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QCD in d =4 — 2¢ space-time dimensions possesses a nontrivial critical point and there are good
reasons to expect that this theory restricted to the gauge-invariant subsector is conformally invariant. The
subtlety is that the conformal symmetry of the Lagrangian is broken by the Faddeev-Popov quantization
procedure. We study this problem by tracing carefully the contributions of gauge non-invariant operators
in conformal Ward identities and prove that all such contributions cancel in the correlation functions of
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1. Coupling constants in quantum field theory (QFT) models usu-
ally depend on the renormalization scale. This dependence is de-
scribed by beta-functions which enter renormalization group equa-
tions (RGEs) for correlators of the fundamental fields and/or local
composite operators. If the beta-functions vanish, the theory en-
joys scale invariance and the RGEs reduce to equations describing
the behavior of the correlation functions under scale transfor-
mations. In four-dimensional models, the only zero of the beta-
functions accessible in perturbation theory corresponds to a trivial
situation when all couplings vanish, i.e. the free theory. In non-
integer d = 4 — 2¢ dimensions, the situation is different. In this
case it is common that the beta-functions vanish for some special
values of the couplings g = O(e) (critical couplings). If € is consid-
ered a small parameter, the critical couplings can be calculated in
perturbation theory. QFT models at the critical point thus provide
one with examples of scale-invariant theories.

As was first suggested by Polyakov [1], scale invariance of a
quantum field theory usually implies conformal invariance. Re-
cently, considerable effort was invested to make this statement
more precise [2-9]. In non-gauge theories a clear picture is emerg-
ing, but the case of gauge theories is less studied and still subject
to considerable debate.

In non-abelian gauge theories and in particular QCD there are
additional complications due to the gauge-fixing and ghost terms
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in the Lagrangian that are not invariant under conformal trans-
formations even in d =4 dimensions. As a consequence, there is
no hope that correlators of fundamental fields may transform in
a proper way under scale and conformal transformations — good
symmetry properties can only be expected for the correlators of
gauge-invariant operators. The subtlety is that gauge-invariant op-
erators mix under renormalization with gauge-variant operators of
a special type (BRST variations) and Equation of Motion opera-
tors (EOMs). These counterterms — BRST and EOM operators — are
believed to be artifacts of the Faddeev-Popov approach to quanti-
zation of gauge theories and all troubles caused by them are likely
to be of technical character. In this letter we clarify the structure
of such “unwanted” contributions in conformal Ward identities,
which is important for practical applications. This analysis can be
viewed as an extension of the work by Joglekar and Lee [10-12]
on the structure of gauge-variant operators in the RGE equations.

It has been observed, see e.g. [13-18], that apparently unre-
lated perturbative QCD observables differ only by terms involving
the beta-function, and one possibility to understand this connec-
tion [17-19] is to start from the theory in d =4 — 2¢ dimen-
sions at the critical point where they are related by a conformal
transformation. Similar ideas have been used to derive the RGEs
for leading-twist QCD operators in general off-forward kinematics
[20-23]. Our intention is to put these methods on a more rigorous
footing.

To be specific, we will consider QCD near four dimensions, d =
4 — 2¢, in perturbation theory assuming the minimal subtraction
renormalization scheme. With the above mentioned applications
in mind, we are interested in the behavior of correlation functions
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of local operators in this theory under conformal transformations.
This question can be answered, at least within perturbation theory,
by the study of scale and conformal Ward identities. In this way
conformal invariance of the correlators of fundamental fields in
non-gauge theories can be proven along the lines of Refs. [24-26],
see also [4] for recent developments. A detailed description of this
technique and its extension to the case of local composite opera-
tors can be found in the book [27].

On a more technical level, let Og, g =1, 2,...,n be a (finite) set
of local composite operators with the same quantum numbers so
that they mix under renormalization. In Ref. [27] it was shown that
in scalar theory the scale and conformal Ward identities for these
operators at the critical point imply that the symmetry transfor-
mations take the following form:

8pO0q(x) = (DA (X)Sqq + Vaq') Og (%),
8k Og(x) = (KK (X)8qq + 24 xH) Og (X) + OF (%), (1)

where the sum over ¢’ is implied. The generators of scale and con-
formal transformations D and K‘A‘ are defined as

Da(x) =xdx+ A,

KZ (X) = 2xM (x0) — x*0™ + 2AxH — 2%, MV, (2)

where A is the canonical scaling dimension of the operators Oy,
MY is the spin generator and (’)ff are certain local operators with
canonical dimension A — 1. These expressions can be simplified
by going over to a basis of operators that diagonalize the anoma-
lous dimension matrix Y, Og —> O, = Cq qOq. Here cqq is a left
eigenvector of gy, Zq CaqYqq = YaCaq» aNd Aqg = A + Y4 is the
scaling dimension of the operator Op,,. In this basis the transfor-
mations in Egs. (1) simplify to

3pOa, (%) =D, (%) O, (%),
SknOn, (X) =K (0)0a, (%) + Oy (x), (3)

where O} = cqqOy . Scale invariance implies that the operator O}
has definite scaling dimension equal to A, — 1. The set of operators
with the same anomalous dimensions (meaning that the difference
of scaling dimensions of any two operators is an integer number),
forms an infinite-dimensional representation (Verma module) of
the conformal algebra. The expressions in Egs. (3) define the action
of scale and conformal generators on this representation. Since the
scaling dimension of the operator O is less than that of On, by
one, applying the conformal transformations subsequently to Oa,,,
OF etc. one inevitably must come to an operator for which the ad-
dendum O on the r.h.s. vanishes, i.e. an operator that transforms
homogeneously under conformal transformations. Such an opera-
tor is called conformal and it is the lowest weight vector of the
corresponding representation.

The analysis of scale and conformal Ward identities given in
Ref. [27] can be extended to gauge theories. We will show that
Egs. (3) keep their form. The main result is that the inhomoge-
neous part, O4 (x), in the expression for the conformal variation of
a gauge-invariant operator is a gauge invariant operator again, up
to terms that vanish in all correlation functions of gauge-invariant
operators and can therefore always be dropped.

At first sight the appearance of a gauge non-invariant opera-
tor on the r.h.s. of Egs. (3) can be ruled out by observing that its
anomalous dimension would depend on the gauge-fixing parame-
ter. This is not always the case, however. To give an example, the
gauge-invariant operator O = FF in four dimensions can be writ-
ten as a divergence of the topological current K*, FF = I KH.
Evidently, F F and K* have the same anomalous dimensions and

the current K# can be a natural candidate for the role of the non-
homogeneous term in Egs. (3), §gx O(0) ~ K*(0). At the same time
K* is not a gauge-invariant operator.

2. We start with collecting the necessary definitions. The QCD ac-
tion in d =4 — 2¢ Euclidean space reads

S=/ {qwq+ Fj F&1Y — %8, (Do) + 5(8 A‘”‘)}
(4)

where D, =9, — igBA‘ZLTa with T? being the SU(N.) generators
in the fundamental (adjoint) representation for quarks (ghosts).
The field strength tensor is defined as usual, Fa =09, A% -9, Aa +

gp f°AD AT, where gg is the bare coupling, gp = gM¢, and M
is the scale parameter. The theory is assumed to be multiplica-
tively renormalized and the renormalized action takes the form
Sr(®,e) =S(do, e9), where & ={A,q,q,c,c},e={g, &} and &y =
Zo®P, eg = Z.e. The renormalization factors in the minimal sub-
traction (MS) scheme have a series expansion in 1/¢,

—l+Z€ ]szka
j=1

where zj, are polynomials in &. Formally the theory has two
charges: a and &. The corresponding beta-functions are defined as

a=as/(4m) = g*/(4m)*,  (5)

dg

Ba(a) = MW—ZG(—E—Vg),
de
Be(§,a) = MW —28ya(a,§), (6)
with
Ve =My InZg = Boa+ B a® + 0@, (7)

where the first two coefficients are g = 11/3N; — 2/3Ny, p1 =
2/3[17N? = 5NNy —3CfNy] for a SU(N.) gauge group with Ny
quark flavors. In this notation —2ay; is the usual QCD g-function
in physical four dimensions. The anomalous dimensions of the
fields ® ={q, g, A, c, ¢} are defined as

Yo =My InZe = (Bgdg + Brd) InZo . (8)
The QCD Lagrangian (4) is invariant under BRST transforma-
tions [28,29], §£ =0, where

8q =igtiqc?sx, 8AJ, = (Dyc)"sa,

= %gf”bccbcc(m, 8¢ = —%(BA“)SA. 9)
The BRST transformation rules for the renormalized fields are ob-
tained by replacement ® — ®q, e — eg, §A — §Ag in the above
equations and writing the bare fields and couplings in terms of the
renormalized ones: &g = Z¢®, eg = Zee. The renormalized BRST
transformation parameter 8\ is defined as dAg = Z.Z4d8A so that
the last equation in Egs. (9) has the same form for bare and renor-
malized quantities. The BRST operator s defined by §® =s®JA is
nilpotent modulo EOM terms. Namely, s2® = 0 for all fields except
for the anti-ghost in which case one finds
526=—1s(8A) 122(3”’3#) 155R (10)
§ § £ oc
Thus the second BRST variation of an arbitrary local functional
JF(®) is an EOM operator
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5Sg SF(®)
8ca(x) 8ca(x)

BRST symmetry is the key ingredient in the analysis of the RGEs
for gauge invariant operators [10-12]. The result, see Ref. [30] for a
review, is that gauge invariant operators, O, mix under renormal-
ization with BRST operators, i.e. operators that can be written as
a BRST variation of another operator, 3 = sf3’, and EOM operators,
€ = F(®)6Sg/8®. The mixing matrix has a triangular structure

s2F(d) :é/ddx (11)

o Zoo Zos Zoe o
Bl=| 0o zss zse || B],. (12)
& 0 0 Zsg &

so that renormalized gauge-invariant operators take the following
generic form’

[0l =Z000 + ZogB+ Zoek. (13)

In both equations O, B, £ are sets of operators of the correspond-
ing type, O ={01, ..., Oy}, etc, and the renormalization factors Z
are matrices in these spaces. Note that the renormalization matrix
Zoo in the MS scheme does not depend on the gauge parameter
&. For further use we introduce a notation

0= ZooO

for the gauge-invariant part of the renormalized (gauge-invariant)
operator. In principle it should be possible to constrain the opera-
tor structure of potential BRST and EOM counterterms for a given
O. However, no such relation is known.

The significance of this result is that the contributions of BRST
and EOM operators to physical observables have to vanish so that
such terms can be dropped, at least in principle. In practice this
requires some caution. Calculations are usually done in momen-
tum space. Within perturbation theory the radiative corrections to
the matrix elements of composite operators develop ultra-violet
divergences as well as infrared ones, which are regularized in d di-
mensions. In addition, the vanishing of physical matrix elements
with BRST or EOM operators requires the on-shell limit with re-
spect to their external momentum ¢ to be taken and, generally,
the limits g> — 0 and d — 4 do not commute. Therefore, theo-
rems on the renormalization of gauge invariant operators [10-12]
directly apply to matrix elements with the operators inserted at
nonzero momentum. In practice, this requires the computation of
three-point functions with off-shell legs, which poses certain dif-
ficulties at higher loops. Calculations of matrix elements based on
two-point functions are technically easier, but are typically realized
with operators inserted at zero momentum. In this case, physical
matrix elements of gauge variant operators do not vanish, the mix-
ing matrix of operators is not triangular and matrix elements with
insertions of BRST or EOM operators need to be accounted for as
well, see refs. [31-34].

Considering operators with fixed position essentially corre-
sponds to nonzero momentum flow. In this case it is indeed easy
to see that a correlation function of renormalized gauge-invariant
operators localized at different space-time points X = {x; ...xy} is
equal to the correlation function of the gauge-invariant parts of the
same operators

([ Tiox@on) = ([ | Gxx0)). (14)
k

k

1 We use the standard notation [(] for the operator © renormalized in the MS
scheme [30].

The equality holds because the additional terms due to BRST and
EOM operators are local, e.g.,

(Bx1)[02(x2)]... [On (xn)])
=8(x1 —x2)C2(X) + ... +8(x1 —xN)CN (),

where Ci(x) are some functions (not necessary finite at € — 0),
and similar for EOM terms, so they vanish if all x; are different but
can contribute to integrals over the operator positions. Our goal
in this paper is to show that at the critical point, B;(a,) =0, the
correlators (14) behave in a proper way under scale and conformal
transformations. The expression on the r.h.s. of (14) is the natural
starting point for this undertaking.

3. Next, we introduce the relevant Ward identities. The correla-
tion function in Eq. (14) can be written in the path-integral repre-
sentation as follows

I @(xk)):N/DcD [ [Ocxe) exp{ — Sr(®)}, (15)
k

k

where A is the normalization factor. Making the change of vari-
ables ® > @& = ® + §,® in the integral (15), where §,® cor-
respond to the dilatation and special conformal transformation,
w =D, K*, see Appendix A, and taking into account that the inte-
gration measure stays invariant, one obtains

> (80016 [ [ Oxx0)) = (80Sk | | Orxe)- (16)

j k#j k
Note the choice of the canonical dimensions for the fields in

Eq. (A.3). For this choice the commutator of dilatation/conformal
8¢ and gauge transformations &, is a gauge transformation again,

[8057501)] :305(,)’ (17)

where ap = (xd)a and agr = (2x*(x9) — x*9* ).
The scale and conformal variations of the operators that appear
on the Lh.s. of Eq. (16) are defined as

80 O(X) = / d?y 8, @ (V) (8O /5D(y)).

Assuming that 9] j have canonical dimensions Aj they are given by
the following expressions:

5p0j(x) = Da;0;(x)

skn0j(x) = KX 0;() + Y p0y (), (18)
k

where Da;, KZJ_ are given in Eq. (2) and (7)\,‘: are certain gauge
invariant operators with canonical dimension Aj — 1. Such inho-
mogeneous terms typically arise from the commutators of §,, with
derivatives in the operator Oj, if they are present. Note that the
coefficients pj.(€) can be and, as a rule, are singular in the € — 0
limit. It is easy to check that the property (17) ensures that there
are no gauge-dependent addenda to these expressions.

The variation of the QCD action §,Sg on the r.h.s. of the Ward
identity (16), see Appendix, can be written as

SpSR =/ddx2€ Lr(x),

Sku SR =/ddx <4ex“£}3(x) —2(d—2)8p[Bp](x)), (19)
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where L (x) = Lr(X) — %Zg 0P ((j(x)ypq(x)) and B, is a BRST op-
erator, see Eq. (A.9). This term does not contribute to the correla-
tion function, (B, (x) [T Ok(x)) =0, so that the r.h.s. of Eq. (16)
takes the standard form

2 / 4% X0 (LR [ | Or(x). (20)
k

where xp =1 and xgr = 2x* for dilatation and conformal trans-
formations, respectively.

To proceed further we re-expand 2€Lj(x) in terms of renor-
malized (finite) operators. The corresponding expression takes the
form [21,22,35]

2L, = —@ [ﬁ”” + cgf] — (Vg — )Rz — (VA + Vo)

— (e = 26)Q% — Qe + 2yl L4

+Zb(g7§)3u[BM]+Zc(g»$)au[gu]- (21)
Here Q¢ = ®(X)8SR/SP(X), Qg = ¢ + 2 and Q, =cDyc —
(3,.C)c is a conserved current, 9, [Q"] = Q¢ — Q. The gauge fixing
term L& = %(8/\)2 can be rewritten as a combination of BRST
and EOM operators,

(L= —[B]—-Q:  B=s(c(dAY). (22)

It can be shown that the coefficients z,(g, &) and z.(g, &) can be
calculated explicitly in Landau gauge, &€ =0,

zp(g. &) =ya+yg+ 0(),
z2:(8,8)=—(Ya+ve)/2+0(§). (23)

Using Eq. (21) in Eq. (20) it is easy to see that only the contribu-
tions coming from small integration regions around the points X
survive at the critical point. Indeed, let B, be an arbitrary small
ball centered at x; and split the integration region in two parts:
the union of the (non-overlapping) small balls B = |, Bx and their
complement R = R%\B. Integrating over the complement one can
drop all EOM terms appearing in Eq. (21) and also the contribu-
tions of the BRST operators. Thus this contribution reduces to

@ ff) / dx X0 (1L 01 T Oexo) (24)
g K
R

The remaining correlation function contains renormalized (finite)
local operators at separated space points and is finite. The integral
is also finite. This contribution vanishes, therefore, at the critical
point since it comes with the factor B(a,) = 0. Thus only the in-
tegral over the union of small balls around the operator insertions
remains,

2y / A% X (LR [ | Or(x))- (25)
n Bn k

Our next aim is to bring this expression to a form suitable for
further analysis.

4. Since the balls B, do not overlap, it is sufficient to consider
one term in the sum. The operator product 2¢ L}, (x)(/’)\,1 (%) for x —
Xp is not necessarily finite and the argument which we used to
claim that the integral over the complement R can be dropped
does not work. To simplify the notation we suppress the subscript
n and use X' = x,. The first step is to show that the product of
the renormalized Lagrangian and a gauge-invariant renormalized
operator @(x/ ) can be written in the following form

@
a
+Ex, X). (26)

2eL)OX) = ——[LM () O(X)] + LT(x, X) + s(R(x, X))

The first term on the r.h.s. of this expression is the fully renormal-
ized product of two operators. LT stands for local terms that have
a finite expansion of the form

LT(x,x)=8(x —X) FX)+ o's(x —x) FH () + ... (27)

The next term is a BRST operator. Finally, the last term is an EOM
operator which has the following property: its correlation func-
tion with a product of fundamental fields X (Y) = ]_[p Dp(y¥p),
Y ={y1,..., yp} contains only delta functions of the type §(x—y)
or §(x' — yp) but not §(x —x'). In other words if x, X' # y, for any
p then

@ xHx))=o0. (28)

In order to prove Eq. (26) we start with the representation (21)
for the QCD Lagrangian. This expression contains several terms:
EOM operators, BRST variations and the renormalized Yang-Mills
part of the Lagrangian [£YM] which comes with the factor S(a). In
what follows we examine these contributions one-by-one.

o It is straightforward to show that the EOM terms give rise to

EXOK) =LT(x,X) + E(x, X). (29)

To this end consider the correlation function of £ (x)@(x’) with
a set of fundamental fields X’(Y) which we can write as

SSR A i sOx)
(<I>(x)8q>(x) O()X)=(P(x) 5000 X)
8SR ~ , 80X
+<<D(x)<8q>(x)(’)(x)— 5000 )X}. (30)

The first term on the r.h.s. is a local operator while the second
one is a EOM term, £(x, X'), that is easy to see integrating by
parts in the path integral.

e The product B(x)@(x/) can be written as s(B’@(x’)) and,
therefore, contributes to the R(x, x’) term only.

e The last term to consider is B(a)/a[LYM]O(x'). Here we re-
place 5(){) by the complete renormalized operator [O(X')]
and subtract the corresponding BRST and EOM counterterms.
The latter ones contribute to LT(x, x') and £(x, x), cf. Eq. (29).
The product of two renormalized operators [£YM(x)] and
[@(x’)] can be written as a sum of the renormalized opera-
tor product and local pair counterterms,

(LM X)OF)] = LM ) OK)] + LT(x, X)) . (31)

We are left with the product of [£YM](x) and the BRST
counterterm to [O(x')], call it Bo(x'). Separating the gauge-
invariant part

(LM =ZIM + BL(x) + &1 (32)

we observe that the EOM term gives rise to the structure (29)
whereas the product @L’MBO (X') contributes to the R(x,x)
term. Finally, the product of two BRST operators B(x) =
s(B}(x)) and Bo (x') = (B, (x')) can be rewritten as

BL(x)Bo (X') = (B, (x)Bo (X)) — B, (x)s(Bo (x)). (33)
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The first term on the rh.s. contributes to R(x,x’) and the
second term is the sum of local (LT) and £(x, x") (EOM) con-
tributions. To see this, write s(Bo (X)) = s?(B, (x')) and use
Eq. (11) to obtain

8Sp 8B, (X)

/ /N — R 1 d
B,(0s(B, () =BWg / T
/ &z 8B (x) 8B, (X)
é 8¢c4(z) 8¢t (2)

Obviously, the first term on the r.h.s. of this identity is a local
(LT) contribution. Collecting all of the above expressions we
obtain Eq. (26).

+Ex,X). (34)

Once Eq. (26) is established, we can use it in the correlation
function (25). The EOM term £(x, x’) drops out thanks to Eq. (28)
and the BRST operator sR(x, x') obviously does not contribute as
well. The first term, —Ta)[EYM(x)(’)(x/)], vanishes at the critical
point. Thus the sole contribution to the correlation function (25)
at the critical point is due to the local terms, LT(x, x'). As seen
from the above analysis the local terms originate from different
sources and separate contributions are clearly gauge non-invariant.
Nevertheless, it is possible to show that the complete expression
for LT(x, x') can be written as a sum of the contributions of gauge-
invariant, BRST and EOM operators.

The proof follows closely the analysis of the RGEs for gauge-
invariant operators in Ref. [30]. To this end we consider the BRST
variation of Eq. (26). Since the Lh.s. vanishes, one obtains
)= Bl@) ( ) s

s(LT(x,X) [L"Mx)Ox)]) — s?(R(x, X)) — s(E(x,X)).

(35)
Using

(s(.x)) x) = —(Ex.X) s(X)),
(s*(R(x, X)) X) = (R(x, %) s* (X)), (36)

where, as above, X = Hp ®,(yp) and x, X' # yp, it is easy to see
that the last two terms in Eq. (35) are EOM operators, £(x, x').
Next, we want to show that s([LYM(x)O(x)]) is an EOM opera-
tor as well. The starting observation is that BRST variations of the
fundamental fields are finite operators [30] and therefore the BRST
variation of a renormalized operator is a finite operator as well, up
to EOM operators. Using the same arguments that lead to Eq. (26)
one can show that for a product of any two gauge-invariant oper-
ators one gets

[O1(0)02(X)] = O1 (0O (X) + LT(x, X') + sS(R(x, X)) + E(x, X)),
(37)

where all terms on the r.h.s. except for the first one are singu-
lar in 1/e (do not contain finite contributions). Taking a BRST
variation of the both sides we conclude that up to EOM terms
s([O1(x)O2(x)]) = s(LT(x, X')). The operator on the Lh.s. of this re-
lation is a finite operator, while the one on the r.h.s. is singular.
Therefore they both are equal to zero, up to EOM terms.

Going back to Eq. (35) we conclude that s(LT(x, x’)) = 0 modulo
EOM operators. As shown by Joglekar and Lee [10], see also [36]
for a review, vanishing of the BRST variation implies that LT(x, x')
and therefore the operators F, F* in Eq. (27) can be written as a
sum of gauge invariant, BRST and EOM operators. The last ones can
safely be neglected since they do not contribute to the correlation
function in question.

5. The subsequent derivation of the scale and conformal proper-
ties of correlation functions of gauge-invariant operators follows

the lines of Ref. [27]. Starting from the dilatation Ward identity in
Eq. (16) and taking into account Egs. (18), (25), (26) one obtains

D (D20 (%)) = Fix) [ | O x)) = (38)
J k#j
Taking into account that the operators in questions satisfy the RGEs
May[O+ > Y [Ok] =0, (39)
0

and have definite canonical dimension
(Mow =Y D06 ([ T Ocw) =0, (40)
j k

this identity implies that?

3 (Zmo )+ F5x)) [T Owo) = 0 (41)

J k#j

Since this equation must hold for arbitrary operator insertions
[Tkzj Ok(xx) one concludes that

Fixp) ==Y vigOjx)). (42)
7

The same relation can alternatively be achieved by the analysis of
the dilatation Ward identity for the correlation function of local
operators with fundamental fields in Landau gauge. In this gauge
Be = 0 holds identically so that the both beta-functions vanish at
the critical point and scale invariance holds for any Green’s func-
tion.

Using Eq. (42) we can rewrite the conformal Ward identity as
follows:

Z((K &0 = 2X Fyx) + F () [ ] Otxo) =0
J k#j
(43)

where JNFJ’.‘(X) = fo(x) > pjk(aff (x), see Eq. (18). Note that all

divergent terms in F j“ (x) have to cancel.
Finally, using Eq. (18), we obtain

80000 = (8D, (X)) +¥15) Oy ).
5cn 0500 = (835K () + 215 )0 () + OF (), (44)

where ('9\7 x) = ff (x) is a gauge-invariant operator and the op-
erator equality holds up to terms that vanish for all correlation
functions with any number of gauge-invariant operators. Provided
that the anomalous dimension matrix can be diagonalized®> one
can go over to the basis of operators with definite scaling dimen-
sions and rewrite these equations in the form (3).

6. To summarize, we have shown by the BRST analysis of the
corresponding Ward identities that correlation functions of gauge-
invariant operators in QCD in d =4 — 2¢ dimensions at the critical
point transform properly under conformal transformations, as ex-
pected in a conformal invariant theory. This result gives further
support to the methods based on using conformal invariance in
higher-order perturbative QCD calculations [13-18,20-23] and can
be also interesting in a broader context.

2 Our notations are a bit sloppy here. The sum over j goes over all operators
which mix with Oj(x;). We do not assume that the operators at different points
belong to the same class.

3 This is not always possible in theories with fermions where the number of mix-
ing operators can be infinite, see Ref. [37].
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Appendix A. Scale and conformal transformations

The dilatation (scale) D and conformal K transformations for
the fundamental fields take the form

Sp®(X) = Day ) P(X) = (xdy + Ao) DY),
Skn®(x) = Ki, ()P (x)
= (2% (x9) — X2 +2A0xH" — 2%, ) D(x), (A1)

in particular

Kuq(x) = (2x,,(x0) — X208, +20q Xy, q(x)+ [V, $19(x),

_1
Kuqx) Q(X)i[)’ua?é],

c(),
2% (x9) — X%y + 284 X,) Ap(X) + 281 (XA)
—2xp A, (%),

)
2%, (x9) — X9y + 20 X)) G (X
)
)¢

Kyc(x) =
Ky Ap(x) =

(
=
Kuc(x) = (2%, (x8) — X208, +2Ac Xy ) €(x
(2%, (x0) — 28, +2A¢ Xyt
(
(A2)

where Ag = dim @ are the field canonical dimensions. It is conve-
nient to choose them in d =4 — 2¢ dimensions to be the same as
in four-dimensional theory,

Ap=1, Ag=Ag=3/2, A:=2. (A3)

For this choice the field strength tensor Fs, transforms in a co-
variant way

KyiFop = (26 (69) = X200 + 4%, ) Forp

+ 2<gupx” Fou + 810X  Fup — XpFop — Xo F,Lp),
(A4)

and the covariant derivative of the ghost field D,c transform as a
vector field,

KuDpc(x) = (2%, (x3) — X283, + 2x,) D pc(x)
+2(gup(xD) — xpD,L)c(x).

A conformal variation of different pieces of the QCD action
takes the form

_ _ 1_
SK/ddxqwq=4e/ddx(x“qwq + quuq), (A.6a)

(A5)

1 1
8k / ddeF2=4e / ddxxMZFz, (A.6b)
sz/ddxl(aA)2 =—1/ddx<—26x“(8A)2
2§ §
+2(d— Z)A“(aA)) , (A6¢C)
K/ddx(—faﬂD“c) = e/ddxx“(—EBMD“c)
+2d-2) / d?xcD*c. (A.6d)

Note that the ghost and the gauge fixing terms break the confor-
mal symmetry explicitly even in d =4 dimensions. Summing up
all contributions yields

SpS = / dix2eL(x), (A7)

S S = / dx <4e x (L0 - %aﬂjp (®) -2 - 2)aPBp(x)>
(A8)

Here J,(x) =q(x)ypq(x) is the flavor-singlet vector current and

B, =eD,c— %AM(BA) (A.9)

is a BRST operator, By, =s(CAy).
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