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Abstract We describe a new parallel approach to the eval-

uation of phase space for Monte-Carlo event generation,

implemented within the framework of the Whizard package.

The program realizes a twofold self-adaptive multi-channel

parameterization of phase space and makes use of the stan-

dard OpenMP and MPI protocols for parallelization. The

modern MPI3 feature of asynchronous communication is an

essential ingredient of the computing model. Parallel numer-

ical evaluation applies both to phase-space integration and to

event generation, thus covering computing-intensive parts of

physics simulation for a realistic collider environment.
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1 Introduction

Monte-Carlo event generators are an indispensable tool of

elementary particle physics. Comparing collider data with a

theoretical model is greatly facilitated if there is a sample of

simulated events that represents the theoretical prediction,

and can directly be compared to the event sample from the

particle detector. The simulation requires two steps: the gen-

eration of particle-level events, resulting in a set of particle

species and momentum four-vectors, and the simulation of

detector response. To generate particle-level events, a gener-

ator computes partonic observables and partonic event sam-

ples which then are dressed by parton shower, hadronization,

and hadronic decays. In this paper, we focus on the efficient

computation of partonic observables and events.

Hard scattering processes involve Standard-Model (SM)

elementary particles – quarks, gluons, leptons, W±, Z, and

Higgs bosons, and photons. The large number and complex-

ity of scattering events recorded at detectors such as ATLAS

or CMS, call for a matching computing power in simula-

tion. Parallel evaluation that makes maximum use of avail-

able resources is an obvious solution.

The dominant elementary processes at the Large Hadron

Collider (LHC) can be described as 2 → 2 or 2 → 3 particle

production, where resonances in the final state subsequently

decay, and additional jets can be accounted for by the par-

ton shower. Cross sections and phase-space distributions are

available as analytic expressions. Since distinct events are

physically independent of each other, parallel evaluation is

done trivially by generating independent event samples on
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separate processors. In such a situation, a parallel simulation

run on a multi-core or multi-processor system can operate

close to optimal efficiency.

However, the LHC does probe rarer partonic processes

which are of the type 2 → n where n ≥ 4. There are

increasing demands on the precision in data analysis at the

LHC and, furthermore, at the planned future high-energy and

high-luminosity lepton and hadron colliders. This forces the

simulation to go beyond the leading order in perturbation

theory, beyond the separation of production and decay, and

beyond simple approximations for radiation. For instance,

in processes such as top-quark pair production or vector-

boson scattering, the simulation must handle elementary

n = 6, 8, 10 processes.

Closed analytical expressions for phase-space distribu-

tions with high multiplicity exist for uniform phase-space

population algorithms [1,2]. However, for arbitrary phase-

space distributions with high multiplicity, such closed ana-

lytical expressions are not available. A standard ansatz is

to factorize the phase space into Lorentz-invariant two-body

phase spaces, which are individually parameterized and kine-

matically linked by a chain of Lorentz boosts.

Event generators for particle physics processes therefore

rely on statistical methods both for event generation and for

the preceding time-consuming numerical integration of the

phase space. All major codes involve a Monte-Carlo rejec-

tion algorithm for generating unweighted event samples. This

requires knowledge of the total cross section and of a refer-

ence limiting distribution over the whole phase space. Calcu-

lating those quantities relies again on Monte-Carlo methods,

which typically involve an adaptive iteration algorithm. A

large fraction of the total computing time cannot be triv-

ially parallelized since it involves significant communica-

tion. Nevertheless, some of the main MC event generators

have implemented parallelization features, e.g.,Sherpa [3],

MG5_aMC@NLO [4] as mentioned in [5], MATRIX [6] and

MCFM [7].

In the current paper, we describe a new approach to effi-

cient parallelization for adaptive Monte Carlo integration

and event generation, implemented within the Whizard [8]

Monte-Carlo integration and event-generation program. The

approach combines independent evaluation on separate pro-

cessing units with asynchronous communication via MPI

3.1 with internally parallelized loops distributed on multi-

ple cores via OpenMP. In Sect. 2, we give an overview of

the workflow of the Whizard event generation framework

with the computing-intensive tasks that it has to perform.

Sect. 3 describes the actual MC integration and event gen-

eration algorithm. The parallelization methods and neces-

sary modifications to the algorithm are detailed in Sect. 4.

This section also shows our study on the achievable gain

in efficiency for typical applications in high-energy physics.

Finally, we conclude in Sect. 5.

2 The WHIZARD multi-purpose event generator

framework

We will demonstrate our parallelization algorithms within

the Whizard framework [8]. Whizard is a multi-purpose

Monte-Carlo integration and event generator program. In this

Section, we describe the computing-intensive algorithms and

tasks which are potential targets of improvement via parallel

evaluation. In order to make the section self-contained, we

also give an overview of the capabilities of Whizard.

The program covers the complete workflow of particle-

physics calculations, from setting up a model Lagrangian

to generating unweighted hadronic event samples. To this

end, it combines internal algorithms with external packages.

Physics models are available either as internal model descrip-

tions or via interfaces to external packages, e.g. for Feyn-

Rules [9]. For any model, scattering amplitudes are auto-

matically constructed and accessed for numerical evaluation

via the included matrix-element generator O’Mega [10–

15]. The calculation of partonic cross sections, observ-

ables, and events is handled within the program itself, as

detailed below. Generated events are showered by internal

routines [16], showered and hadronized by standard inter-

faces to external programs, or by means of a dedicated inter-

face to Pythia [17,18]. For next-to-leading-order (NLO)

calculations, Whizard takes virtual and color-/charge-/spin-

correlated matrix elements from the one-loop providers

OpenLoops [19,20], GoSam [21,22], or RECOLA [23],

and handles subtraction within the Frixione–Kunszt–Signer

scheme (FKS) [24–27]. Selected Whizard results at NLO,

some of them obtained using parallel evaluation as presented

in this paper, can be found in Refs. [28–32].

From the user’s perspective, a standard Whizard run has

the twofold purpose of obtaining a good approximation to

the cross section of a particular scattering process – a phase-

space integral –, and subsequently generating an unweighted

event sample for this process in form of an event file on disk.

The progress of the calculation is shown in a terminal on

screen (Fig. 1). In a nutshell, a minimal run has the following

logical structure:

1. Construct, compile, and link matrix element code, as far

as necessary for evaluation.

2. Compute an approximation to the phase-space integral

for given input data (collider energy, etc.), using the cur-

rent state of phase-space parameterization (integration

grids, cf. below).

3. (a) Optimize the integration-grid data based on the infor-

mation gathered in step 2, discard all previous inte-

gration results and repeat from step 2 with the new

parameterization, or
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(b) Record the integration result and statistical uncer-

tainty from 2 as final. If requested, proceed with

step 4.

4. Take the results and grid data from 3b to generate and

store a partonic event sample, optionally transformed into

a physical (hadronic) event sample in some public event

format.

In an actual integration run, there are several iterations

grouped into integration passes with averaged results, as vis-

ible in the output (Fig. 1). Furthermore, by means of the

Sindarin language, this basic setup can be controlled in

many ways, extended and embedded in more complicated

workflows that involves multiple process samples, loops and

parameter scans, etc. However, for the current paper we set

aside these complications and focus on details of individual

steps 2–4 and their optimization.

We note that there is no technical distinction between

warm-up and genuine integration phases, but the workflow

does separate the optional final step of generating an event

sample. Anticipating the detailed discussion of parallel eval-

uation, we note that steps 2 and 3a are both rather non-trivial

if distributed among separate workers. The multi-channel

approach of parameterizing phase space and the Vamp algo-

rithm combined call for correlating the selection of phase-

space points for sampling, parallel single matrix-element

evaluation, communication of Jacobians and other informa-

tion between workers, and reducing remotely accumulated

information during the adaptation step 3a. This problem and

our approach to an efficient solution constitute the main sub-

ject of the current paper.

By contrast, during the event-generation step 4, we can

freely distribute statistically independent partial samples

among workers. This problem is trivially parallelizable, in

principle. We note that the practical implementation nev-

ertheless has to be made consistent with the general setup

within the program, to enable efficient evaluation, but we do

not consider this part in much detail. Most of our discus-

sion below concerns the efficient integration of phase space,

before actual events are generated. As it turns out, the CPU

time required for iteratively computing the integral to suffi-

cient accuracy often exceeds the time required for generating

unweighted events for real Whizard applications, by virtue

of the Vamp optimization capabilities.

In concrete terms, the core part of Whizard is the phase-

space parameterization, computing values for integrals and

the distribution of variance, and the iterative optimization

of the parameterization. The phase space is the manifold of

kinematically allowed energy-momentum configurations of

the external particles in an elementary process. User-defined

cuts may additionally constrain phase space in rather arbi-

trary ways. Whizard specifically allows for arbitrary phase-

space cuts, that can be steered from the input file via its

scripting language Sindarin without any (re-)compilation of

code. The program determines a set of phase-space param-

eterizations (called channels), i.e., bijective mappings of a

subset of the unit d-dimensional hypercube onto the phase-

space manifold. For the processes of interest, d lies between

2 and some 25 dimensions. Note that the parameterization

of non-trivial beam structure in form of parton distribu-

tion functions, beam spectra, electron structure functions for

initial-state radiation, effective photon approximation, etc.,

provides additional dimensions to the numerical integration.

The actual integrand, i.e., the square of a transition matrix

element evaluated at the required order in perturbation the-

ory, is defined as a function on this cut phase space. It typi-

cally contains sharp peaks (resonances) and develops poles

in the integration variables just beyond the boundaries. We

collectively denoted those as “singularities” in a slight abuse

of language. In effect, the numerical value of the integrand

varies over many orders of magnitude.

For an efficient integration, it is essential that the program

generates multiple phase-space channels for the same pro-

cess. Each channel has the property that a particular subset

of the singularities of the integrand maps to a slowly varying

distribution (in the ideal case a constant) along a coordinate

axis of the phase-space manifold with that specific mapping.

The set of channels has to be large enough that it covers all

numerically relevant singularities. This is not a well-defined

requirement, and Whizard contains a heuristic algorithm

that determines this set. The number of channels may range

from one (e.g. e+e− → µ+µ− at
√

s = 40 GeV, no beam

structure) to some 106 (e.g. vector boson scattering at the

LHC, or BSM processes at the LHC) for typical applications.

The actual integration is done by the Vamp subprogram,

which is a multi-channel version of the self-adaptive Vegas

algorithm. We describe the details of this algorithm below

in Sect. 3. In essence, for each channel, the hypercube is

binned along each integration dimension, and the bin widths

as well as the channel weight factors are then iteratively

adapted in order to reduce the variance of the integrand as

far as possible. This adaptive integration step includes the

most computing-intensive parts of Whizard. CPU time is

spent mostly in (i) the evaluation of the matrix element at

each phase-space point which becomes particularly time-

consuming for high-multiplicity or NLO processes, (ii) the

evaluation of the phase-space mapping and its inverse for

each channel, alongside with the Jacobian of this mapping,

(iii) sampling the phase-space points and collecting the evalu-

ation results, and (iv) the adaption of the bin widths and chan-

nel weights. If the adaptation is successful, it will improve

the integration result: the relative error of the Monte-Carlo

integration is estimated as

∆I

I
=

a
√

N
, (1)
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Fig. 1 Consecutive computing

tasks in Whizard shown via the

program output for a standard

2 → 2 process: initialization of

the random number generator

(RNG), setting up the beam data

and the phase space

parameterization. The VAMP2

(MPI Vamp) integrator

performs three adaptive

integration passes, 1–3, and

three integration passes without

adaptation, 4–6. Then the

simulation pass starts, i.e. the

event generation, which contains

so called event transforms like

parton shower, hadronization,

resonance decays etc
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where I is the integral that has to be computed, ∆I is the

statistical error of the integral estimate, and N is the number

of phase-space points for which the integrand has been evalu-

ated. Successful adaptation will improve the integral error by

reducing the accuracy parameter a, often by several orders

of magnitude.

The program records the integration result. The accom-

panying set of adapted bin widths, for each dimension and

for each channel, together with the maximum value of the

mapped integrand, is called an integration grid, and is also

recorded. The set of adapted grids can then be used for the

final simulation step. Simulation implies generating a sam-

ple of statistically independent events (phase-space points),

with a probability distribution as given by the integrand value.

After multiple adaptive iterations, the effective event weights

should vary much less in magnitude compared to the origi-

nal integrand defined on the phase-space manifold. Assuming

that the maximum value can be estimated sufficiently well,

a simple rejection algorithm can convert this into a set of

unweighted events. An unweighted event sample constitutes

an actual simulation of an experimental outcome. The effi-

ciency ǫ of this unweighting is the ratio of the average event

weight over the maximum weight,

ǫ =
〈w〉N

wmax
. (2)

Since the integrand has to be completely evaluated for each

event before acceptance or rejection, the unweighting effi-

ciency ǫ translates directly into CPU time for generating

an unweighted event sample. Successful adaptation should

increase ǫ as far as possible. We note that event generation, for

each phase-space point, involves all channel mappings and

Jacobian calculations in the same way as integration does.

Finally, for completeness, we note that Whizard contains

additional modules that implement other relevant physical

effects, e.g., incoming-beam structure, polarization, factor-

izing processes into production and decay, and modules that

prepare events for actual physics studies and analyses. To

convert partonic events into hadronic events, the program

provides its own algorithms together with, or as an alternative

to, external programs such as Pythia. Data visualization and

analysis can be performed by its own routines or by externally

operating on event samples, available in various formats.

Before we discuss the parallelization of the phase-space

integration, in the next section, Sect. 3, we explain in detail

how the MC integration of Whizard works.

3 The MC integrator of WHIZARD: the VAMP

algorithm

The implementation of the integration and event genera-

tion modules of Whizard is based on the Vegas algo-

rithm [33,34]. Whizard combines the Vegas method of

adaptive Monte-Carlo integration with the principle of multi-

channel integration [35]. The basic algorithm and a sam-

ple implementation have been published as Vamp (Vegas

AMPlified) in [36]. In this section, in order to prepare the dis-

cussion of our parallelized re-implementation of the Vamp

algorithm, we discuss in detail the algorithm and its appli-

cation to phase-space sampling within Whizard. Our par-

allelized implementation for the purpose of efficient parallel

evaluation is then presented in Sect. 4.

3.1 Integration by Monte-Carlo sampling

We want to compute the integral I for an integrand f defined

on a compact d-dimensional phase-space manifold Ω . The

integrand f represents a real-valued squared matrix element

(in NLO calculations, this can be a generalization that need

not be positive semidefinite) with potentially high numerical

variance. The coordinates p represent four-momenta and,

optionally, extra integration variables such as structure func-

tion parameters like parton energy fractions. The phase-space

manifold and the measure dµ(p) are determined by four-

momentum conservation, on-shell conditions, and optionally

by user-defined cuts and weight factors:

IΩ [ f ] =
∫

Ω

dµ(p) f (p). (3)

A phase-space parameterization is a bijective mapping φ

from a subset U of the d-dimensional unit hypercube, U ⊂
(0, 1)d , onto Ω = φ(U ) with Jacobian φ′ = det(dφ/dx),

p = φ(x), dµ(p) = φ′(x) dµ(x) = φ′(x) ρφ(x) dd x . (4)

The measure in this chart becomes proportional to the canon-

ical measure on R
d with density φ′(x) ρφ(x). Mappings φ

may be chosen a priori such that the density expressed in

these coordinates does not exhibit high numerical variance;

for instance, the Jacobian φ′ may cancel integrable singu-

larities associated with Gram determinants near the edges of

phase space. Furthermore, we may extend the x integration

over the complete unit hypercube, continuing Ω arbitrarily

while setting dµ(x) = 0 for values x outside the integration

domain U (e.g. outside a fiducial phase-space volume).

The basic idea of Monte-Carlo integration [37] builds

upon the observation that the integral IΩ [ f ] can be estimated

by a finite sum, where the estimate is given by

EN [ f ] = 〈 f 〉N =
1

N

N
∑

i=1

f (φ(xi )) φ′(xi ) ρφ(xi ), (5)

if the points xi are distributed according to a uniform random

distribution within the hypercube. N is the number of ran-
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dom number configurations for which the integrand has been

evaluated, the calls. The integration method is also known as

importance sampling.

Asymptotically, the estimators EN [ f ] for independent

random sequences {xi } will themselves be statistically dis-

tributed according to a Gaussian around the mean value

IΩ [ f ]. The statistical error of the estimate can be given as

the square root of the variance estimate,

VN [ f ] =
N

N − 1

(

〈 f 2〉N − 〈 f 〉2
N

)

, (6)

which is calculated alongside with the integral estimate.

Asymptotically, the statistical error of the integration scales

according to Eq. (1), where the accuracy a depends on the

actual variance of the effective integrand

fφ(x) = f (φ(x)) φ′(x) ρφ(x) (7)

In short, the computation consists of a sequence of events,

points xi with associated weights wi = fφ(xi ).

This algorithm has become a standard choice for particle-

physics computations, because (i) the error scaling law ∝
1/

√
N turns out to be superior to any other useful algorithm

for large dimensionality of the integral d; (ii) by projecting on

observables O(φ(x)), any integrated or differential observ-

able can be evaluated from the same event sample; and (iii)

an event sample can be unweighted to accurately simulate

the event sample resulting from an actual experiment. The

unweighting efficiency ǫ as in Eq. (2) again depends on the

behavior of the effective integrand.

The optimal values a = 0 and ǫ = 1 are reached if

f (φ(x)) φ′(x) ρφ(x) ≡ 1. In one dimension, this is possi-

ble by adjusting the mapping φ(x) accordingly. The Jaco-

bian φ′ should cancel the variance of the integrand f , and

thus will assume the shape of this function. In more than one

dimension, such mappings are not available in closed form,

in general.

In calculations in particle-physics perturbation theory, the

integrand f is most efficiently derived recursively, e.g. from

one-particle off-shell wave functions like in [10]. The poles in

these recursive structures are the resonant Feynman propaga-

tors. In particular, if for a simple process only a single propa-

gator contributes, there are standard mappings φ such that the

mapped integrand factorizes into one-dimensional functions,

and the dominant singularities are canceled. For this reason,

the phase-space channels of Whizard are constructed from

the propagator structure of the most relevant contributions to

the squared amplitude. If several such contributions exhibit

a mutually incompatible propagator structure, mappings that

cancel the singularities are available only for very specific

cases such as massless QCD radiation, e.g. [38,39]. In any

case, we have to deal with some remainder variance that is

not accounted for by standard mappings, such as polynomial

factors in the numerator, higher-order contributions, or user-

defined cuts which do not depend on the integrand f .

3.2 The VEGAS algorithm: importance sampling

The Vegas algorithm [34] addresses the frequent situation

that the effective integrand fφ is not far from factorizable

form, but the capabilities of finding an optimal mapping φ in

closed form have been exhausted. In that case, it is possible to

construct a factorizable step mapping that improves accuracy

and efficiency beyond the chosen φ(x).

Several implementations of Vegas exist, e.g. Lepage’s

FORTRAN77 implementation [34] or the GNU scientific

library C implementation [40]. Here, we relate to the Vamp

integration package as it is contained in Whizard. It pro-

vides an independent implementation which realizes the

same basic algorithm and combines it with multi-channel

integration, as explained below in Sect. 3.4.

Let us express the integration variables x in terms of

another set of variables r , defined on the same unit hypercube.

The mapping r = G(x) is assumed bijective, factorizable,

and depends on a finite set of adjustable parameters. If ri

are uniformly distributed random numbers, the distribution

of xi = G−1(ri ) becomes non-uniform, and we have to com-

pensate for this by dividing by the Jacobian g(x) = G ′(x),

IΩ [ f ] =
∫

U

fφ(x) dd x

=
∫

G(U )=U

fφ(x)

g(x)

∣

∣

∣

∣

x=G−1(r)

ddr. (8)

Alternatively, we may interpret this result as the average of

fφ/g, sampled with an x distribution that follows the prob-

ability density g(x), cf. [36]:

IΩ [ f ] =
〈

f

g

〉

g

. (9)

For a finite sample with N events, the estimators for integral

and variance are now given by

EN (I ) =
1

N

N
∑

i=1

fφ(xi )

g(xi )
, (10)

VN (I ) =
N

N − 1

(

1

N

N
∑

i=1

(

fφ(xi )

g(xi )

)2

− EN (I )2

)

, (11)

where the xi are computed from the uniformly distributed ri

via xi = G−1(ri ).

The Vegas algorithm makes the following particular

choice for the mapping G (or its derivative g = G ′): For

each dimension k = 1, . . . d, the interval (0, 1) is divided
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into nk bins Bk jk with bin width ∆xk jk , jk = 1, . . . nk , such

that the one-dimensional probability distribution gk(xk) is

constant over that bin Bk jk and equal to its inverse bin width,

1/∆xk jk . The overall probability distribution g(x) is also con-

stant within each bin and given by

g(x) =
∏

k

gk(xk) =
∏

k

1

nk∆xk jk

, (12)

if xk ∈ Bk jk . It is positive definite and satisfies

∫

U

g(x) dd x = 1, (13)

by construction, and thus defines an acceptable mapping G.

The iterative adaptation algorithm starts from equidistant

bins. It consists of a sequence of integration passes, where

after each pass, the bin widths are adapted based on the

variance distribution within that pass [33,34]. The adaptive

mechanism of Vegas adjusts the size of the bins for each bin

jk of each axis k based on the size of the following measure:

m jk =





(

ω jk
∑

ω jk

− 1

)

1

log
ω jk

∑

ω jk





α











> 1 increase bin size

= 1 keep bin size

< 1 decrease bin size

, (14)

respecting the overall normalization. The measure in Eq. (14)

is chosen such that it suppresses the adaptation for small

weights ω jk avoiding rapid destabilizing changes of the bin

widths. This behavior can be tuned with the free parameter α

which is set to a value between 1 and 2. For values of α closer

or equal to 1, the suppression of small values is enhanced,

for values closer or equal to 2 the suppression is damped.

The default setting of Whizard is α = 1.5. The individual

(squared) bin weights in Eq. (14) are defined as

ω2
jk

= (〈 fi 〉∆xi )
2 =

∑

i
(xi )k∈Bk jk

f 2(xi )

g2(xi )
ρ(xi ). (15)

i.e., all integration dimensions k′ �= k are averaged over when

adjusting the bins along dimension k. These bin weights are

easily accumulated while sampling events for the current

integration pass.

This is an optimization problem with a number of
∑d

k=1(nk − 1) free parameters,1 together with a specific

strategy for optimization. If successful, the numerical vari-

ance of the ratio fφ(x)/g(x) is reduced after each adaptation

1 The number of free parameters is given by the number of bins per

axis nk , restricted by the condition
∑

jk
∆xk jk = 1.

of g. In fact, the shape of g(x) will eventually resemble a his-

togrammed version of fφ(x), with a saw-like profile along

each integration dimension. Bins will narrow along slopes

of high variation in fφ , such that the ratio fφ/g becomes

bounded. The existence of such a bound is essential for

unweighting events, since the unweighting efficiency ǫ scales

with the absolute maximum of fφ(x)/g(x) within the inte-

gration domain. Clearly, the value of this maximum can only

be determined with some uncertainty since it relies on the

finite sample {xi }. The saw-like shape puts further limits on

the achievable efficiency ǫ. Roughly speaking, each direction

with significant variation in fφ reduces ǫ by a factor of two.

The set of updated parameters ∆xk jk defines the integra-

tion grid for the next iteration. In the particle-physics appli-

cations covered by Whizard we have d � 30, the number

of bins is typically chosen as nk � 30, all nk equal, so a

single grid consists of between a few and 103 parameters

n subject to adaptation. In practice, the optimization strat-

egy turns out to be rather successful. Adapting the grid a few

times does actually improve the accuracy a and the efficiency

ǫ significantly. Only the grids from later passes are used for

calculating observables and for event generation. Clearly, the

achievable results are limited by the degree of factorizability

of the integrand.

3.3 The VEGAS algorithm: (pseudo-)stratified sampling

The importance-sampling method guarantees, for a fixed

grid, that the estimator EN for an integrand approaches

the exact integral for N → ∞. Likewise, a simulated

unweighted event sample statistically approaches an actual

observed event sample, if the integrand represents the actual

matrix element.

However, the statistical distribution of the numbers xi is

a rather poor choice for an accurate estimate of the integral.

In fact, in one dimension a simple equidistant bin-midpoint

choice for xi typically provides much better convergence than

1/
√

N for the random distribution. A reason for nevertheless

choosing the Monte-Carlo over the midpoint algorithm is the

fact that for nmid bins in d dimensions, the total number of

cells is nd
mid, which easily exceeds realistic values for N : for

instance, nmid = 20 and d = 10 would imply nd
mid = 1013,

but evaluating the integrand at much more than 107 points

may already become infeasible.

The stratified sampling approach aims at combining the

advantages of both methods. Binning along all coordinate

axes produces nd cells. Within each cell, the integrand is

evaluated at precisely s distinct points, s ≥ 2. We may choose

n such that the total number of calls, N = s · nd , stays

within limits feasible for a realistic sampling. For instance,

for s = 2, d = 10, and limiting the number of calls to

N ≈ 107, we obtain n = 4 · · · 5. Within each cell, the points

are randomly chosen, according to a uniform distribution.
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Again, the Vegas algorithm iteratively adapts the binning in

several passes, and thus improves the final accuracy.

For the problems addressed by Whizard, pure stratified

sampling is not necessarily an optimal approach. The struc-

ture of typical integrands cannot be approximated well by

the probability distribution g(x) if the number of bins per

dimension n is small. To allow for larger n despite the finite

total number of calls, the pseudo-stratified approach applies

stratification not in x space, which is binned into nd
x cells

with n � 20, but in r space which was not binned originally.

The nr bins in r space are not adapted, so this distribution

stays uniform. In essence, the algorithm scans over all nd
r

cells in r space and selects two points randomly within each

r cell, and then maps those points to points in x space, where

they end up in any of the nd
x cells. The overall probability

distribution in x is still g(x) as given by Eq. (12), but the

distribution has reduced randomness in it and thus yields a

more accurate integral estimate.

Regardless of the integration algorithm, simulation of

unweighted events can only proceed via strict importance

sampling. Quantum mechanics dictates that events have to

be distributed statistically independent of each other over

the complete phase space. Therefore, Whizard separates

its workflow into integration passes which adapt integration

grids and evaluate the integral, and a subsequent simulation

run which produces an event sample. The integration passes

may use either method, while event generation uses impor-

tance sampling and, optionally, unweighting the generated

events. In practice, using grids which have been optimized by

stratified sampling is no disadvantage for subsequent impor-

tance sampling since both sampling methods lead to similarly

shaped grids.

3.4 Multi-channel integration

The adaptive Monte-Carlo integration algorithms described

above do not yield satisfactory results if the effective inte-

grand fφ fails to factorize for the phase-space channel φ. In

non-trivial particle-physics processes, many different Feyn-

man graphs, possibly with narrow resonances, including

mutual interference, contribute to the integrand.

Reference [35] introduced a multi-channel ansatz for inte-

gration that ameliorates this problem. The basic idea is to

introduce a set of K different phase-space channels φc :
U → Ω , corresponding coordinates xc with p = φc(xc)

and densities ρφ(xc) with dµ(p) = φ′
c(xc) ρφ(xc) dd xc, and

a corresponding set of channel weights αc ∈ R which satisfy

0 ≤ αc ≤ 1,

K
∑

c=1

αc = 1. (16)

We introduce the function

h(p) =
∑

c

αc

1

φ′
c(φ

−1
c (p))

, (17)

which depends on the Jacobians φ′
c of all channels. Using

this, we construct a partition of unity,

1 =
∑

c

αc

1

φ′
c(φ

−1
c (p)) h(p)

, (18)

which smoothly separates phase space into regions where the

singularities dominate that are mapped out by any individual

channel φc, respectively.

The master formula for multi-channel integration makes

use of this partition of unity and applies, for each term, its

associated channel mapping φc.

IΩ [ f ] =
∫

Ω

f (p) dµ(p) =
∫

Ω

∑

c

αc

f (p)

h(p)

dµ(p)

φ′
c

=
∑

c

αc

∫

U

f (φc(xc))

h(φc(xc))
ρφc (xc) dd xc. (19)

The mappings φc are chosen such that any singularity of f

is canceled by at least one of the Jacobians φ′
c. In the vicinity

of this singularity, φ′
c approaches zero in Eq. (17), and the

effective integrand

f h
c (xc) =

f (φc(xc))

h(φc(xc))
ρφc (xc), (20)

becomes

f h
c (xc) ∼

1

αc

fφc (xc). (21)

We thus benefit from the virtues of phase-space mapping in

the original single-channel version, but cancel all singulari-

ties at once. Each effective integrand f h
c which depends on

all weights αc and Jacobians φ′
c simultaneously, is to be inte-

grated in its associated phase-space channel. The results are

added, each integral weighted by αc.

The importance sampling method can then be applied as

before,

EN [ f ] =
∑

c

αc

1

Nc

Nc
∑

ic=1

f h
c (xcic ), (22)

where the total number of events N is to be distributed among

the integration channels, N =
∑

c Nc. A possible division
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is to choose αc such that Nc = αc N is an integer for each

channel, and thus

EN [ f ] =
1

N

∑

c

Nc
∑

ic=1

f h
c (xcic ), (23)

becomes a simple sum where the integration channels are

switched according to their respective weights. Within each

channel, the points xcic can be taken as uniformly distributed

random numbers. Alternatively, we may apply stratified sam-

pling as before, within each channel.

The weights αc are free parameters, and thus an obvious

candidate for optimization. We may start from a uniform dis-

tribution of weights among channels, αc = 1/K , and adapt

the weights iteratively. In analogy to the Vegas rebinning

algorithm, we accumulate the total variance for each chan-

nel c to serve as a number ωc which enters an update for-

mula analogous to Eq. (15), with an independent power β

(cf. Eq. (24) in Ref. [36], and Ref. [35]):

αc →
αcω

β
c

∑

c αcω
β
c

. (24)

This results in updated weights αc. The weights, and the total

number of events N for the next iteration, are further adjusted

slightly such that the event numbers Nc become again integer.

Furthermore, it may be useful to insert safeguards for chan-

nels which by this algorithm would acquire very low numbers

Nc, causing irregular statistical fluctuations. In that case, we

may choose to either switch off such a channel, αc = 0, or

keep Nc at some lower threshold value, say Nc = 10. These

refinements are part of the Whizard setup.

Regarding particle-physics applications, a straightforward

translation of (archetypical representatives of) Feynman

graphs into integration channels can result in large values for

the number of channels K , of order 105 or more. In fact, if the

number of channels increases proportional to the number of

Feynman graphs, it scales factorially with the number of ele-

mentary particles in the process. This is to be confronted with

the complexity of the transition-matrix calculation, where

recursive evaluation results in a power law. Applied naively,

multi-channel phase-space sampling can consume the dom-

inant fraction of computing time. Furthermore, if the multi-

channel approach is combined with adaptive binning (see

below), the number of channels is multiplied by the number

of grid parameters, so the total number of parameters grows

even more quickly. For these reasons, Whizard contains a

heuristic algorithm that selects a smaller set of presumably

dominant channels for the multi-channel integration. Since

all parameterizations are asymptotically equivalent to each

other regarding importance sampling, any such choice does

not affect the limit EN [ f ] → IΩ [ f ]. It does affect the vari-

ance and can thus speed up – or slow down – the convergence

of the integral estimates for N → ∞ and for iterative weight

adaptation.

3.5 Doubly adaptive multi-channel integration: VAMP

The Vamp algorithm combines multi-channel integration

with channel mappings φc with the Vegas algorithm. For

each channel c = 1, . . . K , we introduce a bijective step map-

ping Gc of the unit hypercube onto itself U → Gc(U ) = U .

The Jacobian is gc(x) = G ′
c(x), where gc factorizes along

the coordinate axes (labeled by k = 1, . . . d) and is constant

within bins Bc,k jk (labeled by jk = 1, . . . nc,k),

gc(x) =
∏

k

gc,k(xc,k) =
∏

k

1

nc,k∆xc,k jk

, (25)

if xc,k ∈ Bc,k jk . The normalization condition

∫

U

gc(xc) dd xc = 1, (26)

is satisfied for all channels, and enables us to construct Gc.

We chain the mappings Gc with the channel mappings φc

in the partition of unity, Eq. (18), and write

IΩ [ f ] =
∑

c

αc

∫

U

f
g
c (xc)

∣

∣

∣

∣

∣

xc=G−1
c (rc)

ddrc, (27)

where the modified effective integrand for channel c is given

by

f
g
c (xc) =

f (φc(xc))

g(φc(xc))
ρφc (xc). (28)

Here, g(p) replaces h(p) in (17),

g(p) =
∑

c

αc

gc(xc)

φ′
c(xc)

∣

∣

∣

∣

∣

xc=φc(p)

. (29)

The variance of the integrand is reduced not just by the

fixed Jacobian functions φ′
c, but also by the tunable distri-

butions gc. In a region where one of the gc distributions

becomes numerically dominant, αc f
g
c (xc) approaches the

single-channel expression fφc (xc)/gc(xc), cf. Eq. (8).

The multi-channel sampling algorithm can be expressed

in form of the integral estimate EN [ f ],

EN [ f ] =
1

N

∑

c

Nc
∑

ic=1

f
g
c (xcic ) with xcic = G−1

c (rcic),

(30)
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and the rcic are determined either from a uniform probabil-

ity distribution in the unit hypercube, or alternatively, from a

uniform probability distribution within each cell of a super-

imposed stratification grid. The free parameters of this for-

mula are αc, c = 1, . . . K , and for each channel, the respec-

tive channel grid with parameters ∆xc,k, jk .

In order to improve the adaptation itself, similarity map-

pings between different channels can be used in order to

achieve a better adaptation of the individual grids, because

the distribution for grid adaptation is better filled. This in

turn leads to an improved convergence of the integration and

a better weighting efficiency of the event generation. For

this, we define equivalences for channels that share a com-

mon structure. These equivalences allow adaptation infor-

mation, i.e. the individual bin weights w jk of each axis, to

be averaged over several channels, which in turn improves

the statistics of the adaptation. Such an equivalence maps

the individual bin weights of a channel c′ onto the current

channel c together with the permutation of the integration

dimensions d, π : c �→ c′ : k �→ π(k), and the type of

mapping. The different mappings used in that algorithm are:

identity wc
jk

→ wc
jk

+ wc′
jπ(k)

invert wc
jk

→ wc
jk

+ wc′
d− jπ(k)

symmetric wc
jk

→ wc
jk

+ 1
2

(

wc′
jπ(k)

+ wc′
d− jπ(k)

)

invariant wc
jk

→ 1.

(31)

Interesting applications are those that require very high statis-

tics. Channel equivalences have been observed to play a cru-

cial role in sampling less densely populated regions of phase

space, e.g. in vector boson scattering [41–47] or in beyond

the Standard Model (BSM) simulations with a huge num-

ber of phase-space channels [13,48–50]. The Whizard pro-

gram automatically determines applicable channel equiva-

lences, which are taken into account both by the original

Vamp Monte Carlo integrator and by the new parallelized

version.

The actual integration algorithm is organized as follows.

Initially, all channel weights and bin widths are set equal to

each other. There is a sequence of iterations where each step

consists of first generating a sample of N events, then adapt-

ing the free parameters. This adaptation may update either

the channel weights via Eq. (24) or the grids via Eq. (14), or

both, depending on user settings. The event sample is divided

among the selected channels based on event numbers Nc. For

each channel, the integration hypercube in r is scanned by

cells in terms of stratified sampling, or sampled uniformly

(importance sampling). For each point rc, we compute the

mapped point xc, the distribution value gc(xc), and the phase-

space density ρc(xc) at this point. Given the fixed mapping

φc, we compute the phase-space point p and the Jacobian fac-

tor φ′
c. This allows us to evaluate the integrand f (p). Using

p, we scan over all other channels c′ �= c and invert the map-

pings to obtain φ′
c′ , xc′ , gc′(xc′), and ρc′(xc′). Combining

everything, we arrive at the effective weight w = f
g
c (xc) for

this event. Accumulating events and evaluating mean, vari-

ance, and other quantities then proceeds as usual. Finally,

we may combine one or more final iterations to obtain the

best estimate for the integral, together with the corresponding

error estimate.

If an (optionally unweighted) event sample is requested,

Whizard will take the last grid from the iterations and sam-

ple further events, using the same multi-channel formulas,

with fixed parameters, but reverting to importance sampling

over the complete phase space. The channel selection is then

randomized over the channel weights αc, allowing for an

arbitrary number of simulated physical events.

4 Parallelization of the WHIZARD workflow

In this section we discuss the parallelization of the Whizard

integration and event generation algorithms. We start with a

short definition of observables and timings that allow to quan-

tify the gain of a parallelization algorithm in Sect. 4.1. Then,

in Sect. 4.2, we discuss the computing tasks for a typical inte-

gration and event generation run with the Whizard program,

while in Sect. 4.3 we list possible computing frameworks for

our parallelization tasks and what we chose to implement in

Whizard. Random numbers have to be set up with great care

for parallel computations, as we point out in Sect. 4.4. The

Whizard algorithm for parallelized integration and event

generation is presented in all details in Sect. 4.5. Finally,

in Sect. 4.6, we introduce an alternative method to generate

the phase-space parameterization that is more efficient for

higher final-state particle multiplicities and is better suited

for parallelization.

4.1 Basics

The time that is required for a certain computing task can be

reduced by employing not a single processing unit (worker),

but several workers which are capable of performing calcu-

lations independently of each other. In a slightly simplified

view, we may assume that a bare program consists of parts

that are performed by a single worker (time Ts), and of other

parts that are performed by n workers simultaneously (time

Tm). The serial time Ts also covers code that is executed iden-

tically on all workers. The total computing time can then be

written as

T (n) = Ts +
1

n
Tm + Tc(n). (32)

The extra time Tc denotes the time required for communica-

tion between the workers, and for workers being blocked by
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waiting conditions. Its dependence on n varies with the used

algorithm, but we expect a function that vanishes for n = 1

and monotonically increases with n, e.g., Tc ∼ log(n) or

Tc ∼ (n − 1)α , α > 0. The speedup factor of parallelization

then takes the form

f (n) =
T (1)

T (n)
=

Ts + Tm

Ts + 1
n

Tm + Tc(n)
, (33)

and we want this quantity to become as large as possible.

Ideally, Ts and Tc vanish, and

f (n) = n, (34)

but in practice the serial and communication parts limit this

behavior. As long as communication can be neglected, f (n)

approaches a plateau which is determined by Ts ,

f (n) ≤ 1 +
Tm

Ts

. (35)

Eventually, the communication time Tc(n) starts to dominate

and suppresses the achievable speedup again,

f (n) →
Ts + Tm

Tc(n)
→ 0. (36)

Clearly, this behavior limits the number n of workers that we

can efficiently employ for a given task.

The challenges of parallelization are thus twofold: (i)

increase the fraction Tm/Ts by parallelizing all computing-

intensive parts of the program. For instance, if Ts amounts

to 0.1% of Tm , the plateau is reached for n = 1000 workers.

(ii) make sure that at this saturation point, Tc(n) is still neg-

ligible. This can be achieved by (a) choose a communication

algorithm where Tc increases with a low power of n, or (b)

reduce the prefactor in Tc(n), which summarizes the absolute

amount of communication and blocking per node.

We will later on in the benchmarking of our parallelization

algorithm compare the speedup to Amdahl’s law [51]. For

this, we neglect the communication time in Eq. (33), and

write the time executed by the parallelizable part as a fraction

p ·T of the total time T = Ts +Tm of the serial process, while

the non-parallelizable part is then (1 − p)T . The speedup in

Eq. (33) translates then into

f (n) =
1

(1 − p) + p
n

n→∞−→
1

1 − p
. (37)

In Sect. 4.5.5 we use Amdahl’s law as a comparison for par-

allelizable parts of p = 90% and 100%, respectively. Note

that Amdahl’s law is considered to be very critical on the pos-

sible speedup, while a more optimistic or realistic estimate

is given by Gustafson’s law [52]. To discuss the differences,

however, is beyond the scope of this paper.

4.2 Computing tasks in WHIZARD

The computing tasks performed by Whizard vary, and cru-

cially depend on the type and complexity of the involved

physics processes. They also depend on the nature of the

problem, such as whether it involves parton distributions or

beam spectra, the generation of event files, or scans over

certain parameters, or whether it is a LO or NLO process.

In order to better visualize the flow of computing tasks in

Whizard, we show the screen output for a simple 2 → 2

process in Fig. 1.

To begin with, we therefore identify the major parts of

the program and break them down into sections which, in

principle, can contribute to either Ts (serial), Tm (parallel),

or Tc (communication).

Sindarin All user input is expressed in terms of Sindarin

expressions, usually collected in an input file. Interpreting the

script involves pre-processing which partly could be done in

parallel. However, the Sindarin language structure allows

for mixing declarations with calculation, so parallel pre-

processing can introduce nontrivial communication. Since

scripts are typically short anyway, we have not yet consid-

ered parallel evaluation in this area. This also applies for

auxiliary calculations that are performed within Sindarin

expressions.

Models Processing model definitions is done by programs

external to the Whizard core in advance. We do not consider

this as part of the Whizard workflow. Regarding reading and

parsing the resulting model files by Whizard, the same con-

siderations apply as for the Sindarin input. Nevertheless, for

complicated models such as the MSSM, the internal handling

of model data involves lookup tables. In principle, there is

room for parallel evaluation. This fact has not been exploited,

so far, since it did not constitute a bottleneck.

Process construction Process construction with Whizard,

i.e., setting up data structures that enable matrix-element

evaluation, is delegated to programs external to the Whizard

core. For tree-level matrix elements, the in-house O’Mega

generator constructs Fortran code which is compiled and

linked to the main program. For loop matrix elements,

Whizard relies on programs such as GoSam, RECOLA,

or OpenLoops. The parallelization capabilities rely on those

extra programs, and are currently absent. Therefore, process-

construction time contributes to Ts only.

Phase-space construction Up to Whizard version 2.6.1,

phase-space construction is performed internally with

Whizard (i.e. by the Whizard core), by a module which

recursively constructs data structures derived from simpli-

fied Feynman graphs. The algorithm is recursive and does

not lead to obvious parallelization methods; the resulting Ts

contribution is one of the limiting factors.

A new algorithm, which is described below in Sect. 4.6,

re-uses the data structures from process construction via
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O’Mega. The current implementation is again serial (Ts),

but significantly more efficient. Furthermore, since it does

not involve recursion it can be parallelized if the need arises.

Integration. Integrating over phase space involves the Vamp

algorithm as described above. In many applications, namely

those with complicated multi-particle or NLO matrix ele-

ments, integration time dominates the total computing time.

We can identify tasks that qualify for serial, parallel, and

communication parts:

– Initialization. This part involves serial execution. If sub-

sequent calculations are done in parallel, it also involves

communication, once per process.

– Random-number generation. The Vamp integrator relies

on random-number sequences. If we want parallel eval-

uation on separate workers, the random-number genera-

tor should produce independent, reproducible sequences

without the necessity for communication or blocking.

– Vamp sampling. Separate sampling points involve inde-

pendent calculation, thus this is a preferred target for turn-

ing serial into parallel evaluation. The (pseudo-) stratified

algorithm involves some management, therefore commu-

nication may not be entirely avoidable.

– Phase-space kinematics. Multi-channel phase-space eval-

uation involves two steps: (i) computing the mapping

from the unit hypercube to a momentum configuration,

for a single selected phase-space channel, and (ii) com-

puting the inverse mapping, for all other phase-space

channels. The latter part is a candidate for parallel evalu-

ation. The communication part involves distributing the

momentum configuration for a single event. The same

algorithm structure applies to the analogous discrete

mappings introduced by the Vamp algorithm.

– Structure functions. The external PDF library for hadron

collisions (Lhapdf) does not support intrinsic paral-

lel evaluation. This also holds true for the in-house

Circe1/Circe2 beamstrahlung library.

– Matrix-element evaluation. This involves sums over

quantum numbers: helicity, color, and particle flavor.

These sums may be distributed among workers. The

tradeoff of parallel evaluation has to be weighted against

the resulting communication. In particular, common

subexpression elimination or caching partial results do

optimize serial evaluation, but actually can inhibit paral-

lel evaluation or introduce significant extra communica-

tion.

– Grid adaptation. For a grid adaptation step, results from

all sampling points within a given iteration have to be

collected, and the adapted grids have to be sent to the

workers. Depending on how grids are distributed, this

involves significant communication. The calculations for

adapting grids consume serial time, which in principle

could also be distributed.

– Integration results. Collecting those is essentially a

byproduct of adaptation, and thus does not involve extra

overhead.

Simulation A simulation pass is similar to an integration pass.

There is no grid adaptation involved. The other differences

are

– Sampling is done in form of strict importance sampling.

This is actually simpler than sampling for integration.

– Events are further transformed or analyzed. This involves

simple kinematic manipulations, or complex calculations

such as parton shower and hadronization. The mod-

ules that are used for such tasks, such as Pythia or

Whizard’s internal module, do not support intrinsic par-

allelization. Generating histograms and plots involves

communication and some serial evaluation.

– Events are written to file. This involves communication

and serial evaluation, either event by event, or by com-

bining event files generated by distinct workers.

Rescanning events In essence, this is equivalent to simulation.

The difference is that the input is taken from an existing event

file, which is scanned serially. If the event handling is to be

distributed, there is additional communication effort.

Parameter scans Evaluating the same process(es) for differ-

ent sets of input data, can be done by scripting a loop outside

of Whizard. In that case, communication time merely con-

sists of distributing the input once, and collecting the output,

e.g., fill plots or histograms. However, there are also contri-

butions to Ts , such as compile time for process code. Alter-

natively, scans can be performed using Sindarin loop con-

structs. Such loops may be run in parallel. This avoids some

of the Ts overhead, but requires communicating Whizard

internal data structures. Phase-space construction may con-

tribute to either Ts or Tm , depending on which input differs

between workers. Process construction and evaluation essen-

tially turns into Tm . This potential has not been raised yet,

but may be in a future extension. The benefit would apply

mainly for simple processes where the current parallel eval-

uation methods are not efficient due to a small Tm fraction.

4.3 Paradigms and tools for parallel evaluation

There are a number of well-established protocols for parallel

evaluation. They differ in their overall strategy, level of lan-

guage support, and hardware dependence. In the following,

we list some widely used methods.

1. MPI (message-passing interface, cf. e.g. [53]). This pro-

tocol introduces a set of independent abstract workers

which virtually do not share any resources. By default,
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the program runs on all workers simultaneously, with dif-

ferent data sets. (Newer versions of the protocol enable

dynamic management of workers.) Data must be com-

municated explicitly via virtual buffers. With MPI 3, this

communication can be set up asynchronously and non-

blocking. The MPI protocol is well suited for comput-

ing clusters with many independent, but interconnected

CPUs with local memory. On such hardware, communi-

cation time cannot be neglected. For Fortran, MPI is

available in form of a library, combined with a special

run manager.

2. OpenMP (open multi-processing, cf. e.g. [54]). This pro-

tocol assumes a common address space for data, which

can be marked as local to workers if desired. There

is no explicit communication. Instead, data-exchange

constraints must be explicitly implemented in form of

synchronization walls during execution. OpenMP thus

maps the configuration of a shared-memory multi-core

machine. We observe that with such hardware setup,

communication time need not exceed ordinary memory

lookup. On the other hand, parallel execution in a shared-

memory (and shared-cache) environment can run into

race conditions. Fortran compilers support OpenMP

natively, realized via standardized preprocessor direc-

tives.

3. Coarrays (cf. e.g. [55]). This is a recent native Fortran

feature, introduced in the Fortran2008 standard. The

coarray feature combines semantics both from MPI and

OpenMP, in the form that workers are independent both

in execution and in data, but upon request data can be

tagged as mutually addressable. Such addressing implic-

itly involves communication.

4. Multithreading. This is typically an operating-system

feature which can be accessed by application programs.

Distinct threads are independent, and communication has

to be managed by the operating system and kernel.

The current strategy for parallel evaluation with Whizard

involves MPI and OpenMP, either separately or in combina-

tion. We do not use coarrays, which is a new feature that did

not get sufficient compiler support, yet.2 On the other hand,

operating system threads are rather unwieldy to manage, and

largely superseded by the OpenMP or MPI protocols which

provide abstract system-independent interfaces to this func-

tionality.

2 There would of course be the possibility to have a special version of

Whizard only available for the newest version(s) of compilers to test

those features. This is part of a future project.

4.4 Random numbers and parallelization

Whizard uses pseudo random numbers to generate events.

Most random number generators have in common that they

compute a reproducible stream of uniformly distributed ran-

dom numbers {xi } ∈ (0, 1) from a given starting point (seed)

and they have a relative large periodicity. In addition, the

generated random numbers should not have any common

structures or global correlations. To ensure these prerequi-

sites different test suites exist based on statistical principles

and other methods. One is the TestU01 library implemented

in ANSI C which contains several tests for empirical ran-

domness [56]. A very extensive collection of tests is the Die

Hard suite [57], also known as Die Hard 1, which contains

e.g. the squeeze test, the overlapping sums test, the parking

lot test, the craps test, and the runs test [58]. There is also a

more modern version of this test suite, Die Harder or Die

Hard 2 [59] which contains e.g. the Knuthran [60] and

the Ranlux [61,62] tests. Furthermore, the computation of

the pseudo random numbers should add as less as possible

computation time.

The default random number generator of the Whizard

package is the TAO random number generator proposed by

[60] and provided by Vamp. This generator passes the Die

hard tests. It is based on a lagged Fibonacci sequence,

Xn+1 = (Xn−k + Xn−l) mod 230, (38)

with lags k = 100 and l = 37 computing portable, 30-

bit integer numbers. The computation needs a reservoir of

random numbers of at least k = 100 which have to be pre-

pared in advance. To ensure a higher computation efficiency,

a reservoir of more than 1000 is needed. Furthermore, the

TAO random numbers suffers from its integer arithmetic. In

general on modern CPUs floating point arithmetic is faster

and can be put in pipelines allowing terser computation.

In order to utilize the TAO generator for a parallelized

application we have to either communicate each random

number before or during sampling, both are expensive on

time, or we have to prepare or, at least, guarantee indepen-

dent streams of random numbers from different instances of

TAO by initializing each sequence with different seeds. The

latter is hardly feasible or even impossible to ensure for all

combinations of seeds and number of workers. This and the

(time-)restricted integer arithmetic render the TAO random

number generator impractical for our parallelization task.

To secure independent (and still reproducible) random

numbers during parallel sampling we have implemented the

RNGstream algorithm by [63]. The underlying generator

is a combined multiple-recursive generator, referred to as

MRG32k3a, based on two multiple-recursive generators,
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x1,n =
(

1403580x1,n−2 − 810728x1,n−3

)

mod 4294967087, (39)

x2,n =
(

527612x2,n−1 − 1370589x2,n−3

)

mod 4294944443, (40)

at the nth step of the recursion with the initial seed xi,0 =
(xi,−2, xi,−1, xi,0)

T , i ∈ {1, 2}. The two states are then com-

bined to produce a uniformly-distributed random number un

as

zn =
(

x1,n − x2,n

)

mod 4292967087, (41)

un =

{

zn/4294967088 if zn > 0.

4292967087/4292967088 if zn = 0.
(42)

The resulting random number generator has a period of length

≈ 2191. It passes all tests of TestU01 and Die Hard.

The overall sequence of random numbers is divided into

streams of length 2127, each of these streams is then fur-

ther subdivided into substreams of length 276. Each stream

or subsequent substream can be accessed by repeated appli-

cation of the transition function xn = T (xn−1). We rewrite

the transition function as a matrix multiplication on a vector,

making the linear dependence clear, xn = T × xn−1. Using

the power of modular arithmetic, the repeated application

of the transition function can be precomputed and be stored

making access of the (sub-)streams as simple as sampling

one. In the context of the parallel evaluation of the random

number generator we can get either independent streams of

random numbers for each worker, or, conserving the numeri-

cal properties for the integration process, assign each channel

a stream and each stratification cell of the integration grid a

substream in the serial and parallel run. Then we can eas-

ily distribute the workers among channels and cells without

further concern about the random numbers.

The original implementation of the RNGstream was in

C++ using floating point arithmetic. We have rewritten the

implementation for Fortran2008 in Whizard.

4.5 Parallel evaluation in WHIZARD

To devise a strategy for parallel evaluation, we have analyzed

the workflow and the scaling laws for different parts of the

code, as described above. Complex multi-particle processes

are the prime target of efficient evaluation. In general, such

processes involve a large number of integration dimensions,

a significant number of quantum-number configurations to

be summed over, a large number of phase-space points per

iteration of the integration procedure, and a large number of

phase-space channels. By contrast, for a single phase-space

channel the number of phase-space points remains moderate.

After the integration passes are completed, event gener-

ation in the simulation pass is another candidate for paral-

lel execution. Again, a large number of phase-space points

have to be sampled within the same computational model

as during integration. Out of the generated sample of par-

tonic events, in the unweighted mode, only a small fraction

is further processed. The subsequent steps of parton shower,

hadronization, decays, and file output come with their own

issues of computing (in-)efficiency.

We address the potential for parallel evaluation by two

independent protocols, OpenMP and MPI. Both frameworks

may be switched on or off independent of each other.

4.5.1 Sampling with OpenMP

On a low-level scale, we have implemented OpenMP as a

protocol for parallel evaluation. The OpenMP paradigm is

intended to distribute workers among the physical core of

a single computing node, where actual memory is shared

between cores. While in principle, the number of workers can

be set freely by the user of the code, one does expect improve-

ments as long as the number of workers is less or equal to the

number of physical cores. The number of OpenMP workers

therefore is typically between 1 and 8 for standard hardware,

and can be somewhat larger for specialized hardware.

We apply OpenMP parallelization for the purpose of run-

ning simple Fortran loops in parallel. These are

1. The loop over helicities in the tree-level matrix-element

code that is generated by O’Mega. For a typical 2 → 6

fermion process, the number of helicity combinations is

28 = 256 and thus fits the expected number of OpenMP

workers. We do not parallelize the sum of the flavor or

color quantum numbers. In the current model of O’Mega

code, those sums are subject to common-subexpression

elimination which inhibits trivial parallelization.

2. The loop over channels in the inverse mapping between

phase-space parameters and momenta. Due to the large

number of channels, the benefit is obvious, while the

communication is minimal, and in any case is not a prob-

lem in a shared-memory setup.

3. Analogously, the loop over channels in the discrete

inverse mapping of the phase-space parameters within

the Vamp algorithm.

In fact, these loops cover the most computing-intensive tasks.

As long as the number of OpenMP workers is limited, there

is no substantial benefit from parallelizing larger portions of

code at this stage.

4.5.2 Sampling with MPI

The MPI protocol is designed for computing clusters. We

will give a short introduction into the terminology and the

development of its different standards over time in the next
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subsection. The MPI model assumes that memory is local to

each node, so data have to be explicitly transferred between

nodes if sharing is required. The number of nodes can become

very large. In practice, for a given problem, the degree of

parallelization and the amount of communication limits the

number of nodes where the approach is still practical. For

Whizard, we apply the MPI protocol at a more coarse-

grained level than OpenMP, namely the loop over sampling

points which is controlled by the Vamp algorithm.

As discussed above, in general, for standard multi-particle

problems the number of phase-space channels is rather large,

typically exceeding 103 · · · 104. In that case, we assign one

separate channel or one subset of channels to each worker. In

some calculations, the matrix element is computing-intensive

but the number of phase-space channels is small (e.g. NNLO

virtual matrix elements), so this model does not apply. In

that case, we parallelize over single grids. We assign to each

worker a separate slice of the nd
r cells of the stratification

space. In principle, for the simplest case of nr = 2, we can

exploit up to 2d computing nodes for a single grid. On the

other hand, parallelization over the r -space is only meaning-

ful when nr ≥ 2. Especially, when we take into account

that nr changes between different iterations as the num-

ber of calls NC depends on the multi-channel weights αi .

Hence, we implement a sort of auto-balancing in the form

that we choose between the two modes of parallelization

before and during sampling in order to handle the differ-

ent scenarios accordingly. Per default, we parallelize over

phase-space multi-channel, but prefer single-grid paralleliza-

tion for the case that the number of cells in r -space is nr > 1.

Because the single-grid parallelization is finer grained than

the phase-space channel parallelization, this allows in prin-

ciple to exploit more workers. Furthermore, we note that the

Monte Carlo integration itself does not exhibit any bound-

ary conditions demanding communication during sampling

(except when we impose such a condition by hand). In par-

ticular, there is no need to communicate random numbers.

We discuss the details of the implementation later on.

4.5.3 The message-passing interface (MPI) standard

We give a short introduction into the terminology neces-

sary to describe our implementation below, and also into the

message-passing interface (MPI) standard. The MPI standard

specifies a large amount of procedures, types, memory and

process management and handlers, for different purposes.

The wide range of functionality obscures a clear view on the

problem of parallelization and on the other hand it unnec-

essarily complicates the problem itself. So, we limit the use

of functionality to an absolute minimum. E.g., we do not

make use of the MPI shared-memory model and, for the time

being, the use of an own process management for a server-

client model. In the following we introduce the most common

terms. In the implementation details below, we again refer to

the MPI processes as workers in order to not confuse them

with the Whizard’s physical processes.

The standard specifies MPI programs to consist of

autonomous processes, each in principle running its own

code, in an MIMD3 style, cf. [64, p. 20]. In order to abstract

the underlying hardware and to allow separate communica-

tion between different program parts or libraries, the stan-

dard generalizes as communicators processes apart from the

underlying hardware and introduces communication con-

texts. Context-based communication secures that different

messages are always received and sent within their context,

and do not interfere with messages in other contexts. Inside

communicators, processes are grouped (process group) as

ordered sets with assigned ranks (labels) 0, . . . , n − 1. The

predefined MPI_COMM_WORLD communicator contains all

processes known at the initialization of a MPI program in

a linearly ordered fashion. In most cases, the linear order

does not reflect the architecture of the underlying hardware

and network infrastructure, therefore, the standard defines

the possibility to map the processes onto the hardware and

network infrastructure to optimize the usage of resources and

increase the speedup.

A way to conceivably optimize the parallelization via

MPI is to make the MPI framework aware about the com-

munication flows in your application. In the group of pro-

cesses in a communicator, not all processes will commu-

nicate with every other process. The network of inter-

process communication is known as MPI topologies. The

default is MPI_UNDEFINEDwhere no specific topology has

been specified, while MPI_CART is a Cartesian (nearest-

neighbor) topology. Special topologies can be defined with

MPI_GRAPH. In this paper we only focus on the MPI paral-

lelization of the Monte Carlo Vamp. A specific profiling of

run times of our MPI parallelization could reveal specific

topological structures in the communication which might

offer potential for improvement of speedups. This, however,

is beyond the scope of this paper.

Messages are passed between sender(s) and receiver(s)

inside a communicator or between communicators where the

following communication modes are available:

non-blocking A non-blocking procedure returns directly

after initiating a communication process.

The status of communication must be checked

by the user.

blocking A blocking procedure returns after the com-

munication process has completed.

point-to-point A point-to-point procedure communicates

between a single receiver and single sender.

3 Multiple instructions, multiple data. Machines supporting MIMD

have a number of processes running asynchronously and independently.
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collective A collective procedure communicates with

the complete process group. Collective pro-

cedures must appear in the same order on all

processes.

The standard distinguishes between blocking and non-

blocking point-to-point or collective communications. A

conciser program flow and an increased speedup are advan-

tages of non-blocking over blocking communication.

In order to ease the startup of a parallel application, the

standard specifies the startup command mpiexec. How-

ever, we recommend the de-facto standard startup command

mpirun which is in general part of a MPI-library. In this

way, the user does not have to bother with the quirks of the

overall process management and inter-operability with the

operating system, as this is then covered by mpirun. Fur-

thermore, most MPI-libraries support interfaces to cluster

software, e.g. SLURM, Torque, HTCondor.

In summary, we do not use process and (shared-) memory

management, topologies and the advanced error handling of

MPI, which we postpone to a future work.

4.5.4 Implementation details of the MPI parallelization

In this subsection, we give a short overview of the technical

details of the implementation to show and explain how the

algorithm works in detail.

In order to minimize the communication time Tc, we only

communicate runtime data which cannot be provided a priori

by Whizard’s pre-integration setup through the interfaces

of the integrators. Furthermore, we expect that the workers

are running identical code up to different communication-

based code branches. The overall worker setup is externally

coordinated by the MPI-library provided process manager

mpirun.

In order to enable file input/output (I/O), in particular to

allow the setup of a process, without user intervention, we

implement the well-known master-slave model. The master

worker, specified by rank 0, is allowed to setup the matrix-

element library and to provide the phase-space configuration

(or to write the grid files of Vamp) as those are involved with

heavy I/O operations. The other workers function solely as

slave workers supporting only integration and event gener-

ation. Therefore, the slave workers have to wait during the

setup phase of the master worker. We implement this depen-

dence via a blocking call to MPI_BCAST for all slaves while

the master is going through the setup steps. As soon as the

master worker has finished the setup, the master starts to

broadcast a simple logical which completes the blocked com-

munication call of the slaves allowing the execution of the

program to proceed. The slaves are then allowed to load the

matrix-element library and read the phase-space configura-

tion file in parallel. The slave setup adds a major contribution

to the serial time, mainly out of our control as the limitation

of the parallel setup of the slave workers are imposed by

the underlying filesystem and/or operating system, since all

the workers try to read the files simultaneously. We expect

that the serial time is increased at least by the configuration

time of Whizard without building and making the matrix-

element library and configuring the phase space. Therefore,

we expect the configuration time at least to increase linearly

with the number of workers.

In the following, we outline the reasoning and implemen-

tation details. At the beginning of an iteration pass of Vamp,

we broadcast the current grid setup and the channel weights

from the master to all slave workers. For this purpose, the MPI

protocol defines collective procedures, e.g. MPI_BCAST for

broadcasting data from one process to all other processes

inside the communicator. The multi-channel formulas

Eqs. (27) and (29) force us to communicate each grid4 to

every worker. The details of an efficient communication algo-

rithm and its implementation is part of the actual MPI imple-

mentation (most notably the OpenMPI and MPICH libraries)

and no concern of us. After we have communicated the grid

setup using the collective procedure MPI_BCAST, we let

each worker sample over a predefined set of phase-space

channels. Each worker skips its non-assigned channels and

advances the stream of random numbers to the next sub-

stream such as it would have used them for sampling. How-

ever, if we can defer the parallelization to Vegas, we spawn

a MPI_BARRIERwaiting for all other workers to finish their

computation until the call of the barrier and start with par-

allelization of the channel over its grid. When all channels

have been sampled, we collect the results from every chan-

nel and combine them to the overall estimate and variance.

We apply a master/slave chain of communication where each

slave sends his results to the master as shown in Listing 1.

For this purpose the master worker and the slave worker exe-

cute different parts of the code. The computation of the final

results of the current pass is then exclusively done by the

master worker. Additionally, the master writes the results to

a Vamp grid file for the case that the computation is inter-

rupted and should be restarted after the latest iteration (adding

extra serial time to Whizard runs).

4 The grid type holds information on the binning xi , the number of

dimensions, the integration boundaries and the jacobian.
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subroutine vamp2_integrate_collect ()

! ...

do ch = 1, self%config%n_channel

if (self%integrator(ch)%

is_parallelizable ()) cycle

worker = map_channel_to_worker (ch

, n_size)

result = self%integrator(ch)%

get_result ()

if (rank == 0) then

if (worker /= 0) then

call result%receive (worker ,

ch)

call self%integrator(ch)%

receive_distribution (

worker , ch)

call self%integrator(ch)%

set_result (result)

end if

else

if (rank == worker) then

call result%send (0, ch)

call self%integrator(ch)%

send_distribution (0, ch

)

end if

end if

end do

! ...

end subroutine vamp2_integrate_collect

Listing 1 Collecting the results of the multi-channel computation on

the master worker with rank 0.

In order to employ the Vegas parallelization from [65]

we divide the r space into a parallel subspace r‖ with dimen-

sion d‖ = ⌊d/2⌋ over which we distribute the workers. We

define the left-over space r⊥ = r \ r‖ as perpendicular space

with dimension d⊥ = ⌈d/2⌉. Assigning to each worker a

subspace r‖,i ⊂ r‖, the worker samples r‖,i ⊗ r⊥. For the

implementation we split the loop over the cells in r -space

into an outer parallel loop and an inner perpendicular loop

as shown in Listing 2. In the outer parallel loop the imple-

mentation descends in the inner loop only when worker and

corresponding subspace match, if not, we advance the state

of the random number generator by the number of sample

points in r‖,i ⊗ r⊥, where i is the skipped outer loop index.

if (self%is_parallelizable ()) then

do k = 1, rank

call increment_box_coord (self%

box(1: n_dim_par),

box_success)

if (.not. box_success) exit

end do

select type (rng)

type is (rng_stream_t)

call rng%advance_state (self%

config%n_dim * self%config%

calls_per_box&

& * self%config%n_boxes **(

self%config%n_dim -

n_dim_par) * rank)

end select

end if

loop_over_par_boxes: do while (

box_success)

loop_over_perp_boxes: do while (

box_success)

do k = 1, self%config%

calls_per_box

call self%random_point (rng ,

x, bin_volume)

fval = self%jacobian *

bin_volume * func%

evaluate (x)

! ...

end do

! ...

call increment_box_coord (self%

box(n_dim_par + 1:self%

config&

&% n_dim), box_success)

end do loop_over_perp_boxes

shift: do k = 1, n_size

call increment_box_coord (self%

box(1: n_dim_par),

box_success)

if (.not. box_success) exit

shift

end do shift

if (self%is_parallelizable ())

then

select type (rng)

type is (rng_stream_t)

call rng%advance_state (self

%config%n_dim * self%

config%calls_per_box&

& * self%config%n_boxes

**( self%config%

n_dim - n_dim_par)

* (n_size - 1))

end select

end if

end do loop_over_par_boxes

Listing 2 Iteration over r -space and advancing the random number

generator.
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After sampling over the complete r -space the results of

the subsets are collected. All results are collected by reduc-

ing them by an operator, e.g. MPI_SUM or MPI_MAX with

MPI_REDUCE (reduction here is meant as a concept from

functional programming where data reduction is done by

reducing a set of numbers into a smaller set of numbers

via a function or an operator). The application of such a

procedure from a MPI library is in general more efficient

than a self-written procedure. We implemented all commu-

nication calls as non-blocking, i.e. the called procedure will

directly return after setting up the communication. The com-

munication itself is done in the background, e.g. by an addi-

tional communication thread. The details are provided in the

applied MPI library. To ensure the completion of communi-

cation a call to MPI_WAIT has to be done.

subroutine vegas_grid_broadcast (self)

class(vegas_grid_t), intent(inout) ::

self

integer :: j, ierror

type(MPI_Request), dimension(self%

n_dim + 4) :: status

! Blocking

call MPI_Bcast (self%n_bins , 1,

MPI_INTEGER , 0, MPI_COMM_WORLD)

! Non blocking

call MPI_Ibcast (self%n_dim , 1,

MPI_INTEGER , 0, MPI_COMM_WORLD ,

status (1))

call MPI_Ibcast (self%x_lower , self%

n_dim , &

& MPI_DOUBLE_PRECISION , 0,

MPI_COMM_WORLD , status (2))

call MPI_Ibcast (self%x_upper , self%

n_dim , &

& MPI_DOUBLE_PRECISION , 0,

MPI_COMM_WORLD , status (3))

call MPI_Ibcast (self%delta_x , self%

n_dim , &

& MPI_DOUBLE_PRECISION , 0,

MPI_COMM_WORLD , status (4))

ndim: do j = 1, self%n_dim

call MPI_Ibcast (self%xi(1: self%

n_bins + 1, j), self%n_bins +

1,&

& MPI_DOUBLE_PRECISION , 0,

MPI_COMM_WORLD , status(4

+ j))

end do ndim

call MPI_Waitall (self%n_dim + 4,

status , MPI_STATUSES_IGNORE)

end subroutine vegas_grid_broadcast

Listing 3 Broadcast grid information using blocking and non-blocking

procedures.

When possible, we let objects directly communicate

by Fortran2008 type-bound procedures, e.g. the main

Vegas grid object, vegas_grid_t has vegas_grid

_broadcast as shown in Listing 3. The latter broadcasts

all relevant grid information which is not provided by the

API of the integrator. We have to send the number of bins to

all processes before the actual grid binning happens, as the

size of the grid array is larger than the actual number of bins

requested by Vegas.5

Further important explicit implementations are the two

combinations of type-bound procedures vegas_send

_distribution for sending and for receiving

vegas_receive_distribution, and furthermore

vegas_result_send/vegas_result_receive

which are needed for the communication steps involved in

Vamp in order to keep the Vegas integrator objects encap-

sulated (i.e. preserve their private attribute).

Beyond the inclusion of non-blocking collective commu-

nication we choose as a minimum prerequisite the major

version 3 of MPI for better interoperability with Fortran

and its conformity to the Fortran2008+ TS19113 (and

later) standard [64, Sec. 17.1.6]. This, e.g., allows for MPI-

derived type comparison as well as asynchronous support

(for I/O or non-blocking communication).

A final note on the motivation for the usage of non-

blocking procedures. Classic (i.e. serial) Monte Carlo inte-

gration exhibits no need for in-sampling communication in

contrast to classic application of parallelization, e.g. solving

partial differential equations. For the time being, we still use

non-blocking procedures in Vegas for future optimization,

but in a more or less blocking fashion, as most non-blocking

procedures are followed by a MPI_WAIT procedure. How-

ever, the multi-channel ansatz adds sufficient complexity, as

each channel itself is an independent Monte Carlo integra-

tion. A typical use case is the collecting of already sampled

channels while still sampling the remaining channels as it

involves the largest data transfers in the parallelization setup.

Here, we could benefit most from non-blocking communica-

tion. To implement these procedures as non-blocking neces-

sitates a further refactoring of the present multi-channel inte-

gration of Whizard, because in that case the master worker

must not perform any kind of calculation but should only

coordinate communication. A further constraint to demon-

strate the impact of turning many of our still blocking com-

munication into a non-blocking one is the fact that at the cur-

rent moment, there do not exist any profilers compliant with

the MPI3.1 status that support Fortran2008. Therefore,

we have to postpone the opportunity to show the possibility

of completely non-blocking communication in our setup.

4.5.5 Speedup and results

In order to assess the efficiency of our parallelization, we

compare the two modes, the traditional serial Vamp imple-

5 The size of the grid array is set to a pre-defined or user-defined value.

If only the implementation switches to stratified sampling, the number

of bins is adjusted to the number of boxes/cells and, hence, does not

necessarily match the size of the grid array.
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mentation and our new parallelized implementation. We

restrict ourselves to measuring the efficiency of the paral-

lel integration, which, in contrast to parallel event generation,

requires non-trivial communication. For the latter, we limited

our efforts to extending capabilities of the event generation

to use the RNGstream algorithm in order to secure indepen-

dent random numbers among the workers and automatically

split the output of events into multiple files for each worker,

respectively, as we do not make use of parallel I/O. In this

version, the event generation does not require any kind of

communication and, therefore, we postpone a detailed dis-

cussion of the efficiency of parallel event generation, as such

a discussion would too much depend upon environmental

factors of the used cluster like the speed of the file system

etc.

In the following, we study different processes at differ-

ent levels of complexity in order to investigate the scaling

behavior of our parallel integration algorithm. The process

e+e− → µ+µ− at energies below the Z resonance has only

one phase-space channel (s-channel photon exchange) and its

integration is adapted over one grid. Parallelization is done

in Vegas over stratification space. The process e+e− →
µ+µ−µ+µ−νµν̄µ with its complicated vector-boson inter-

actions gives rise to O(3000) phase-space channels. With

overall O(106) number of calls for the process, each phase-

space channel is sampled (in average) by O(102) calls sup-

pressing the stratification space of all grids. Therefore, paral-

lelization is done over the more coarse phase-space channel

loop. The last process we investigate, e+e− → µ+µ−µ+µ−,

has O(100) phase-space channels where we expect for some

grids a distinct stratification space (at least two cells per

dimension) allowing Whizard to switch between Vegas

and multi-channel parallelization. All but the first trivial

examples are taken from [8] mimicking real-world appli-

cation for a proton-proton collider. The results for the full

integration, i.e. the times for adaptation and final pass of the

integration together, are shown in Fig. 2.

Furthermore, we are interested in the behavior for increas-

ing complexity of a single process, e.g. increasing (light) fla-

vor content of processes with multiple jets. For the two pro-

cesses, j j → W−(→ e−ν̄e) + { j, j j} we increase the num-

ber of massless quark flavors in the content of the jets. The

results in Fig. 3 indicate that for a single final-state jet more

flavor content (and hence more complicated matrix elements)

lead to lower speedups. For two (and more) final state jets

the speedups increases with the multiplicity of light quarks in

the jet definition. This means that possibly for smaller matrix

elements there is a communication overhead when increasing

the complexity of the matrix element, while for the higher

multiplicity process and many more phase-space channels,

improvement in speedup can be achieved.

We benchmark the processes on the high performance

cluster of the University of Siegen (Hochleistungsrechner

Universität Siegen, HorUS) which provides 34 Dell Pow-

erEdge C6100 each containing 4 computing nodes with 2

CPUs. The nodes are connected by gigabit ethernet and the

CPUs are Intel Xeon X5650 with 6 cores each 2.7 GHz and

128 MiB cache. We employ two different Whizard builds,

a first one only with OpenMPI 2.1.2, and a second one

with additional OpenMP support testing the hybrid paral-

lelization. The HorUS cluster utilizes SLURM 17.02.2 as

batch and allocation system allowing for easy source distri-

bution. We run Whizard using the MPI-provided run man-

ager mpirun and measure the run-time with the GNU time

command tool, and we average over three independent runs

for the final result. We measure the overall computation time

of a Whizard run including the complete process setup with

matrix-element generation and phase-space configuration. It

is expected that the setup step gives rise to the major part of

the serial computation of Whizard, and also the I/O oper-

ations of the multi-channel integrator, which saves the grids

after each integration iteration. As this is a quasi-standard, we

benchmark over NCPU in powers of 2. Given the architecture

of the HorUS cluster with its double hex-cores, benchmark-

ing in powers of 6 would maybe be more appropriate for the

MPI-only measurements. We apply a node-specific setup for

the measurement of the hybrid parallelization. Each CPU can

handle up to six threads without any substantial throttling. We

operate over NThreads = {1, 2, 3, 6} with either fixed overall

number of involved cores, NWorker = {60, 30, 20, 10}, with

results shown in Fig. 4, or with fixed number of workers

NWorker = 20, with results shown in Fig. 5.

Coming back to Fig. 2 showing the results of the bench-

mark measurement for MPI: The process e+e− → µ+µ−

saturates for N > 32. The serial runtime of Whizard is

dominating for that process with its two-dimensional inte-

gration measure (without beam structure functions) where

the MC integration is anyways inferior to classical integra-

tion techniques. The process e+e− → µ+µ−µ+µ− showing

mixed multi-channel and Vegas parallelization, however,

also saturates for N > 32. Going beyond that, the multi-

channel parallelizable process e+e− → µ+µ−µ+µ−νµν̄µ

achieves a higher speedup but with decreasing slope. The

overall speedup plot indicates a saturation beginning roughly

at N > 32 where serial time and communication start to dom-

inate. We conclude that Whizard embarks a parallelization

fraction higher than at least 90 % for MPI. In the Appendix

we present tables that show the actual physical runtimes for

the different processes under consideration.

One final comment on the usage of parallelized phase-

space integration for higher-order processes. Clearly, multi-

leg processes at LO for high multiplicities is still one of the

challenges in Monte-Carlo simulations, but the state-of-the-

art are nowadays automatized packages that allow for NLO

simulations, with an automatic setup to match the fixed-order

results to parton showers (NLO+PS). There are also tools
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Fig. 2 We show the overall computation time for the adaptive integra-

tion processes of different complexity for different numbers of partic-

ipating CPUs (left panel). The number of CPUs is chosen as a power

of 2. In the right panel, we plot the speedup of the processes and com-

pare them to ideal of Amdahl’s Law with parallelizable fractions of 1.0

(dashed) and 0.9 (dash-dotted). For the sake of better readability, we

labeled the processes with their partonic content. However, the compu-

tation involves the complete process with PDF convolution, but without

shower or hadronization

Fig. 3 We show the speedup

for the full integration pass of a

jet process with increasing

flavor content and a fixed

numbers of CPUs of 60

which can do specialized processes at NNLO (e.g. [6,7]). The

major bottlenecks for these are process-dependent: for some

NNLO and specifically NLO EW multi-scale processes, vir-

tual matrix elements exist only numerically and need several

seconds per phase-space points, while in many other cases

the real corrections (or double-real corrections in case of

NNLO) are the most computing-intensive parts of the cal-

culation due to the higher phase-space dimensionality and

the singular-subtracted structures (e.g. the high number of

subtraction terms for multi-leg processes). In Ref. [46] the

MPI parallelization presented here was used for the first time

in a physics study for like-sign W W scattering at the LHC

at LO and LO + PS. Whizard’s automation of NLO QCD

corrections has not yet been completely finalized, partic-
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Fig. 4 These panels show the

speedup for a fixed number of

workers with increasing number

of threads

Fig. 5 We show the speedup at

an overall fixed numbers of

CPUs (60) involved in the

parallelization. We distribute the

CPUs among MPI and OpenMP

parallelization. For the latter we

have to respect the node

structure where each node

consists of two CPUs each with

6 cores handling up to 6 threads

without any performance

penalty

ularly the optimization of NLO processes, so we decided

not to discuss benchmark NLO processes in this paper. But

in our validation, the MPI-parallelized integration presented

here already plays an important role, as it reduces times for

adaptive integrations by more than an order of magnitude

when using order a hundred cores. Clearly, the complexity of

multi-jet processes and of virtual multi-leg matrix elements

is a major motivation for the development of parallelized

phase-space integration. Again, event simulation can be triv-

ially parallelized, but validations, scale variations and other

integration-intensive NLO projects do benefit enormously

from the parallelized integration algorithm presented here.

We will report on more detailed benchmarks for NLO pro-

cesses in an upcoming publication [66].

4.6 Alternative algorithm for phase-space generation

Profiling of the code reveals that for the moment the main

bottleneck that inhibits speedups beyond n = 100 is the ini-

tial construction of the phase-space configurations, i.e. the

phase-space channels and their parameterizations (the deter-

mination of the best mappings to be done for each channel or

class of channels) which Whizard constructs from forests of

Feynman tree-graphs. Resembling the language of Ref. [67],

this construction algorithm is called wood. This wood algo-

rithm takes into account the model structure, namely the

three-point vertices to find resonant propagators, the actual

mass values (to find collinear and soft singularities and to

map mass edges), and the process energy. It turns out that

while the default algorithm used in Whizard yields a good

sample of phase-space channels to enable adaptive optimiza-
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tion, it has originally not been programmed in an efficient

way. Though it is a recursive algorithm, it does not work on

directed acyclical graphs (DAGs) like O’Mega to avoid all

possible redundancies.

Therefore, a new algorithm, wood2, has been designed in

order to overcome this problem. Instead of constructing the

forest of parameterizations from the model, it makes use of

the fact that the matrix elements constructed optimally by

O’Mega in form of a DAG already contain all the necessary

information with the exception of the numerical values for

masses and collider energy. Thus, instead of building up the

forest again, the algorithm takes a suitable description of the

set of trees from O’Mega and applies the elimination and

simplification algorithm, in order to yield only the most rele-

vant trees as phase-space channels. As it turns out, even in a

purely serial mode, the new implementation performs much

better and thus eliminates the most important source of satu-

ration in speedup. Another benefit of the new algorithm is that

it is much less memory-hungry than the original one which

could have become a bottleneck for the traditional algorithm

for complicated processes in very complicated models (e.g.

extensions of the MSSM).

5 Conclusions and outlook

Monte-Carlo simulations of elementary processes are an

essential prerequisite for successful physics analyses at

present and future colliders. High-multiplicity processes

and high precision in signal and background detection put

increasing demands on the required computing resources.

One particular bottleneck is the multi-dimensional phase-

space integration and the task of automatically determining

a most efficient sampling for (unweighted) event generation.

In this paper, we have described an efficient algorithm that

employs automatic iterative adaptation in conjunction with

parallel evaluation of the numerical integration and event

generation.

The parallel evaluation is based on the paradigm of the

message passing interface protocol (MPI) in conjunction

with OpenMP multi-threading. For the concrete realization,

the algorithm has been implemented within the framework

of the multi-purpose event generator Whizard. The paral-

lelization support for MPI or OpenMP can be selected during

the configure step of Whizard. The new code constitutes a

replacement module for the Vamp adaptive multi-channel

integrator which makes active use of modern features in

the current MPI-3.1 standard. Our initial tests for a vari-

ety of benchmark physics processes demonstrate a speedup

by a factor > 10 with respect to serial evaluation. The best

results have been achieved by MPI parallelization. The new

implementation has been incorporated in the release version

Whizard v2.6.4.

We were able to show that, in general, hybrid paralleliza-

tion with OpenMP and MPI leads to a speedup which is com-

parable to MPI parallelization alone. However, combining

both approaches is beneficial for tackling memory-intense

processes, such as 8- or 10-particle processes. Depending on

a particular computing-cluster topology, the latter approach

can allow for a more efficient use of the memory locally avail-

able at a computing node. In the hybrid approach, Whizard

is parallelized on individual multi-core nodes via OpenMP

multithreading, while distinct computing nodes communi-

cate with each other via MPI. The setup of the system

allows for sufficient flexibility to make optimal use of both

approaches for a specific problem.

The initial tests point to further possibilities for improve-

ment, which we foresee for future development and refine-

ments of the implementation. A server/client structure should

give the freedom to re-allocate and assign workers dynam-

ically during a computing task, and thus make a more effi-

cient use of the available resources. Further speedup can be

expected from removing various remaining blocking com-

munications and replacing them by non-blocking commu-

nication while preserving the integrity of the calculation.

Finally, we note that the algorithm shows its potential for

calculations that spend a lot of time in matrix-element evalu-

ation. For instance, in some tests of NLO QCD processes we

found that the time required for integration could be reduced

from the order of a week down to a few hours. We defer a

detailed benchmarking of such NLO processes to a future

publication.
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Appendix: Results

We list the results of our time measurements for the bench-

mark runs in Tables 1, 2, 3, and 4. The measurements provide

the basis for our conclusions on the actual performance of

the parallelized program.
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Table 1 Computation time of the leptonic processes

NCPU T (e−e+ → µ−µ+)s−1 T (e−e+ → µ−µ+µ−µ+)s−1 T (e−e+ → µ−µ+µ−µ+νµν̄µ)s−1

1 19.8 ± 0.1 561.9 ± 0.1 83 927.3 ± 0.4

2 10.2 ± 0.1 294.0 ± 0.4 47 290.9 ± 19.5

4 5.8 ± 0.1 152.7 ± 0.3 23 667.4 ± 19.3

8 3.5 ± 0.1 87.3 ± 0.0 14 415.6 ± 27.4

16 2.6 ± 0.1 51.8 ± 0.0 8583.3 ± 0.4

32 2.0 ± 0.1 52.6 ± 0.6 6613.4 ± 26.4

64 1.9 ± 0.1 52.2 ± 0.2 5138.1 ± 0.1

128 2.3 ± 0.1 52.2 ± 0.3 3697.5 ± 25.2

Table 2 Computation time of

jj → W−(→ e−ν̄e) + nj

processes

NCPU T ( j j → W j)s−1 T ( j j → W j j)s−1 T ( j j → W j j j)s−1

1 865.1 ± 31.9 19 621.3 ± 0.1 169 679.3 ± 15 590.2

2 442.4 ± 2.4 9248.4 ± 18.0 91 824.3 ± 8660.0

4 228.0 ± 1.8 5320.4 ± 429.1 53 487.4 ± 6279.5

8 119.3 ± 0.5 2974.3 ± 166.3 33 808.9 ± 2346.9

16 71.6 ± 0.2 1768.2 ± 105.4 19 114.2 ± 637.3

32 41.3 ± 0.8 1273.5 ± 16.5 11 371.1 ± 229.0

64 25.6 ± 0.2 1403.2 ± 1.3 6707.4 ± 0.1

128 25.5 ± 0.0 1477.5 ± 2.1 4976.0 ± 0.1

Table 3 Computation time of

gg → W−(→ e−ν̄e)qq̄ + ng

processes

NCPU T (gg → Wqq̄)s−1 T (gg → Wqq̄g)s−1 T (gg → Wqq̄gg)s−1

1 765.3 ± 1.5 3356.7 ± 93.8 28 853.2 ± 103.2

2 407.2 ± 0.8 1617.7 ± 54.0 14 908.5 ± 0.1

4 212.4 ± 5.5 848.0 ± 40.9 7573.8 ± 276.2

8 110.8 ± 0.1 439.0 ± 4.4 4118.6 ± 137.1

16 60.3 ± 0.4 279.1 ± 2.1 2321.3 ± 36.1

32 37.7 ± 0.4 169.0 ± 0.4 1329.0 ± 14.7

64 37.8 ± 0.4 130.7 ± 1.9 788.1 ± 1.0

128 38.8 ± 0.4 111.5 ± 0.7 618.8 ± 9.9

Table 4 Computation time over increasing flavor content. The upper

two lines are for the process pp → W j , the lower two for the process

pp → W j j , respectively. The second column gives the number of CPU

cores, the following columns are the results for an increasing number

of massless quark flavors in the initial state and jets, growing from one

(d) to four (d, u, s, c)

process NCPU T ({d})s−1 T ({u, d})s−1 T ({u, d, s})s−1 T ({u, d, s, c})s−1

j j → W j 1 1589.1 ± 3.0 2189.3 ± 8.3 2730.9 ± 1.2 3440.6 ± 11.2

60 66.8 ± 0.0 123.8 ± 0.7 179.3 ± 0.1 283.1 ± 0.8

j j → W j j 1 11 075.0 ± 2347.7 29 405.0 ± 1206.9 49 151.5 ± 585.6 91 677.3 ± 2502.7

60 435.1 ± 0.3 811.7 ± 0.4 1220.4 ± 0.8 2006.0 ± 0.5

The numbers have to be interpreted with some care; there

are sizable fluctuations in the measured run time for long-

running processes which can be attributed to a somewhat

messy computing environment. All data have been obtained

from runs on a university-wide cluster which suffers from

high and variable usage by other research groups. A precise

measurement of benchmark runs would require an exclusive

allocation of computing resources which was not available

for the current study.
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