, V+(·)W= real diagonal. Since V ∈ SU(2)R has 3 parameters

and W is an arbitrary unitary matrix with 4 parameters we end up with one free
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parameter such that the system exhibits a global U(1) invariance. This is not

surprising since in the unitary gauge we always can end up only with LYukawa in

the simple standard form

LYukawa = −
∑

f

m f ψ̄ fψ f (1+
H

v
) . (45)

• The global U(1) which is a consequence of the minimal Higgs mechanism may

be interpreted as a global U(1)Y . We are free to assign Y = 1 to Φb, which means

nothing else than that we measure Y in units of the Φb- hypercharge. Then

Φt = Φ̃χt ; χt =

(
1

0

)

has Y = −1 , and we may write Φ̃ = (Φb,Φt). Since we have the global U(1)Y for

free, we may assume this symmetry to be local. The covariant derivative for Φ̃

now reads

DµΦ̃ = ∂µΦ̃+ i
g′

2
BµΦ̃τ3− i

g

2
τaWµaΦ̃

and we find back the usual Higgs Lagrangian

LHiggs =
1

2
(∂µH∂µH)+

(H+ v)2

2v2
(M2

ZZµZµ+2M2
WW+µ W−µ)

−λ
4

H4−λvH3− 1

2
m2

HH2 . (46)

The 3 real fields φa a = 1,2,3 could and have been gauged away and only 3

out of 4 gauge fields can acquire a mass. Hence there must exist one mass-

less field, the photon! Evidently we obtain the relations g′ = g tanΘW and ρ =

M2
W
/(M2

Z
cos2ΘW ) = 1 ! instead of MZ = MW± when g′ = 0.

Now, what can we say about the hypercharge of the fermions?

A left-handed doublet transforms like

L→ ei
g′
2

YL L ,

where YL is arbitrary. By inspection of LYukawa we find for the hypercharges of

the singlets: ψ1R must have Y1R = YL + 1 and ψ2R must have Y2R = YL − 1. One

consequence is that U(1)Y must violate parity. The astonishing thing is that the

fermion current which couples to the photon preserves parity. By inspection we

find

DµL f = (∂µ− i
g′

2
YLB−µ− i

g

2
τ3Wµ3− · · · ) L f ,

DµR f = (∂µ− i
g′

2
YLB−µ− i

g

2
τ3Bµ− · · · )R f ,
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and the couplings of L f and R f to Aµ read

L f : −i (gsinΘW

τ3

2
+g′ cosΘW

YL

2
) Aµ

R f : −i (g′ cosΘW

τ3

2
+g′ cosΘW

YL

2
) Aµ .

Because we have g′ cosΘW = gsinΘW = e we find the Gell-Mann-Nishijima re-

lation

Q = T3+
Y

2

as a consequence of a minimal Higgs structure! What we find is that, whatever

the hypercharge of L f is, L f and R f must couple identically to photons. Thus

QED must be parity conserving! Furthermore, the charges of the upper (1) and

lower (2) components of the doublets satisfy

QLi = QRi , Q1−Q2 = 1 and Q1+Q2 = YL .

So far we have no charge quantization. Here we need the last assumption.

• If νR does not couple to the U(1) gauge field, we have to set YνR = 0 and conse-

quently we must have YνL = −1 = YℓL = 0 and Qν = 0, Qℓ = −1. For the U(1)Y

anomaly cancellation we need lepton-quark duality and the charges of the quarks

must have their known values if they appear in three colors. One thus must have

the usual charge quantization.

We finally summarize the consequences of the assumptions stated above:

• breaking SU(2)L by a minimal Higgs automatically leads to a global U(1)Y ,

which can be gauged

• parity violation of SU(2)L

• ρ = M2
W
/(M2

Z
cos2ΘW ) = 1

• the existence of the photon

• parity conservation of QED

• the validity of the Gell-Mann-Nishijima relation

• family structure

• charge quantization

We do not know why right-handed neutrinos are sterile i.e. do not couple to gauge

bosons. In the SM of electroweak interactions, neutrinos originally were assumed to
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be massless i.e. that right-handed neutrinos did not exist. This is definitely ruled out

by the observation of neutrino oscillations29.

I think this reasoning is able to help understanding how various excitations in the

chaotic Planck medium develop a pattern like the SM as a low energy effective struc-

ture. Renormalizability as a consequence of the low energy expansion and the very

large gap between the EW and the Planck scales plus a certain minimality (not too

little but not too much e.g. only up to symmetry triplets) determines the SM structure

without much freedom. After all, minimality is not a new concept in physic as we

know from the principle of least action. Three fermion families are required in order

CP violation emerges in a natural way, and to make baryogenesis eventually possi-

ble within the LEESM scenario as addressed in Sect. 7. We have been emphasizing

the high self-consistency of the SM where all essential structures look to be emergent

properties in the low energy effective viewport of a cutoff-system residing at the Planck

scale. “What is not capable of surviving at long distances does not exist there” (Darwin

revisited).
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