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ABSTRACT
We present the first N-body simulations that adapt the equations of smoothed particle
hydrodynamics to capture the effect of dark matter self-interactions which are too frequent to be
resolved explicitly. The relevant energy transfer equations are derived, the appropriate thermal
conductivity is determined and the effects of different smoothing kernels are studied. We apply
our framework to simulate the formation of isothermal cores in isolated dark matter haloes and
determine the core growth rate as a function of the self-scattering cross-section. Our approach
may be combined with explicit simulations of rare scatterings in order to simulate accurately
the effects of arbitrary dark matter self-interactions in future cosmological simulations.

Key words: astroparticle physics – galaxies: clusters: general – dark matter.

1 IN T RO D U C T I O N

The �CDM model based on the standard paradigm of collisionless
cold dark matter (CDM) predicts the large-scale structure of the
Universe remarkably well. But on small-scales predictions from
simulations of cosmological structure formation and observations
appear to disagree with each other. In particular, pure CDM simu-
lations predict cuspy density profiles with a steep slope (ρ ∝ r−1)
in the centre of dark matter (DM) haloes (Dubinski & Carlberg
1991; Navarro, Frenk & White 1996b, 1997), while observations
tend to prefer more shallow profiles (ρ ∝ r0), corresponding to a
central core (Flores & Primack 1994; Moore 1994; Moore et al.
1999a). This disagreement is known as the core-cusp problem. The
observed number of sub-haloes in the Milky Way is by far smaller
than predicted by simulations (Klypin et al. 1999; Moore et al.
1999b). This discrepancy is known as the missing satellites problem.
Another disagreement called the too-big-to-fail problem states that
the most massive sub-haloes in CDM simulations are too dense in
the centre to host the observed satellites of the Milky Way (Boylan-
Kolchin, Bullock & Kaplinghat 2011, 2012). Moreover, CDM is
not able to explain the diversity of observed rotation curves of DM
haloes with the same maximum circular velocity (Oman et al. 2015;
Kamada et al. 2017). In addition to the other problems, this diversity
problem constitutes the small-scale crisis of CDM (see the recent
reviews by Bullock & Boylan-Kolchin 2017 and Tulin & Yu 2018).

� E-mail: janis.kummer@desy.de (JK); mbrueggen@hs.uni-hamburg.de
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It has been suggested that these problems may be solved within
the CDM framework by including baryonic processes such as
star formation, supernova feedback and cooling into the N-body
simulations (Navarro, Eke & Frenk 1996a; Governato et al. 2010),
but whether this is sufficient in particular to solve the core-cusp
problem is an ongoing debate (Bose et al. 2018; Read, Walker &
Steger 2018). As a result, modifications of the assumed properties of
DM have been considered. Self-interacting dark matter (SIDM) was
first suggested by Spergel & Steinhardt (2000) as another possibility
to address the small-scale issues. The typical momentum-transfer
cross-section needed to solve these problems is of the order of
magnitude σ/mDM ∼ 1 cm2g−1.

At the same time bounds on the self-interaction cross-section have
been derived from a variety of different astrophysical systems, with
the strongest ones arising from detailed studies of galaxy clusters.
Bounds resulting from the non-observation of offsets between
DM and galaxy centroids as strong as σ/mDM � 0.47 cm2g−1

have been claimed (Markevitch et al. 2004; Randall et al. 2008;
Kahlhoefer et al. 2014; Harvey et al. 2015). Subsequently, these
bounds have been shown to be weaker than initially estimated,
σ/mDM � 2 cm2g−1 (Wittman, Golovich & Dawson 2018) and
are expected to be further diminished when taking into account
the collisionality of galaxies (Kummer, Kahlhoefer & Schmidt-
Hoberg 2018). Stronger bounds are obtained when considering
sub-halo evaporation (Markevitch et al. 2004; Randall et al. 2008),
σ/mDM � 1 cm2g−1. Based on core-sizes of galaxy clusters bounds
as strong as σ/mDM � 0.1 cm2g−1 have been claimed, but these
bounds strongly depend on assumptions of the baryonic physics
(Kaplinghat, Tulin & Yu 2016; Elbert et al. 2018).
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These results have all made the common assumption that a contact
interaction between DM particles induces isotropic scattering.
In this case, the total cross-section and the momentum-transfer
cross-section are very similar. Such models are relatively easy to
implement in numerical studies, since self-interactions of this type
have to be rare in order to satisfy observational constraints (Peter
et al. 2013; Rocha et al. 2013). However, in order to address
the small-scale problems and satisfy constraints from larger sys-
tems, it may be necessary to consider velocity-dependent self-
interaction cross-sections (Buckley & Fox 2010; Loeb & Weiner
2011; Kaplinghat et al. 2016), such that the scattering rate increases
with decreasing velocity. Such a velocity dependence is in fact well-
motivated from particle physics and arises for example in models
with light mediators (Buckley & Fox 2010; Feng, Kaplinghat & Yu
2010; Loeb & Weiner 2011; Tulin, Yu & Zurek 2013a,b).

While the velocity-dependence itself can be included in numeri-
cal simulations in a straight-forward way (Vogelsberger, Zavala &
Loeb 2012a; Zavala, Vogelsberger & Walker 2013), it is no longer
justified in these models to treat self-scattering as isotropic. In fact,
for the case of a light mediator the differential scattering cross-
section is strongly peaked in the forward direction (Kahlhoefer
et al. 2014). To implement such a model within the framework of
rare self-interactions, it becomes necessary to introduce a cut-off
angle and neglect the effect of small-angle scattering (Robertson,
Massey & Eke 2017b).

In this paper, we take a closer look at the effect of frequent
small-angle scattering, which may give rise to a drag force and
lead to the transport of energy (Moore et al. 2000; Yoshida et al.
2000; Gnedin & Ostriker 2001; Markevitch et al. 2004; Ackerman
et al. 2009; Feng et al. 2009). We develop a hybrid description
for simulations of isolated haloes in the limit of frequent self-
interactions. Using a hydrodynamical description, we treat the DM
particles as a collisionless fluid and implement the energy transport
by solving a heat diffusion equation. We find that efficient heat
conduction leads to a reduction of the central density of a DM
halo, which can address the core-cusp problem. This approach is
similar to the gravothermal fluid formalism that was developed to
study globular clusters (Lynden-Bell & Eggleton 1980) and has
subsequently also been applied to self-interacting DM (Balberg,
Shapiro & Inagaki 2002; Ahn & Shapiro 2005; Koda & Shapiro
2011; Pollack, Spergel & Steinhardt 2015; Choquette, Cline &
Cornell 2018; Essig et al. 2018; Nishikawa, Boddy & Kaplinghat
2019).

We present an implementation of such a hybrid description
for the energy transfer due to frequent self-interactions in the N-
body code GADGET-2 (Springel 2005) using its formulation of
smoothed particle hydrodynamics (SPH). As an application of
this implementation, we study the evolution of cuspy DM haloes
modelled with a Hernquist profile under the influence of frequent
DM self-interactions. While we limit ourselves to systems with
spherical symmetry in this work, the framework can be generalized
to non-symmetrical systems. Our implementation can be combined
with existing implementations of rare self-interactions to perform
simulations of SIDM that are valid for both large- and small-
angle scatterings. This approach will enable robust predictions
from simulations that will help to interpret observations more
reliably.

This paper is organised as follows: In Section 2, we introduce fre-
quent DM self-interactions. The implementation of energy transfer
via frequent DM self-interactions is described in Section 3. The
set-up and initial conditions of our simulations are discussed in

Section 4. In Section 5, we validate our simulations by comparing
to analytic predictions. The results of our simulations are presented
in Section 6 before we conclude in Section 7.

2 FREQU ENT DARK MATTER
SELF-I NTERAC TI ONS

The strongest bound on the DM self-interaction cross-section for
velocity-independent scattering originates from the Bullet Cluster,
more specifically from the requirement that the smaller DM halo
(the subcluster) should not lose more that 20–30 per cent of its
mass during core passage (Markevitch et al. 2004; Randall et al.
2008). Following Kahlhoefer et al. (2014), this statement can be
expressed in terms of the number of scattering events leading to the
expulsion of a DM particle from the subcluster (so-called expulsive
collisions). In this context, a collision between a DM particle from
the main cluster with a particle from the subcluster is expulsive if
the velocity of both outgoing particles exceeds the escape velocity
vesc of the subcluster.

For a subcluster moving through a larger cluster with relative
velocity v0, the fraction of expulsive collisions is found to be f =
(1 − v2

esc/v
2
0)/(1 + v2

esc/v
2
0) for the case of isotropic scattering. The

fractional loss of DM particles can then be expressed as

�N

N
= 1 − exp

(
−�σf

mDM

)
, (1)

where � is the integrated background density and σ /mDM the self-
interaction cross-section over DM mass.

In this approach, non-expulsive collisions are assumed not to
affect the subcluster at all. This is a reasonable approximation if
self-interactions are rare and f is of order unity – a case that has been
explored by a number of recent simulational studies (Kim, Peter &
Wittman 2017; Robertson, Massey & Eke 2017a). However, it is
also possible to satisfy the bound from the Bullet Cluster for very
large self-interaction cross-sections provided that f is sufficiently
small. This is the case for example if the differential cross-section is
strongly peaked in the forward direction, as expected for interactions
mediated by a light or massless exchange particle. In such a
situation, the majority of interactions do not lead to a significant
transfer of energy and momentum, so that the total cross-section
(and hence the frequency of scattering processes) can be large
without violating observational constraints.

For frequent self-interactions, the majority of scattering processes
do not lead to the immediate evaporation of DM particles, but they
may affect the structure of the DM halo in different ways. To see
this, consider a single DM particle, moving through a constant
background density with velocity v0. After each scattering process
with angle θ � 1, the velocity in the direction parallel to v0 will be
reduced by δv� ≈ v0sin 2θ , whereas in the direction perpendicular to
v0 the velocity will increase by δv⊥ ≈ v0 sin θ . Over a large number
of random scatters, δv⊥ will average to zero, but δv� and δv2

⊥ do
not.

If we replace the single DM particle by an entire DM halo moving
with velocity v0, frequent self-interactions can therefore be thought
of as causing a drag force:

Fdrag

mDM
∝ σ

mDM
ρv2

0 . (2)

This drag force converts the directed motion of the DM halo into
internal energy, i.e. random motion of the individual DM particles.
Effectively, the DM halo is heated up, which can lead to the
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loss of particles via cumulative evaporation. This net effect of a
large number of small-angle scatters is not captured when only
considering the effect of rare scatterings with large momentum
transfer.

In contrast to rare self-interactions, frequent self-interactions are
notoriously difficult to implement in numerical simulations. The
reason is that particles are typically expected to scatter multiple
times during a single time-step, making an effective description of
these interactions necessary. Indeed, since the mean free path λ =
(nσ )−1 is typically small (λ � r) for frequent self-interactions, we
can approximately apply a fluid description. The idea is to model
the energy transport with a heat diffusion equation for a pressureless
fluid:

j = −κ∇T , (3)

where j denotes the heat flux and κ the thermal conductivity. The
temperature T is assumed to be given by the one-dimensional
velocity dispersion ν as T = mDMν2/kB (see e.g. Gnedin & Ostriker
2001). Combined with energy conservation,

ρ
du

dt
= −∇j, (4)

the diffusion equation takes the form

ρ
du

dt
= ∇(κ∇T ), (5)

where u is the internal energy per unit mass. As we will discuss
below, the particle physics enters in the definition of the thermal
conductivity κ , which depends in particular on the self-scattering
cross-section.

The idea to treat DM as a fluid has been used previously in the
literature to study the structure (Moore et al. 2000; Yoshida et al.
2000; Gnedin & Ostriker 2001) and stability (Balberg et al. 2002;
Ahn & Shapiro 2005; Koda & Shapiro 2011; Pollack et al. 2015;
Essig et al. 2018) of DM haloes for frequent self-interactions. The
disadvantage of this approach compared to N-body simulations is
that it cannot be directly extended to cosmological simulations and
that one cannot easily include the effect of rare self-interactions
with large momentum transfer, for which the effective description
does not apply.

The present paper takes the first steps towards the inclusion of
an effective description of frequent self-interactions in N-body
simulations. We implement the resulting energy transfer in an
existing code and validate our approach for a number of simple
configurations. We discuss the scaling behaviour of the results and
point out possible convergence issues. Our approach can then be
combined with existing implementations of rare self-interactions,
with the relative importance of the two effects depending on the
underlying particle physics properties of the self-interaction cross-
section and the resolution of the simulation.

3 IM P LEM ENTATION O F ENERGY TRANS FER

In this section, we present our implementation of frequent DM self-
interactions in the cosmological N-body code GADGET-2 (Springel
2005). We adopt a hybrid description, in which DM is modelled as
a collisionless fluid supplemented by an effective treatment of self-
interactions. To calculate the energy transfer we use the SPH section
of the code, which in fluid simulations is intended for computing
the hydrodynamical forces. The central idea is to use a smoothing
kernel W(r, H) with kernel-support radius H [i.e. the largest r for
which W(r) > 0] to calculate local averages of relevant quantities

in a way that achieves high resolution and low numerical noise.
For concreteness, the cubic spline kernel is given by (Monaghan &
Lattanzio 1985)

W (r,H ) = 8π

H 3

⎧⎪⎪⎨
⎪⎪⎩

1 − 6
(

r
H

)2 + 6
(

r
H

)3
, 0 � r

H
� 1

2 ,

2
(
1 − r

H

)3
, 1

2 < r
H

� 1,

0, r
H

> 1.

(6)

A comparison of different kernel choices is provided in Appendix A.
For a given smoothing kernel the local density of DM particles ρ

is calculated as

ρi =
∑

j

mjW (|rij |,Hi). (7)

We can then define mass- and kernel-averaged quantities as

Āi = 1

ρi

∑
j

Ai mj W (|rij |, Hi). (8)

Using this approach we can calculate the one-dimensional velocity
dispersions ν:

ν2
x,i = �v2

x,i − �vx,i
2
, (9)

where �vx, i = vx, i − vx, j is the relative velocity between the
particle and its neighbouring particles in the kernel in the direction
of interest. We calculate the velocity dispersion for the x-, y- and
z-direction separately and obtain the total (3D) velocity dispersion
ν3D by summing the individual contributions. Assuming isotropy
within the kernel, the radial velocity dispersion is simply given by
ν2

r = (1/3)ν2
3D. The noise of ν2

r,i is reduced by calculating the kernel

average ν2
r,i .

Frequent DM self-interactions cause a transfer of energy, which
can be interpreted as a transport of the velocity dispersion ν. We
include this effect by solving the heat conduction equation given in
equation (5). As shown by Jubelgas, Springel & Dolag (2004), its
discretized version for the implementation in SPH codes reads

dui

dt
=

∑
j

mj

ρiρj

(κj + κi)(Tj − Ti)

|xij |2 xij∇iWij , (10)

where u = ν2/(γ − 1) = kBT/((γ − 1)mDM) is the thermal energy
per unit mass (the one-dimensional case was discussed before
by Brookshaw 1985). With the replacement of (κ i + κ j)/2 by
κ ij = (2κ iκ j)/(κ i + κ j) to ensure a continuous heat flux (Cleary &
Monaghan 1999), we obtain

dui

dt
= 2(γ − 1)

∑
j

mj

ρiρj

κ ′
ij (uj − ui)

|xij |2 xij∇iWij , (11)

where κ ′
ij = (mDM/kB )κij . The diffusion of the one-dimensional

velocity dispersion is then given by

d(ν2
i )

dt
= 2(γ − 1)

∑
j

mj

ρiρj

κ ′
ij

(
ν2

j − ν2
i

)
|xij |2 xij∇iWij . (12)

At each time-step this diffusion equation is solved for the radial
velocity dispersion in order to obtain �ν2

r,i , which corresponds to the
kinetic energy transferred via frequent self-scatterings. The result,
which can be positive or negative, then needs to be added to the
squared velocity of particle i, ensuring energy conservation. There-
fore, the velocity after energy transfer is given by v′2

i = v2
i + �ν2

r,i .
Since thermal conduction is an effective description for energy
transfer due to many scatterings for which the momentum transfers
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average out, the direction of the particle should not change, such
that

v′
i

|v′
i |

= vi

|vi | . (13)

Hence we obtain

�vi =
(√

v′2
i

v2
i

− 1

)
vi . (14)

To effect such a change in velocity, we calculate the conduction
acceleration ai = �vi/�t for a given time-step �t and add it to the
gravitational acceleration. As usual, we also add a limiter to ensure
that v′2

i can never be smaller than zero.
The remaining challenge is to obtain a prescription for calculating

the thermal conductivity κ in terms of the underlying physics, in
particular the differential scattering cross-section dσ /d�. Usually
κ is calculated from the mean free path, which depends on the
total cross-section σ . However, a more appropriate quantity in this
context is the viscosity cross-section

σV =
∫

sin2 θ
dσ

d�
d�, (15)

as discussed e.g. by Present (1958), McDaniel (1964), Massey,
Burhop & Gilbody (1974), Schultz et al. 2008 and also in the context
of DM by Tulin et al. (2013b) and Cline et al. (2014). The viscosity
cross-section accounts for the fact that perpendicular scattering (θ =
π /2) is most efficient for heat transfer in a DM halo and for altering
its density profile, while both forward and backward scattering have
a reduced effect.1

In analogy to the momentum transfer mean free path λM =
(nσ T)−1 defined in McDaniel (1964), we therefore define the heat
transfer mean free path

λH = 1

n σV
= mDM

ρ σV
, (16)

where n is the number density. For a monatomic gas we have
κ ∼ cvλHnν, where cv = 3kB/2 is the specific heat per particle.
We hence obtain for the conductivity

κ ∼ 3kBν

2σV
and κ ′ ∼ 3ν

2

(
σV

mDM

)−1

. (17)

This treatment is supported by a detailed calculation in Present
(1958) that shows that the viscosity η and thus the thermal
conductivity (κ = 5/2ηcv for monatomic gases) scale as η ∼ σ−1

V .
To obtain a more precise expression for κ , we can employ the

gravothermal fluid formalism used to study thermal conduction from
DM self-interactions (Balberg et al. 2002; Ahn & Shapiro 2005;
Koda & Shapiro 2011; Pollack et al. 2015; Essig et al. 2018). This
formalism makes use of the flux equation

L

4πr2
= −κ

∂T

∂r
= −κ ′ ∂ν2

∂r
, (18)

where L is the heat radiated through a sphere of radius r. Thus, we
can obtain κ

′
from the relation between L and the radial derivative

of the velocity dispersion, replacing the total cross-section by the
viscosity cross-section (Boddy et al. 2016).

1We note that for long-range interactions, the viscosity cross-section is still
logarithmically dependent on the small-angle cut-off, illustrating the fact
that frequent interactions with small scattering angles dominate the energy
transfer.

We treat the short and long mean free path limits following
Lynden-Bell & Wood (1968) and Balberg et al. (2002). Let us
first consider the case that the mean free path λH is much smaller
than the gravitational scale height, i.e. the Jeans length λJ given by
λ2

J = ν2/(4πGρ). In this short mean free path regime the flux is
given by

L

4πr2
= −3

2

b

â
ρ

λ2
H

tr

∂ν2

∂r
, (19)

where tr is the relaxation time. The constant â = √
16/π ≈ 2.257

is the collision rate of DM particles (assuming a Maxwellian
distribution) and b = 25

√
π/32 ≈ 1.385 is derived from Chapman–

Enskog theory (Lifshitz & Pitaevskii 1981). The relaxation time can
be written as tr = (âσVρν/mDM)−1, leading to

L

4πr2
= −3bν

2

(
σV

mDM

)−1
∂ν2

∂r
, (20)

which fixes the constant of proportionality in equation (17).
If the heat transfer mean free path is larger than the Jeans length,

particles can complete several orbits between two scatters in which
significant energy is transferred. In this case, the important length
scale for conduction is the Jeans length λJ rather than the mean free
path. In this long mean free path regime, the flux is given by

L

4πr2
= −3

2
Cρ

λ2
J

tr

∂ν2

∂r
(21)

= −3

2
âC

(
σV

mDM

)
ν3ρ

4πG

∂ν2

∂r
. (22)

The constant C appearing in this equation must be determined by
N-body simulations (Koda & Shapiro 2011). A value of C ≈ 0.75
is suggested for an NFW profile, while for a Hernquist profile the
suggested value is C ≈ 0.9 (C ≈ 1 according to Balberg et al. 2002).
A very recent study finds C = 0.6 for an NFW profile (Essig et al.
2018). As we will consider a Hernquist profile, we adopt C = 0.9,
emphasizing that uncertainties in C enter linearly in the calculation
of κ

′
in the long mean free path regime.

To interpolate between the short and long mean free path regimes,
we take

κ ′ =
(

1

κ ′
lmfp

+ 1

κ ′
smfp

)−1

, (23)

which yields

κ ′
i = 3

2
âbνr,i

(
σV

mDM

)(
â

(
σV

mDM

)2

+ b

C

4πG

ρiν
2
r,i

)−1

. (24)

We demonstrate in Appendix B that our code is able to reproduce
the analytic solution for a one-dimensional test problem.

4 SI M U L AT I N G C O R E FO R M AT I O N IN DA R K
MATTER HALOES

As discussed above, DM self-interactions cause energy transfer
within DM haloes from regions with high temperature (i.e. high
velocity dispersion) to colder regions. This effect heats up central
cusps (which are colder than their surroundings) and transforms
them into isothermal cores. For the remainder of this paper we will
study this core formation, i.e. the transition from a cuspy profile to
a cored profile. We will determine how the core size depends on
both the age of the system and strength of the self-interactions and
determine appropriate rescaling rules.
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To initialize our simulations, we model individual DM haloes
with cuspy Hernquist profiles (Hernquist 1990), for which the
enclosed mass, density profile and one-dimensional velocity dis-
persion are given by

M(r) = M
r2

(r + a)2
, (25)

ρ(r) = M

2π

a

r

1

(r + a)3
, (26)

ν2
r (r) = GM

12a

(
12r(r + a)3

a4
log

(
r + a

r

)

− r

r + a

[
25 + 52

r

a
+ 42

( r

a

)2
+ 12

( r

a

)3
])

, (27)

where M is the total mass and a is the scale radius. The N-body
solver furthermore requires the introduction of a softening length,
and we choose the Plummer equivalent softening length according
to Power et al. (2003). We use the tool MAKEGAL to generate the
initial conditions for spherical haloes in dynamical equilibrium
(Springel & White 1999). MAKEGAL first samples the mass profile
using the analytic expression equation (25). The velocities of
the DM particles are drawn from random samples to sample the
distribution function of the Hernquist profile.

We focus on a DM halo with M = 1010 M�, corresponding to
the size of a typical dwarf galaxy. The scale radius a = 6.4 kpc is
chosen to satisfy the concentration–mass relation from Dutton &
Macciò (2014). We define the dynamical time as the orbital time
at the scale radius as in Kochanek & White (2000) and Robertson
et al. (2017b):

tdyn = 4π

√
a3

GM
, (28)

implying tdyn = 0.98 Gyr for the halo that we consider. We run sim-
ulations with N = 106 and N = 107 particles. For the smaller number
of particles, numerical cores, which form due to gravitational force
softening (Robertson et al. 2017a), start to grow for t > 5 tdyn. For the
case of N = 107 stability of the initial conditions is guaranteed for
the entire time-scale we simulate. Adding the conduction module
to the SPH version of GADGET-2 increases the runtime of the code
by roughly 30 per cent.

Following Koda & Shapiro (2011) and Vogelsberger, Zavala &
Loeb (2012b), we also introduce a dimensionless cross-section

σ̂ = σV

mDM

M

a2

= 0.05

(
σV/mDM

1cm2g−1

)(
M

1010M�

)(
6.4 kpc

a

)2

(29)

and a dimensionless time

t−1
0 = t−1

r,0 = â
σV

mDM
ρ0v0 = â

σV

mDM

√
GM3

2π2a7
, (30)

where ρ0 = M/(2πa3) and v0 = a
√

4πGρ0.
We find that for cross-sections σ̂ � 3 the entire halo (down to

r ∼ 0.01a, which are the smallest radii that can be resolved in
the simulation) resides in the long mean free path regime for the
time-scales we simulate. This implies that the thermal conductivity
κ is directly proportional to the self-interaction cross-section and
hence we expect larger self-interactions to lead to larger core sizes
and more rapid core formation. Finally, we note that in the long

mean free path limit κ depends on the combination Cσ V, where
C is an empirical parameter with a considerable uncertainty (see
equation 22 and surrounding text). Results for different values of C
can be obtained from the results presented below by an appropriate
rescaling of σ V.

5 VALI DATI ON

To validate the implementation presented above we compare the
heat fluxes calculated by the code immediately after initialization
(i.e. before applying the first time-step) to the analytic expectation
for a Hernquist profile. Specifically, we compare the respective
rates d(ν2

r )/dt obtained from the solution of the heat equation, see
equation (12). For the numerical result, we calculate the median
of all particles in a radial shell to reduce noise. The comparison
with the analytic result is shown in Fig. 1 for σV/mDM = 1 cm2g−1.
In the left-hand panel, we fix the total number of particles in the
simulation to N = 106 and consider different numbers of neighbours
Nnbg in the smoothing kernel, while in the right-hand panel, both N
and Nnbg are varied.2

We observe that for values of Nnbg as typically chosen for SPH
problems (Nnbg ∼ 102), we substantially overestimate the conduc-
tion effect. The reason is that there are no additional hydrodynamical
forces that reduce the noise in the velocity distribution. We thus need
to increase the number of neighbours for the cubic spline kernel and
thereby the kernel size to achieve a sufficient reduction in noise.3

At the same time making Nnbg too large partially averages out real
physical effects. This reasoning implies the existence of an optimum
range for Nnbg.

We estimate this optimum value using the least-squares method,
i.e. by minimizing

χ2 =
∑

j

1

σ 2
j

[
d
(
ν2

r

)
/dt

j
− (

d
(
ν2

r

)
/dt

)
th,j

]2
, (31)

where d(ν2
r )/dt j is the median of the numerical results in the jth

radial shell and (d(ν2
r )/dt)th,j is the theoretical prediction for a

Hernquist profile. The uncertainty σ j of the median is difficult to
determine, since for neighbouring particles the values of d(ν2

r )/dt

are highly correlated. If σ j denotes the standard deviation of
d(ν2

r )/dt within each radial shell, we expect σ j = ε σj /
√

Nsh,j ,
where Nsh is the number of particles in the radial shell and ε > 1
is some correction factor that accounts for correlations. Since we
will only be interested in determining the best-fitting value of Nnbg

and not in a goodness-of-fit estimate, we can drop this factor and
simply determine the minimum of

χ̃2 =
∑

j

Nsh,j

σ 2
j

[
d
(
ν2

r

)
/dt

j
− (

d
(
ν2

r

)
/dt

)
th,j

]2
. (32)

For the fitting procedure we focus on a limited range around r/a ∼ 1,
which ensures on the one hand that there is a sufficiently large

2At first sight, the fact that d(ν2)/dt is negative in the central region is counter-
intuitive, given that we expect an increase in temperature in this region. The
reason for this behaviour is that a self-gravitating system has negative heat
capacity. In other words, reducing the kinetic energy of particles in the centre
leads to an increase in total energy due to the virial theorem. This forces the
particles on to larger orbits and drives the transformation of a cusp into a
core (Pollack et al. 2015).
3Note that we can allow a large number of neighbours even for the cubic
spline kernel because we do not compute hydrodynamical forces and
therefore are not limited by pairing instabilities (Dehnen & Aly 2012).
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Figure 1. Comparison of the median of the distribution of d(ν2
r )/dt with the theoretical expectation for a Hernquist profile (d(ν2

r )/dt)th for σV/mDM =
1 cm2g−1, left-hand panel: demonstration of increasing the number of neighbours in the cubic spline kernel with N = 106. For Nnbg = 655, we find the best
agreement with the analytic expectation. Increasing Nnbg further spoils this agreement. Right-hand panel: Comparison for different total numbers N of particles
in the simulation. An increase of the number of particles N does require an adjustment of Nnbg. The optimal value for N = 107 is displayed (Nnbg = 1700).

number of particles in each shell and on the other hand that the
size of the smoothing kernel does not bias our results. For N = 106,
we achieve the best agreement with the analytic expectation in this
range with Nnbg = 655. Increasing the total number of particles N
in the simulation induces more noise in the distribution of d(ν2

r )/dt .
To compensate for this effect, we must increase Nnbg (see right-hand
panel of Fig. 1). We find Nnbg to scale approximately proportional
to N0.4 and obtain an optimal value of Nnbg = 1700 for N = 107. We
emphasize that numerical convergence in SPH is only possible in
the simultaneous limit N → ∞ and Nnbg → ∞ (Zhu, Hernquist &
Li 2015).

Moving to more extended kernels [such as Wendland C6 as
proposed by Dehnen & Aly (2012) or Wendland C8] does not
improve the agreement compared to the cubic spline kernel, but
leads to higher computational cost. Details of the kernel comparison
are presented in Appendix A.

For very small radii, r � a some discrepancies between analytical
and numerical result remain even with the optimum choice for Nnbg.
The reason is that the requirement of a large number of neigh-
bours implies a large kernel-support radius H. Once H becomes
comparable to the radial distance of the particle to the centre of
the halo, our implementation no longer produces reliable results,
because the particles sampled by the kernel no longer provide
unbiased estimates of the underlying distributions. In other words,
it may no longer be possible to find a sufficient number of particles
with smaller radius to reliably estimate the gradient in the velocity
dispersion.

Fortunately, the limited resolution in the central region does not
impede our ability to study core formation. The reason is that the
core formation rate depends on the total amount of heat transported
towards the centre. This heat transport can be accurately estimated
from our implementation, which agrees well with the analytic
expectations for r � a/2. However, the numerical artefacts in the
central region may lead to unphysical energy transport within the
core, which may affect core stability. We therefore cannot cover
the full evolution of the halo in the gravothermal fluid model and
do not expect to accurately capture the recollapse of cores at very
late times (Lynden-Bell & Wood 1968; Kochanek & White 2000;
Balberg et al. 2002; Koda & Shapiro 2011; Pollack et al. 2015;
Robertson et al. 2017b).

6 R ESULTS

Based on our findings in the previous section, we use the cubic
spline kernel with Nnbg = 655 for N = 106 and Nnbg = 1700 for N =
107 to simulate the dwarf-size DM halo defined in Section 4. Fig. 2
shows the density profile and velocity dispersion of the halo after
time t0, defined as the relaxation time at the centre. In agreement
with expectation, we find heat conduction from frequent DM self-
interactions to reduce the central density and to start core formation.
At the same time the velocity dispersion flattens in the centre of the
halo, leading to an isothermal profile. The fact that the velocity
dispersion is not exactly flat in the centre stems from the numerical
limitations discussed in Section 5. The results for N = 106 and N =
107 agree very well, indicating that our simulations converge for
σV/mDM = 1 cm2g−1. On purpose, our fiducial choice of particles
is not the maximal number that we can afford but N = 106 and
Nnbg = 655 because our technique is intended to be used in larger
simulation boxes where only moderate particle numbers per halo
can be afforded. A comparison to simulations with N = 107 particles
supports the presented results with a deviation of the final core size
smaller than 2 per cent for σ̂ = 1.

Fig. 3 illustrates the time evolution of the DM halo in dimension-
less units for σ̂ = 1 after t = 2.6 t0, t = 12.8 t0 and t = 25.5 t0. We
extract the core size of the DM halo by fitting the density profile to
a cored Hernquist profile

ρ(r) = M

2π

a(
rβ + r

β
core

)1/β

1

(r + a)3
. (33)

We keep the parameter β = 4 fixed and allow the other parameters
to vary during the fitting processes (Robertson et al. 2017b). The
core growth for different dimensionless cross sections σ̂ is shown
in the left-hand panel of Fig. 4. The growth of the core is very rapid
in the beginning and decreases with time. For comparison, Pollack
et al. (2015) found a maximal core size of a similar magnitude for
an NFW profile as we find at t ≈ 25 t0 with the same cross-section.4

4Note the difference in the definition of the dimensionless cross-section
in Pollack et al. (2015) σ̂ ′ = σ̂ /(4π ) such that σ̂ ′ = 0.08 is equivalent to
σ̂ = 1.
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Figure 2. Left-hand panel: dimensionless density profile. Right-hand panel: dimensionless velocity dispersion. We show both for σV/mDM = 1 cm2g−1 at
t ≈ t0. The agreement of the density profiles for N = 106 and N = 107 shows that our method converges for the given set-up. For numerical reasons, the velocity
dispersion is not exactly flat in the central region. The dashed vertical line indicates the softening length for N = 107 and dotted for N = 106.

Figure 3. Time evolution of the dimensionless density profile of the dwarf-
size DM halo for σ̂ = 1.

In the right-hand panel of Fig. 4, we show the core size as a
function of the product of dimensionless time and cross-section. The
fact that all curves lie on top of each other implies that the growth
rate depends linearly on the cross-section. This scaling originates
from the fact that the entire halo is in the long mean free path limit
(see discussion in the end of Sections 3 and 4).

We find that the core size at t = 4 tdyn is rcore/a ≈ 0.45 for σ̂ = 1.
This is in agreement with the results of Kochanek & White (2000)
as they find a maximal core size of rcore/a ≈ 0.4 for the same cross-
section. This core size already reached at t ≈ tdyn, in our case the
evolution is much slower. Note that the maximal core size found by
Robertson et al. (2017b) is much smaller (rcore/a ≈ 0.15) compared
to our results and the results of Kochanek & White (2000).

Since we are not able to resolve the very centre of the halo, we
are not able to simulate the full evolution of the gravothermal fluid
model. Especially for large cross-sections, a recollapse of the core
is expected for the time-scale we simulate. For example, for σ̂ = 3
we have t0 ≈ 0.05 Gyr, which means we cover t = 4 tdyn ≈ 80 t0
in our simulation, while Vogelsberger et al. (2012b) found that
the recollapse starts after t ≈ 25 t0. The prediction of the core size
for the large cross-section σ̂ = 3 is therefore not reliable, since
we expect the core to recollapse. Note that σ̂ = 3 corresponds

to a very large cross-section of σV/mDM ≈ 59 cm2g−1 which is
not compatible with current bounds. For cross-sections which are
compatible with the bounds and for time-scales smaller than the age
of the Universe recollapse is not relevant for isolated DM haloes.

7 D ISCUSSION

We have presented the first N-body simulations using SPH to
capture the effect of DM self-interactions for frequent scattering.
Using an implementation of thermal conduction in the SPH section
of GADGET-2 we carried out simulations of an (isolated) dwarf-
sized DM halo. To map the particle physics parameters to the
thermodynamical quantities (i.e. the thermal conductivity), we use
the well-established idea of the gravothermal fluid formalism. The
resulting energy transfer from the outer part of the halo towards the
centre has a significant impact on the evolution of the system. The
central density of an initially cuspy halo is reduced and an isothermal
core is created. We therefore recover the well-known mechanism
for solving the core-cusp problem and the too-big-to-fail problem
with SIDM.

Due to the negative heat capacity of self-gravitating systems, any
self-interacting DM halo will experience a gravothermal catastro-
phe (Lynden-Bell & Wood 1968) at very late times or for very large
cross-sections (Kochanek & White 2000; Balberg et al. 2002). The
fact that the resulting DM haloes would be in obvious conflict with
observations can be used to obtain relevant constraints on the self-
interaction cross-section, in particular when including effects from
dissipation (Essig et al. 2018). While it would be very interesting
to investigate these effects in our simulations, numerical limitations
in the central region of the DM halo imply that it is currently not
possible to simulate its recollapse. It remains to be seen whether
this problem can be overcome with higher resolution simulations or
different smoothing kernels.

Our formalism provides a proof of principle for the inclusion of
frequent DM self-interactions in N-body simulations and should be
seen as a first step towards a comprehensive treatment of all effects
of SIDM. For example, our simulations do not presently include
the effective drag force created by frequent self-interactions, i.e. we
simulate the SIDM effects on the halo via heat conduction only. The
reason for neglecting this drag force is that it is expected to be small
in the system with spherical symmetry, as the velocity distribution
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Figure 4. Core growth for different values of the dimensionless cross-section. In the right-hand panel, we rescaled the time with the dimensionless cross-section.
The agreement implies that the growth rate scales linearly with the cross-section. The largest cross-section is expected to be affected by the gravothermal
catastrophe, which we do not cover in our simulation.

of an isolated halo and therefore in each kernel is isotropic. In order
to study anisotropic systems such as merging galaxy clusters, an
implementation of an effective drag force will be needed.

Furthermore, the set-up of our simulations does not fully capture
the relevant physical process during structure formation. Consider-
ing initially cuspy profiles implicitly assumes that self-interactions
are not relevant for structure formation, which may not be a good
approximation for large self-interaction cross sections. In order to
extract reliable predictions and bounds from our formalism, it will
be essential to perform full cosmological simulations. The fact that
such simulations involve many different length scales complicates
the optimum choice of the smoothing kernel and may necessitate
adaptive kernel sizes.

Finally, we have focused on simulations of DM only. Understand-
ing the interplay of baryonic physics and SIDM is an important
next step, in particular in the context of the core-cusp problem.
For simulations of rare DM self-interactions there has been a lot
of progress on this subject recently. Testable predictions of SIDM
have been developed and a preference for small self-interaction
cross-sections (σ/mDM ≈ 0.1 cm2g−1) from core sizes in galaxy
clusters has been found (Despali et al. 2018; Elbert et al. 2018;
Robertson et al. 2018a; Sameie et al. 2018) although baryonic
feedback introduces a sizeable scatter (Robertson et al. 2018b).

It is important to emphasize that our approach for simulating
frequent self-interactions should not be seen as an alternative to
existing state-of-the-art simulations of SIDM. Indeed, our ultimate
goal is to combine the implementation presented here with the
well-established formalism for rare scattering in order to simulate
self-scattering cross-sections with arbitrary angular dependence.
The idea would be to explicitly simulate large-angle scatters while
using our approach to capture the effect of small-angle scatters. This
hybrid solution will then make it possible to perform fully consistent
N-body simulations of observationally favoured SIDM models with
scattering cross sections depending on velocity and scattering angle.
Doing so will enable us to draw robust conclusions on the nature of
DM self-interactions.

AC K N OW L E D G E M E N T S

The preprint numbers: DESY-19-020, TTK-19-06. We thank Manoj
Kaplinghat and Denis Wittor for valuable discussions. This work

is funded by the Deutsche Forschungsgemeinschaft (DFG) through
the SFB grant 676, the Emmy Noether Grant No. KA 4662/1-1,
the ERC Starting Grant ‘NewAve’ (638528) and under Germany’s
Excellence Strategy – EXC 2121, Quantum Universe‘ – 390833306.

REFERENCES

Ackerman L., Buckley M. R., Carroll S. M., Kamionkowski M., 2009, Phys.
Rev., D79, 023519

Ahn K.-J., Shapiro P. R., 2005, MNRAS, 363, 1092
Balberg S., Shapiro S. L., Inagaki S., 2002, Astrophys. J., 568, 475
Boddy K. K., Kaplinghat M., Kwa A., Peter A. H. G., 2016, Phys. Rev.,

D94, 123017
Bose S. et al., 2019, MNRAS,
Boylan-Kolchin M., Bullock J. S., Kaplinghat M., 2011, MNRAS, 415, L40
Boylan-Kolchin M., Bullock J. S., Kaplinghat M., 2012, MNRAS, 422, 1203
Brookshaw L., 1985, Proc. Astron. Soc. Aust., 6, 207
Buckley M. R., Fox P. J., 2010, Phys. Rev., D81, 083522
Bullock J. S., Boylan-Kolchin M., 2017, Ann. Rev. Astron. Astrophys., 55,

343
Choquette J., Cline J. M., Cornell J. M., 2018, preprint (arXiv:1812.05088)
Cleary P. W., Monaghan J. J., 1999, J. Comput. Phys., 148, 227
Cline J. M., Liu Z., Moore G., Xue W., 2014, Phys. Rev., D89, 043514
Dehnen W., Aly H., 2012, MNRAS, 425, 1068
Despali G., Sparre M., Vegetti S., Vogelsberger M., Zavala J., Marinacci F.,

2018, MNRAS, 484, 4563
Dubinski J., Carlberg R. G., 1991, ApJ, 378, 496
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APPENDI X A : K ERNEL C OMPA RI SON

We have experimented with different choices for the SPH kernel
in our simulation. In particular, we have investigated the effect of
more extended smoothing kernels, such as the Wendland C6 kernel
(WC6) (Dehnen & Aly 2012) defined by

W (r,H ) = 1365

64πH 3

(
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+
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where (·)+ = max{0, ·}. More extended kernels obviously have
the property of a larger effective kernel size (kernel-support radius
H, i.e. the largest value of the radius, r, for which W(r) > 0). This
increases the number of neighbour particles, while keeping the same
smoothing scale h (Price 2012). The smoothing scale is essentially
defined by the kernel standard deviation h = 2σ . A typical choice for
the WC6 kernel is Nnbg = 295. Finally, we have also experimented
with a WC8 kernel (Wendland 2009) defined as
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Keeping the smoothing scale, h, of the WC6 kernel with Nnbg = 295
fixed, the WC8 kernel allows for Nnbg = 382. We find that this choice
leads to no significant improvement compared to the cubic spline
kernel for the agreement of d(ν2

r )/dt with the theoretical expectation
(d(ν2

r )/dt)th as shown in Fig. A1. However, the computational
cost increases substantially for the same smoothing length, h.
Consequently, we need to increase the smoothing scale at the cost
of losing resolution. This is achieved by increasing the number of
neighbours for a fixed kernel. A useful quantity for the efficiency of
the kernel is the number of neighbours inside the smoothing scale
Nh = (h/H)3Nnbg. Nh is larger for the cubic spline kernel compared
to the more extended kernels for a fixed number of particles. To keep

Figure A1. Comparison of the median of the distribution of d(ν2
r )/dt

with the theoretical expectation for a Hernquist profile (d(ν2
r )/dt)th for

σV/mDM = 1 cm2g−1. Here we compare different choices of the smoothing
kernel with Nnbg chosen such that the smoothing scale h agrees for all kernels
with N = 106. We demonstrate that more extended kernels do not lead to
any further improvement.
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the computational cost low, we choose the cubic spline kernel for
the simulations presented in Section 6. To summarize, we learned
that the smoothing scale of the kernel needs to be increased by
raising the number of neighbours Nnbg for a given kernel in order to
reduce the noise effectively.

APP ENDIX B: O NE-DIMENSIONAL TEST
PROBLEM

For the purpose of testing our implementation of heat conduction,
we set-up a one-dimensional test without gravity and compared the
results to the analytical solution. To this end, we initialized particles
on a grid with random velocities but different velocity dispersions on
either side of the centre of the computational domain. We calculate
the velocity dispersions from the initial velocities. The velocities are
updated owing to the conduction and, hence, the velocity dispersions
change accordingly. However, in this particular test we did not allow

the particles to move but instead kept them fixed on the grid. This
way, we can study only the transport of heat and compare the
results to the analytic solution. Initially, we set the conductivity κ

′

to a certain value and keep it constant throughout the whole test
κ

′ = α = 10 since α = κ
′
/ρ and we chose ρ = 1 in internal units.

Converted to physical units, this implies ρ = 6.77×10−22 g cm−3,
κ ′ = 2.04 · 106 g cm−1s−1, and α = 3.02 × 1027 cm2 s−1. For this
case, the analytic solution is known (Jubelgas et al. 2004)

ν(x, t) = ν0 + �ν

2
erf

(
x − x0√

4αt

)
, (B1)

where x0 is the position of the initial difference of size �ν of the
velocity dispersion, and ν0 the mean velocity dispersion. We use
the WC6 kernel with Nnbg = 295 and find that the resulting thermal
conduction of the simulation agrees well with the analytic solution
around the centre for constant κ

′
. The results are shown in Fig. B1.

Figure B1. Time evolution of the velocity dispersion for the one-dimensional test problem. We show the analytic solution in red and the mean of the velocity
dispersion distribution in black.
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