Strong gravitational radiation from a simple dark matter model

Camilo Garcia Cely, DESY

Warsaw, Poland Beyond General Relativity, Beyond Cosmological Standard Model

1st July, 2019

In collaboration with lason Baldes Based on JHEP 1905 (2019) 190

• Predicted by Poincaré (1905).

This talk

- Predicted by Poincaré (1905).
- Einstein provided a firm theoretical ground for them (1916).

$$\Box h_{\mu\nu} = -16\pi G T_{\mu\nu}$$

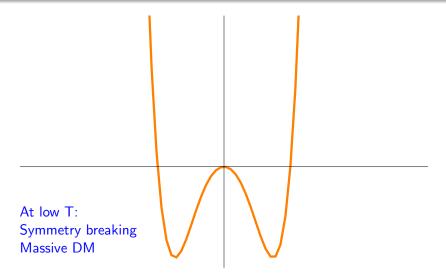
This talk

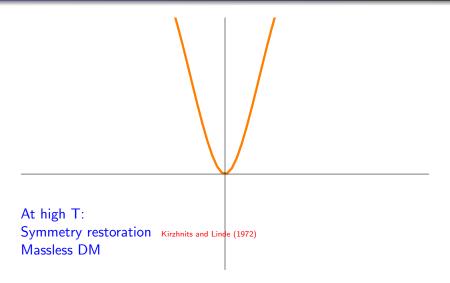
- Predicted by Poincaré (1905).
- Einstein provided a firm theoretical ground for them (1916).

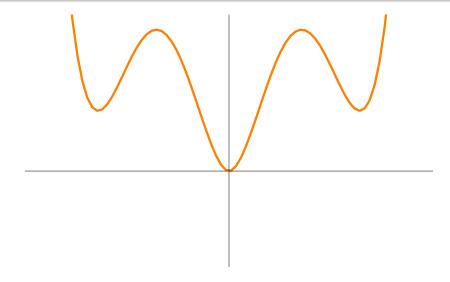
$$\Box h_{\mu\nu} = -16\pi G T_{\mu\nu}$$

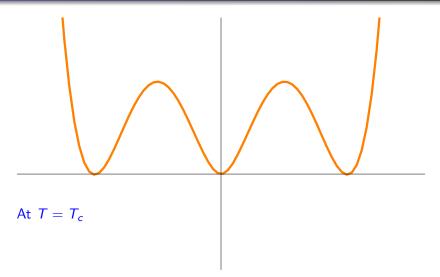
 First-order phase transitions in the Early Universe produce GWs. Witten (1984).

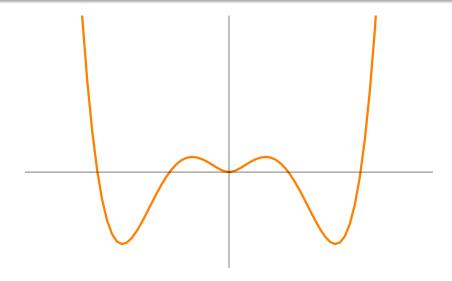
This talk

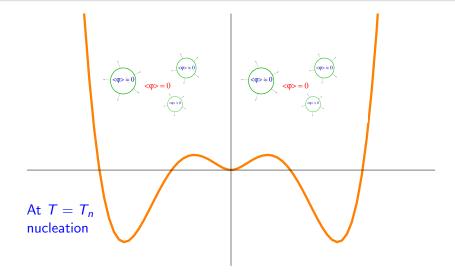

- Predicted by Poincaré (1905).
- Einstein provided a firm theoretical ground for them (1916).

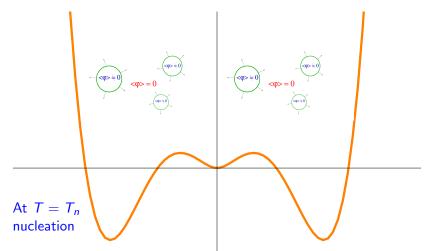

$$\Box h_{\mu\nu} = -16\pi G T_{\mu\nu}$$

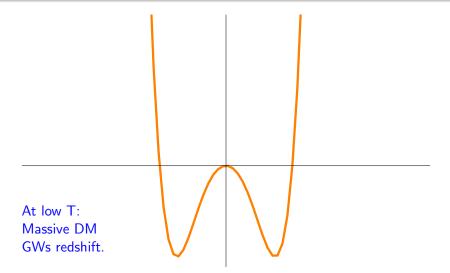

• First-order phase transitions in the Early Universe produce GWs. Witten (1984).

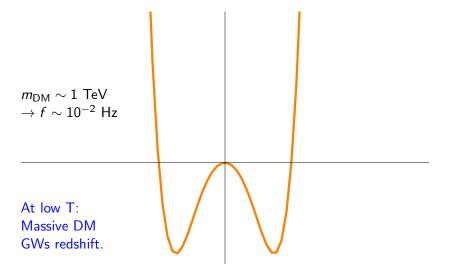

This talk

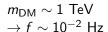

 Discuss a simple scenario where dark matter in the Early Universe undergoes a first-order phase transition.

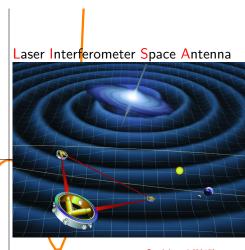











This produces produces gravitational waves E. Witten (1984)

At low T: Massive DM GWs redshift.

Caprini et al (2015)

A few studies along these lines:

```
P. Schwaller, PRL 115 (2015), Baldes JCAP (2017), Chao et al, JHEP (2017)
Croon et al, JHEP (2018), Breitbach et al (2018), Bai, Long, Lu PRD (2019)
Baratella et al, JHEP (2018), Madge, JHEP (2019),...
```

In general, it is hard to establish a correlation between the actual properties of dark matter (mass, spin, couplings, etc.) and the features of the gravitational waves.

A few studies along these lines:

```
P. Schwaller, PRL 115 (2015), Baldes JCAP (2017), Chao et al, JHEP (2017)
Croon et al, JHEP (2018), Breitbach et al (2018), Bai, Long, Lu PRD (2019)
Baratella et al, JHEP (2018), Madge, JHEP (2019),...
```

In general, it is hard to establish a correlation between the actual properties of dark matter (mass, spin, couplings, etc.) and the features of the gravitational waves.

 Unless the dark matter properties are closely related to the phase transition with the latter being determined by a handful of parameters. A few studies along these lines:

```
P. Schwaller, PRL 115 (2015), Baldes JCAP (2017), Chao et al, JHEP (2017)
Croon et al, JHEP (2018), Breitbach et al (2018), Bai, Long, Lu PRD (2019)
Baratella et al, JHEP (2018), Madge, JHEP (2019),...
```

In general, it is hard to establish a correlation between the actual properties of dark matter (mass, spin, couplings, etc.) and the features of the gravitational waves.

- Unless the dark matter properties are closely related to the phase transition with the latter being determined by a handful of parameters.
- Objective: Find a dark matter model that overcomes these difficulties.

Field	<i>SU</i> (3)	<i>SU</i> (2)	$U(1)_Y$	$SU(2)_D$
Н	1	2	$\frac{1}{2}$	1
H_D	1	1	Ō	2

Field	<i>SU</i> (3)	<i>SU</i> (2)	$U(1)_Y$	$SU(2)_D$
Н	1	2	$\frac{1}{2}$	1
H_D	1	1	Ō	2

$$V = \mu_1^2 H^\dagger H + \mu_2^2 H_D^\dagger H_D + \lambda_1 (H^\dagger H)^2 + \lambda_2 (H_D^\dagger H_D)^2 + \lambda_3 H_D^\dagger H_D H^\dagger H ,$$

Local
$$SU(2)_D$$
 \rightarrow Global $SO(3)$
Gauge Fields A'_{μ} \rightarrow Massive Fields A_{μ}
Dark doublet H_D \rightarrow Higgs-like h_D

Field	<i>SU</i> (3)	<i>SU</i> (2)	$U(1)_Y$	$SU(2)_D$
Н	1	2	$\frac{1}{2}$	1
H_D	1	1	Ō	2

$$V = \mu_1^2 H^{\dagger} H + \mu_2^2 H_D^{\dagger} H_D + \lambda_1 (H^{\dagger} H)^2 + \lambda_2 (H_D^{\dagger} H_D)^2 + \lambda_3 H_D^{\dagger} H_D H^{\dagger} H,$$

Local
$$SU(2)_D$$
 o Global $SO(3)$
Gauge Fields A'_μ o Massive Fields A_μ Stable (DM Candidate)
Dark doublet H_D o Higgs-like h_D

Field	<i>SU</i> (3)	<i>SU</i> (2)	$U(1)_Y$	$SU(2)_D$
Н	1	2	$\frac{1}{2}$	1
H_D	1	1	Ō	2

$$V = \mu_1^2 H^{\dagger} H + \mu_2^2 H_D^{\dagger} H_D + \lambda_1 (H^{\dagger} H)^2 + \lambda_2 (H_D^{\dagger} H_D)^2 + \lambda_3 H_D^{\dagger} H_D H^{\dagger} H,$$

Local
$$SU(2)_D$$

Gauge Fields A'_{μ}
Dark doublet H_D

 \rightarrow Global SO(3)

ightarrow Massive Fields A_{μ} ightarrow Higgs-like h_D

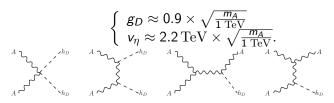
Stable (DM Candidate) It mixes with the Higgs

High temperatures

Field	<i>SU</i> (3)	<i>SU</i> (2)	$U(1)_Y$	$SU(2)_D$
Н	1	2	$\frac{1}{2}$	1
H_D	1	1	Ō	2

$$V = \mu_1^2 H^\dagger H + \mu_2^2 H_D^\dagger H_D + \lambda_1 (H^\dagger H)^2 + \lambda_2 (H_D^\dagger H_D)^2 + \lambda_3 H_D^\dagger H_D H^\dagger H,$$

Local $SU(2)_D$ High temperatures


Stable (DM Candidate) It mixes with the Higgs

Hambye (JHEP 2009) Phase transition in the Early Universe!!!!!!!!!

Mass of the extra scalar

- Mass of the extra scalar
- DM mass

- Mass of the extra scalar
- DM mass
- DM coupling which is fixed by the relic density (via freeze-out):

- Mass of the extra scalar
- DM mass
- DM coupling which is fixed by the relic density (via freeze-out):

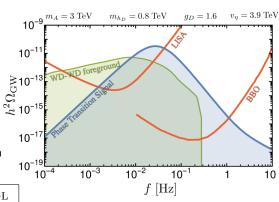
• Mixing angle constrained by direct detection: $\theta \lesssim 0.1$.

Standard Freezeout

LZ

XENONIT

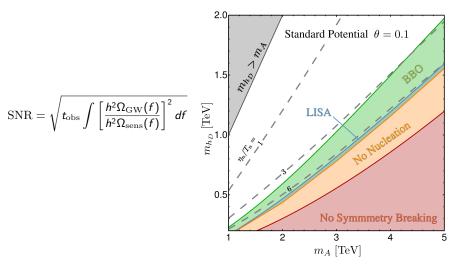
θ


GW spectrum

Phase transition parameters

$$T_n = 0.48 \, \mathrm{TeV}$$

 $\eta_n = 3.8 \, \mathrm{TeV}$
 $\alpha = 0.29, \, \sim \! (\mathrm{latent\ heat})$
 $\beta/H = 290 \, \sim \! (\mathrm{fq.\ scale})$


Simulations give Ω_{GW} from them Caprini et al (2015)

	SNR	$\mathrm{SNR}_{\mathrm{FGL}}$
LISA	15	1.8
BBO	3.7×10^{5}	2.3×10^{3}

Baldes, CGC 2018

Parameter space for SNR>5.

Baldes, CGC 2018

Field	<i>SU</i> (3)	<i>SU</i> (2)	$U(1)_Y$	$SU(2)_D$
Н	1	2	$\frac{1}{2}$	1
H_D	1	1	0	2

$$V = \mu_1^2 H^\dagger H + \mu_2^2 H_D^\dagger H_D + \lambda_1 (H^\dagger H)^2 + \lambda_2 (H_D^\dagger H_D)^2 + \lambda_3 H_D^\dagger H_D H^\dagger H \,,$$

$$Local \ SU(2)_D \qquad \rightarrow \qquad \text{Global } SO(3)$$

$$\text{Gauge Fields } A'_\mu \qquad \rightarrow \qquad \text{Massive Fields } A_\mu$$

$$\text{Dark doublet } H_D \qquad \rightarrow \qquad \text{Higgs-like } h_D$$

Field	<i>SU</i> (3)	<i>SU</i> (2)	$U(1)_Y$	$SU(2)_D$
Н	1	2	$\frac{1}{2}$	1
H_D	1	1	Ō	2

Set them to zero (Classically scale invariant potential) Hambye, Strumia, Teresi (2013, 2018)

$$V = \mu_1^2 H^{\dagger} H + \mu_2^2 H_D^{\dagger} H_D + \lambda_1 (H^{\dagger} H)^2 + \lambda_2 (H_D^{\dagger} H_D)^2 + \lambda_3 H_D^{\dagger} H_D H^{\dagger} H,$$

Local $SU(2)_D \rightarrow Global SO(3)$

Gauge Fields $A'_{\mu} \rightarrow \mathsf{Massive}$ Fields A_{μ}

Dark doublet $\dot{H_D} \rightarrow \mathsf{Higgs-like}\ h_D$

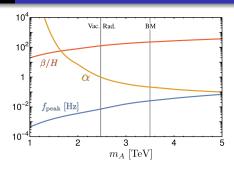
Field	<i>SU</i> (3)	<i>SU</i> (2)	$U(1)_Y$	$SU(2)_D$
Н	1	2	$\frac{1}{2}$	1
H_D	1	1	Ō	2

Set them to zero (Classically scale invariant potential) Hambye, Strumia, Teresi (2013, 2018)

$$V = \begin{array}{ccc} V = & \mu_1^2 H^\dagger H + \mu_2^2 H_D^\dagger H_D + \lambda_1 (H^\dagger H)^2 + \lambda_2 \left(H_D^\dagger H_D \right)^2 + \lambda_3 H_D^\dagger H_D H^\dagger H \,, \\ & \text{Local } SU(2)_D & \to & \text{Global } SO(3) \\ & \text{Gauge Fields } A_\mu' & \to & \text{Massive Fields } A_\mu \\ & \text{Dark doublet } H_D & \to & \text{Higgs-like } h_D \end{array}$$

Radiative effects break the $SU(2)_D$ symmetry Coleman-Weinberg (1973) λ_2 runs to negative values.

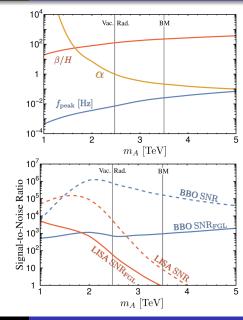
Baldes, CGC 2018

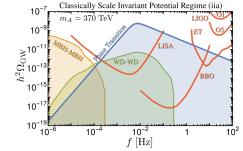

- Only one free parameter after taking the relic density into account.
- Scale-invariant potential
 → strong signal.
- There is a large amount of supercooling

See Marek Lewicki's talk

Baldes, CGC 2018

- Only one free parameter after taking the relic density into account.
- Scale-invariant potential
 → strong signal.
- There is a large amount of supercooling


See Marek Lewicki's talk



Baldes, CGC 2018

- Only one free parameter after taking the relic density into account.
- Scale-invariant potential
 → strong signal.
- There is a large amount of supercooling

See Marek Lewicki's talk

	m_A	370	TeV
Dark Sector	m_{h_D}	59	TeV
Parameters	v_{η}	780	TeV
	g_D	0.95	-
	θ	10^{-9}	-
	T_n	2.6	GeV
	$T_{infl.}$	43	TeV
Phase	$T_{\rm RH}$	13	${ m TeV}$
Transition	η_n	$\simeq v_{\eta}$	-
	α	10^{16}	-
	β/H	6.7	-
	LISA	10^{4}	-
SNR.	LISA(FGL)	270	-
SINK	BBO	10^{8}	-
	BBO(FGL)	10^{7}	-

	Classicalla C	ala Immadant Dat	antial Danima	. (::=)
10 ⁻⁷	Classically Sc	ale Invariant Pot	entiai Regime	e (11a)
	$m_A = 2000$	TeV	LIG	
10 ⁻⁹			/ IET	O5/
		/	LISA	~
2 2	MBH-MBH W		\	/ /
<u> </u>	MBH	Phi	0.00	// :
~ 10 ⁻¹³			ise Transition	/]
20			HOD	ВО
10-15	/		/ P	ВО
10				
10 ⁻¹⁷				1
10			$\overline{}$	1
10-19				. 1
10 ⁻¹⁹	10-4	10 ⁻²	1	10 ²
10	10			10
		f [Hz]		

	m_A	2000	TeV
Dark Sector	m_{h_D}	330	TeV
Parameters	v_n	4100	TeV
	g_D	0.98	-
	θ	10^{-11}	-
	T_n	32	GeV
	$T_{\text{infl.}}$	230	TeV
Phase	T_{RH}	1.0	TeV
Transition	η_n	$\simeq v_{\eta}$	-
	α	10^{15}	-
	β/H	7.1	-
	LISA	44	-
SNR	LISA(FGL)	1.0	-
SINK	BBO	10^{5}	-
	BBO(FGL)	10^{5}	-

Conclusions

- We have explored the possibility of DM from a hidden $SU(2)_D$ gauge group. This implies a phase transition that will result in detectable gravitational waves.
- Due to its simplicity, the model is well suited as a case study for the sensitivity of future gravitational wave observatories to phase transitions in DM sectors.

Conclusions

- We have explored the possibility of DM from a hidden $SU(2)_D$ gauge group. This implies a phase transition that will result in detectable gravitational waves.
- Due to its simplicity, the model is well suited as a case study for the sensitivity of future gravitational wave observatories to phase transitions in DM sectors.

Thanks for your attention