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QCD in d = 4 − 2ǫ space-time dimensions possesses a nontrivial critical point and there are good 
reasons to expect that this theory restricted to the gauge-invariant subsector is conformally invariant. The 
subtlety is that the conformal symmetry of the Lagrangian is broken by the Faddeev-Popov quantization 
procedure. We study this problem by tracing carefully the contributions of gauge non-invariant operators 
in conformal Ward identities and prove that all such contributions cancel in the correlation functions of 
gauge-invariant operators. This result gives further support to the application of the conformal symmetry 
based methods in high-order QCD calculations.

 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Coupling constants in quantum field theory (QFT) models usu-
ally depend on the renormalization scale. This dependence is de-
scribed by beta-functions which enter renormalization group equa-
tions (RGEs) for correlators of the fundamental fields and/or local 
composite operators. If the beta-functions vanish, the theory en-
joys scale invariance and the RGEs reduce to equations describing 
the behavior of the correlation functions under scale transfor-
mations. In four-dimensional models, the only zero of the beta-
functions accessible in perturbation theory corresponds to a trivial 
situation when all couplings vanish, i.e. the free theory. In non-
integer d = 4 − 2ǫ dimensions, the situation is different. In this 
case it is common that the beta-functions vanish for some special 
values of the couplings g =O(ǫ) (critical couplings). If ǫ is consid-
ered a small parameter, the critical couplings can be calculated in 
perturbation theory. QFT models at the critical point thus provide 
one with examples of scale-invariant theories.

As was first suggested by Polyakov [1], scale invariance of a 
quantum field theory usually implies conformal invariance. Re-
cently, considerable effort was invested to make this statement 
more precise [2–9]. In non-gauge theories a clear picture is emerg-
ing, but the case of gauge theories is less studied and still subject 
to considerable debate.

In non-abelian gauge theories and in particular QCD there are 
additional complications due to the gauge-fixing and ghost terms 
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in the Lagrangian that are not invariant under conformal trans-
formations even in d = 4 dimensions. As a consequence, there is 
no hope that correlators of fundamental fields may transform in 
a proper way under scale and conformal transformations — good 
symmetry properties can only be expected for the correlators of 
gauge-invariant operators. The subtlety is that gauge-invariant op-
erators mix under renormalization with gauge-variant operators of 
a special type (BRST variations) and Equation of Motion opera-
tors (EOMs). These counterterms — BRST and EOM operators — are 
believed to be artifacts of the Faddeev-Popov approach to quanti-
zation of gauge theories and all troubles caused by them are likely 
to be of technical character. In this letter we clarify the structure 
of such “unwanted” contributions in conformal Ward identities, 
which is important for practical applications. This analysis can be 
viewed as an extension of the work by Joglekar and Lee [10–12]
on the structure of gauge-variant operators in the RGE equations.

It has been observed, see e.g. [13–18], that apparently unre-
lated perturbative QCD observables differ only by terms involving 
the beta-function, and one possibility to understand this connec-
tion [17–19] is to start from the theory in d = 4 − 2ǫ dimen-
sions at the critical point where they are related by a conformal 
transformation. Similar ideas have been used to derive the RGEs 
for leading-twist QCD operators in general off-forward kinematics 
[20–23]. Our intention is to put these methods on a more rigorous 
footing.

To be specific, we will consider QCD near four dimensions, d =
4 − 2ǫ , in perturbation theory assuming the minimal subtraction 
renormalization scheme. With the above mentioned applications 
in mind, we are interested in the behavior of correlation functions 
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of local operators in this theory under conformal transformations. 
This question can be answered, at least within perturbation theory, 
by the study of scale and conformal Ward identities. In this way 
conformal invariance of the correlators of fundamental fields in 
non-gauge theories can be proven along the lines of Refs. [24–26], 
see also [4] for recent developments. A detailed description of this 
technique and its extension to the case of local composite opera-
tors can be found in the book [27].

On a more technical level, let Oq , q = 1, 2, . . . , n be a (finite) set 
of local composite operators with the same quantum numbers so 
that they mix under renormalization. In Ref. [27] it was shown that 
in scalar theory the scale and conformal Ward identities for these 
operators at the critical point imply that the symmetry transfor-
mations take the following form:

δDOq(x) =
(
D�(x)δqq′ + γqq′

)
Oq′(x),

δKµOq(x) =
(
K

µ
�(x)δqq′ + 2γqq′xµ

)
Oq′(x) +O

µ
q (x), (1)

where the sum over q′ is implied. The generators of scale and con-
formal transformations D� and Kµ

� are defined as

D�(x) = x∂x + �,

K
µ
�(x) = 2xµ(x∂) − x2∂µ + 2�xµ − 2xν�µν , (2)

where � is the canonical scaling dimension of the operators Oq , 
�µν is the spin generator and Oµ

q are certain local operators with 
canonical dimension � − 1. These expressions can be simplified 
by going over to a basis of operators that diagonalize the anoma-
lous dimension matrix γ , Oq �−→O�α = cα qOq . Here cαq is a left 
eigenvector of γqq′ , 

∑
q cαqγqq′ = γαcαq′ , and �α = � + γα is the 

scaling dimension of the operator O�α . In this basis the transfor-
mations in Eqs. (1) simplify to

δDO�α (x) = D�α (x)O�α (x),

δKµO�α (x) = K
µ
�α

(x)O�α (x) +O
µ
α (x), (3)

where Oµ
α = cαqO

µ
q . Scale invariance implies that the operator Oµ

α

has definite scaling dimension equal to �α −1. The set of operators 
with the same anomalous dimensions (meaning that the difference 
of scaling dimensions of any two operators is an integer number), 
forms an infinite-dimensional representation (Verma module) of 
the conformal algebra. The expressions in Eqs. (3) define the action 
of scale and conformal generators on this representation. Since the 
scaling dimension of the operator Oµ

α is less than that of O�α by 
one, applying the conformal transformations subsequently to O�α , 
O

µ
α etc. one inevitably must come to an operator for which the ad-

dendum Oµ
α on the r.h.s. vanishes, i.e. an operator that transforms 

homogeneously under conformal transformations. Such an opera-
tor is called conformal and it is the lowest weight vector of the 
corresponding representation.

The analysis of scale and conformal Ward identities given in 
Ref. [27] can be extended to gauge theories. We will show that 
Eqs. (3) keep their form. The main result is that the inhomoge-
neous part, Oµ

α (x), in the expression for the conformal variation of 
a gauge-invariant operator is a gauge invariant operator again, up 
to terms that vanish in all correlation functions of gauge-invariant 
operators and can therefore always be dropped.

At first sight the appearance of a gauge non-invariant opera-
tor on the r.h.s. of Eqs. (3) can be ruled out by observing that its 
anomalous dimension would depend on the gauge-fixing parame-
ter. This is not always the case, however. To give an example, the 
gauge-invariant operator O = F F̃ in four dimensions can be writ-
ten as a divergence of the topological current Kµ , F F̃ = ∂µKµ . 
Evidently, F F̃ and Kµ have the same anomalous dimensions and 

the current Kµ can be a natural candidate for the role of the non-
homogeneous term in Eqs. (3), δKµO(0) ∼ Kµ(0). At the same time 
Kµ is not a gauge-invariant operator.

2. We start with collecting the necessary definitions. The QCD ac-
tion in d = 4 − 2ǫ Euclidean space reads

S =

∫
ddx

{
q̄ /Dq +

1

4
F a
µν F

a,µν − c̄a∂µ(Dµc)a +
1

2ξ
(∂µAa,µ)2

}
,

(4)

where Dµ = ∂µ − igB A
a
µT a with T a being the SU (Nc) generators 

in the fundamental (adjoint) representation for quarks (ghosts). 
The field strength tensor is defined as usual, F a

µν = ∂µAa
ν −∂ν A

a
µ +

gB f abc Ab
µAc

ν , where gB is the bare coupling, gB = gMǫ , and M
is the scale parameter. The theory is assumed to be multiplica-
tively renormalized and the renormalized action takes the form 
SR(�, e) = S(�0, e0), where � = {A, q, ̄q, c, ̄c}, e = {g, ξ} and �0 =

Z��, e0 = Zee. The renormalization factors in the minimal sub-
traction (MS) scheme have a series expansion in 1/ǫ ,

Z = 1+

∞∑

j=1

ǫ− j
∞∑

k= j

z jk a
k , a = αs/(4π) = g2/(4π)2 , (5)

where z jk are polynomials in ξ . Formally the theory has two 
charges: a and ξ . The corresponding beta-functions are defined as

βa(a) = M
dg

dM
= 2a

(
− ǫ − γg

)
,

βξ (ξ,a) = M
dξ

dM
= −2ξγA(a, ξ) , (6)

with

γg = M∂M ln Z g = β0 a + β1 a
2 +O(a3) , (7)

where the first two coefficients are β0 = 11/3Nc − 2/3N f , β1 =

2/3 
[
17N2

c − 5NcN f − 3C F N f

]
for a SU (Nc) gauge group with N f

quark flavors. In this notation −2aγg is the usual QCD β-function 
in physical four dimensions. The anomalous dimensions of the 
fields � = {q, ̄q, A, c, ̄c} are defined as

γ� = M∂M ln Z� =
(
βg∂g + βξ∂ξ

)
ln Z� . (8)

The QCD Lagrangian (4) is invariant under BRST transforma-
tions [28,29], δL = 0, where

δq = igtaqcaδλ , δAa
µ = (Dµc)

aδλ ,

δca =
1

2
g f abccbccδλ , δc̄a = −

1

ξ
(∂ Aa)δλ . (9)

The BRST transformation rules for the renormalized fields are ob-
tained by replacement � �→ �0 , e → e0 , δλ → δλ0 in the above 
equations and writing the bare fields and couplings in terms of the 
renormalized ones: �0 = Z��, e0 = Zee. The renormalized BRST 
transformation parameter δλ is defined as δλ0 = Zc Z Aδλ so that 
the last equation in Eqs. (9) has the same form for bare and renor-
malized quantities. The BRST operator s defined by δ� = s � δλ is 
nilpotent modulo EOM terms. Namely, s2� = 0 for all fields except 
for the anti-ghost in which case one finds

s2c̄ = −
1

ξ
s(∂ A) = −

1

ξ
Z2
c (∂

µDµ)c =
1

ξ

δSR

δc̄
. (10)

Thus the second BRST variation of an arbitrary local functional 
F(�) is an EOM operator
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s2F(�) =
1

ξ

∫
ddx

δSR

δc̄a(x)

δF(�)

δc̄a(x)
. (11)

BRST symmetry is the key ingredient in the analysis of the RGEs 
for gauge invariant operators [10–12]. The result, see Ref. [30] for a 
review, is that gauge invariant operators, O, mix under renormal-
ization with BRST operators, i.e. operators that can be written as 
a BRST variation of another operator, B = sB′ , and EOM operators, 
E = F (�)δSR/δ�. The mixing matrix has a triangular structure


O

B

E


=




ZOO ZOB ZOE

0 ZBB ZBE

0 0 ZEE





O

B

E


 , (12)

so that renormalized gauge-invariant operators take the following 
generic form1

[O] = ZOOO + ZOBB + ZOEE . (13)

In both equations O, B, E are sets of operators of the correspond-
ing type, O = {O1, . . . , On}, etc., and the renormalization factors Z
are matrices in these spaces. Note that the renormalization matrix 
ZOO in the MS scheme does not depend on the gauge parameter 
ξ . For further use we introduce a notation

Ô = ZOOO

for the gauge-invariant part of the renormalized (gauge-invariant) 
operator. In principle it should be possible to constrain the opera-
tor structure of potential BRST and EOM counterterms for a given 
O. However, no such relation is known.

The significance of this result is that the contributions of BRST 
and EOM operators to physical observables have to vanish so that 
such terms can be dropped, at least in principle. In practice this 
requires some caution. Calculations are usually done in momen-
tum space. Within perturbation theory the radiative corrections to 
the matrix elements of composite operators develop ultra-violet 
divergences as well as infrared ones, which are regularized in d di-
mensions. In addition, the vanishing of physical matrix elements 
with BRST or EOM operators requires the on-shell limit with re-
spect to their external momentum q to be taken and, generally, 
the limits q2 → 0 and d → 4 do not commute. Therefore, theo-
rems on the renormalization of gauge invariant operators [10–12]
directly apply to matrix elements with the operators inserted at 
nonzero momentum. In practice, this requires the computation of 
three-point functions with off-shell legs, which poses certain dif-
ficulties at higher loops. Calculations of matrix elements based on 
two-point functions are technically easier, but are typically realized 
with operators inserted at zero momentum. In this case, physical 
matrix elements of gauge variant operators do not vanish, the mix-
ing matrix of operators is not triangular and matrix elements with 
insertions of BRST or EOM operators need to be accounted for as 
well, see refs. [31–34].

Considering operators with fixed position essentially corre-
sponds to nonzero momentum flow. In this case it is indeed easy 
to see that a correlation function of renormalized gauge-invariant 
operators localized at different space-time points �x = {x1 . . . xN } is 
equal to the correlation function of the gauge-invariant parts of the 
same operators

〈∏

k

[Ok(xk)]
〉
=
〈∏

k

Ôk(xk)
〉
. (14)

1 We use the standard notation [O] for the operator O renormalized in the MS
scheme [30].

The equality holds because the additional terms due to BRST and 
EOM operators are local, e.g.,

〈
B(x1)[O2(x2)] . . . [ON(xN )]

〉

= δ(x1 − x2)C2(�x) + . . . + δ(x1 − xN)CN(�x),

where Ck(�x) are some functions (not necessary finite at ǫ → 0), 
and similar for EOM terms, so they vanish if all xk are different but 
can contribute to integrals over the operator positions. Our goal 
in this paper is to show that at the critical point, βa(a∗) = 0, the 
correlators (14) behave in a proper way under scale and conformal 
transformations. The expression on the r.h.s. of (14) is the natural 
starting point for this undertaking.

3. Next, we introduce the relevant Ward identities. The correla-
tion function in Eq. (14) can be written in the path-integral repre-
sentation as follows

〈∏

k

Ôk(xk)
〉
= N

∫
D�

∏

k

Ôk(xk) exp
{

− SR(�)
}
, (15)

where N is the normalization factor. Making the change of vari-
ables � �→ �′ = � + δω� in the integral (15), where δω� cor-
respond to the dilatation and special conformal transformation, 
ω = D, Kµ , see Appendix A, and taking into account that the inte-
gration measure stays invariant, one obtains
∑

j

〈
δωÔ j(x j)

∏

k 	= j

Ôk(xk)
〉
=
〈
δω SR

∏

k

Ôk(xk)
〉
. (16)

Note the choice of the canonical dimensions for the fields in 
Eq. (A.3). For this choice the commutator of dilatation/conformal 
δω and gauge transformations δα is a gauge transformation again,

[δα, δω] = δαω , (17)

where αD = (x∂)α and αKµ =
(
2xµ(x∂) − x2∂µ

)
α.

The scale and conformal variations of the operators that appear 
on the l.h.s. of Eq. (16) are defined as

δωO(x) =

∫
dd y δω�(y)

(
δO(x)/δ�(y)

)
.

Assuming that Ô j have canonical dimensions � j they are given by 
the following expressions:

δDÔ j(x) = D� j
Ô j(x) ,

δKµÔ j(x) = K
µ
� j

Ô j(x) +
∑

k

p jkÔ
µ
k

(x), (18)

where D� j
, Kµ

� j
are given in Eq. (2) and Ôµ

k
are certain gauge 

invariant operators with canonical dimension � j − 1. Such inho-
mogeneous terms typically arise from the commutators of δw with 
derivatives in the operator O j , if they are present. Note that the 
coefficients p jk(ǫ) can be and, as a rule, are singular in the ǫ → 0
limit. It is easy to check that the property (17) ensures that there 
are no gauge-dependent addenda to these expressions.

The variation of the QCD action δω SR on the r.h.s. of the Ward 
identity (16), see Appendix, can be written as

δD SR =

∫
ddx2ǫL′

R(x) ,

δKµ SR =

∫
ddx

(
4ǫ xµL′

R(x) − 2(d − 2)∂ρ [Bρ ](x)
)

, (19)
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where L′
R(x) = LR(x) − 1

2 Z
2
q ∂ρ

(
q̄(x)γρq(x)

)
and Bρ is a BRST op-

erator, see Eq. (A.9). This term does not contribute to the correla-
tion function, 

〈
Bρ(x)

∏
k Ôk(xk)

〉
= 0, so that the r.h.s. of Eq. (16)

takes the standard form

2ǫ

∫
ddxχω(x)

〈
L′

R(x)
∏

k

Ôk(xk)
〉
, (20)

where χD = 1 and χKµ = 2xµ for dilatation and conformal trans-
formations, respectively.

To proceed further we re-expand 2ǫL′
R(x) in terms of renor-

malized (finite) operators. The corresponding expression takes the 
form [21,22,35]

2ǫL′
R = −

β(a)

a

[
LYM +Lg f

]
− (γq − ǫ)�qq̄ − (γA + γg)�A

− (γc − 2ǫ)�c̄ − γc�c + 2γA[Lg f ]

+ zb(g, ξ)∂µ[Bµ] + zc(g, ξ)∂µ[�µ]. (21)

Here �� = �(x)δSR/δ�(x), �qq̄ = �q + �q̄ and �µ = c̄Dµc −

(∂µc̄) c is a conserved current, ∂µ[�µ] = �c −�c̄ . The gauge fixing 
term Lg f = 1

2ξ (∂ A)2 can be rewritten as a combination of BRST 
and EOM operators,

[Lg f ] = −[B] − �c̄, B = s
(
c̄a (∂ Aa)

)
. (22)

It can be shown that the coefficients zb(g, ξ) and zc(g, ξ) can be 
calculated explicitly in Landau gauge, ξ = 0,

zb(g, ξ) = γA + γg + O (ξ),

zc(g, ξ) = −(γA + γg)/2+ O (ξ) . (23)

Using Eq. (21) in Eq. (20) it is easy to see that only the contribu-
tions coming from small integration regions around the points xk
survive at the critical point. Indeed, let Bk be an arbitrary small 
ball centered at xk and split the integration region in two parts: 
the union of the (non-overlapping) small balls B =

⋃
k Bk and their 

complement R = Rd\B . Integrating over the complement one can 
drop all EOM terms appearing in Eq. (21) and also the contribu-
tions of the BRST operators. Thus this contribution reduces to

−
β(a)

a

∫

R

ddxχω(x)
〈
[LYM(x)]

∏

k

Ôk(xk)
〉
. (24)

The remaining correlation function contains renormalized (finite) 
local operators at separated space points and is finite. The integral 
is also finite. This contribution vanishes, therefore, at the critical 
point since it comes with the factor β(a∗) = 0. Thus only the in-
tegral over the union of small balls around the operator insertions 
remains,

2ǫ
∑

n

∫

Bn

ddxχω(x)
〈
L′

R(x)
∏

k

Ôk(xk)
〉
. (25)

Our next aim is to bring this expression to a form suitable for 
further analysis.

4. Since the balls Bn do not overlap, it is sufficient to consider 
one term in the sum. The operator product 2ǫL′

R(x)Ôn(xn) for x →
xn is not necessarily finite and the argument which we used to 
claim that the integral over the complement R can be dropped 
does not work. To simplify the notation we suppress the subscript 
n and use x′ ≡ xn . The first step is to show that the product of 
the renormalized Lagrangian and a gauge-invariant renormalized 
operator Ô(x′) can be written in the following form

2ǫL′
R(x)Ô(x′) = −

β(a)

a
[LYM(x)O(x′)] + LT(x, x′) + s(R(x, x′))

+ E(x, x′). (26)

The first term on the r.h.s. of this expression is the fully renormal-
ized product of two operators. LT stands for local terms that have 
a finite expansion of the form

LT(x, x′) = δ(x− x′)F(x′) + ∂
µ
x δ(x − x′)Fµ(x′) + . . . (27)

The next term is a BRST operator. Finally, the last term is an EOM 
operator which has the following property: its correlation func-
tion with a product of fundamental fields X (Y ) =

∏
p �p(yp), 

Y = {y1, . . . , yp} contains only delta functions of the type δ(x − yp)

or δ(x′ − yp) but not δ(x − x′). In other words if x, x′ 	= yp for any 
p then

〈
E(x, x′)X (Y )

〉
= 0. (28)

In order to prove Eq. (26) we start with the representation (21)
for the QCD Lagrangian. This expression contains several terms: 
EOM operators, BRST variations and the renormalized Yang-Mills 
part of the Lagrangian [LYM ] which comes with the factor β(a). In 
what follows we examine these contributions one-by-one.

• It is straightforward to show that the EOM terms give rise to

E(x)Ô(x′) = LT(x, x′) + E(x, x′). (29)

To this end consider the correlation function of E(x)Ô(x′) with 
a set of fundamental fields X (Y ) which we can write as

〈
�(x)

δSR

δ�(x)
Ô(x′)X

〉
=
〈
�(x)

δÔ(x′)

δ�(x)
X
〉

+
〈
�(x)

(
δSR

δ�(x)
Ô(x′) −

δÔ(x′)

δ�(x)

)
X
〉
. (30)

The first term on the r.h.s. is a local operator while the second 
one is a EOM term, E(x, x′), that is easy to see integrating by 
parts in the path integral.

• The product B(x)Ô(x′) can be written as s(B′Ô(x′)) and, 
therefore, contributes to the R(x, x′) term only.

• The last term to consider is β(a)/a [LYM ] Ô(x′). Here we re-
place Ô(x′) by the complete renormalized operator [O(x′)]

and subtract the corresponding BRST and EOM counterterms. 
The latter ones contribute to LT(x, x′) and E(x, x′), cf. Eq. (29). 
The product of two renormalized operators [LYM(x)] and 
[Ô(x′)] can be written as a sum of the renormalized opera-
tor product and local pair counterterms,

[LYM(x)][Ô(x′)] = [LYM(x)Ô(x′)] + LT(x, x′) . (31)

We are left with the product of [LYM ](x) and the BRST 
counterterm to [O(x′)], call it BO (x′). Separating the gauge-
invariant part

[LYM ](x) = L̂YM
L + BL(x) + EL (32)

we observe that the EOM term gives rise to the structure (29)
whereas the product L̂YM

L BO (x′) contributes to the R(x, x′)

term. Finally, the product of two BRST operators BL(x) =
s(B′

L(x)) and BO (x′) = s(B′
O (x′)) can be rewritten as

BL(x)BO (x′) = s
(
B′
L(x)BO (x′)

)
− B′

L(x)s
(
BO (x′)

)
. (33)
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The first term on the r.h.s. contributes to R(x, x′) and the
second term is the sum of local (LT) and E(x, x′) (EOM) con-
tributions. To see this, write s

(
BO (x′)

)
= s2

(
B′

O (x′)
)
and use 

Eq. (11) to obtain

B′
L(x)s

(
B′

O (x′)
)

= B′
L(x)

1

ξ

∫
ddz

δSR

δc̄a(z)

δB′
O (x′)

δc̄a(z)

=
1

ξ

∫
ddz

δB′
L(x)

δc̄a(z)

δB′
O (x′)

δc̄a(z)
+ E(x, x′). (34)

Obviously, the first term on the r.h.s. of this identity is a local 
(LT) contribution. Collecting all of the above expressions we 
obtain Eq. (26).

Once Eq. (26) is established, we can use it in the correlation 
function (25). The EOM term E(x, x′) drops out thanks to Eq. (28)
and the BRST operator sR(x, x′) obviously does not contribute as 
well. The first term, − β(a)

a
[LYM(x)O(x′)], vanishes at the critical 

point. Thus the sole contribution to the correlation function (25)
at the critical point is due to the local terms, LT(x, x′). As seen 
from the above analysis the local terms originate from different 
sources and separate contributions are clearly gauge non-invariant. 
Nevertheless, it is possible to show that the complete expression 
for LT(x, x′) can be written as a sum of the contributions of gauge-
invariant, BRST and EOM operators.

The proof follows closely the analysis of the RGEs for gauge-
invariant operators in Ref. [30]. To this end we consider the BRST 
variation of Eq. (26). Since the l.h.s. vanishes, one obtains

s
(
LT(x, x′)

)
=

β(a)

a
s
(
[LYM(x)O(x′)]

)
− s2

(
R(x, x′)

)
− s

(
E(x, x′)

)
.

(35)

Using
〈
s
(
E(x, x′)

)
X
〉
= −

〈
E(x, x′) s(X )

〉
,

〈
s2
(
R(x, x′)

)
X
〉
=
〈
R(x, x′) s2(X )

〉
, (36)

where, as above, X =
∏

p �p(yp) and x, x′ 	= yp , it is easy to see 
that the last two terms in Eq. (35) are EOM operators, E(x, x′). 
Next, we want to show that s

(
[LYM(x)O(x′)]

)
is an EOM opera-

tor as well. The starting observation is that BRST variations of the 
fundamental fields are finite operators [30] and therefore the BRST 
variation of a renormalized operator is a finite operator as well, up 
to EOM operators. Using the same arguments that lead to Eq. (26)
one can show that for a product of any two gauge-invariant oper-
ators one gets

[O1(x)O2(x
′)] = Ô1(x)Ô2(x

′) + LT(x, x′) + s(R(x, x′)) + E(x, x′) ,

(37)

where all terms on the r.h.s. except for the first one are singu-
lar in 1/ǫ (do not contain finite contributions). Taking a BRST 
variation of the both sides we conclude that up to EOM terms 
s([O1(x)O2(x

′)]) = s(LT(x, x′)). The operator on the l.h.s. of this re-
lation is a finite operator, while the one on the r.h.s. is singular. 
Therefore they both are equal to zero, up to EOM terms.

Going back to Eq. (35) we conclude that s(LT(x, x′)) = 0 modulo 
EOM operators. As shown by Joglekar and Lee [10], see also [36]
for a review, vanishing of the BRST variation implies that LT(x, x′)

and therefore the operators F , Fµ in Eq. (27) can be written as a 
sum of gauge invariant, BRST and EOM operators. The last ones can 
safely be neglected since they do not contribute to the correlation 
function in question.

5. The subsequent derivation of the scale and conformal proper-
ties of correlation functions of gauge-invariant operators follows 

the lines of Ref. [27]. Starting from the dilatation Ward identity in 
Eq. (16) and taking into account Eqs. (18), (25), (26) one obtains
∑

j

〈(
D� j

(x j)Ô j(x j) −F j(x j)
)∏

k 	= j

Ôk(xk)
〉
= 0 . (38)

Taking into account that the operators in questions satisfy the RGEs

M∂M [Ok] +
∑

k′

γkk′ [Ok′ ] = 0 , (39)

and have definite canonical dimension
(
M∂M −

∑

j

D� j
(x j)

)〈∏

k

Ôk(xk)
〉
= 0 , (40)

this identity implies that2

∑

j

〈(∑

j′

γ j j′Ô j′(x j) +F j(x j)
)∏

k 	= j

Ôk(xk)
〉
= 0 . (41)

Since this equation must hold for arbitrary operator insertions ∏
k 	= j Ôk(xk) one concludes that

F j(x j) = −
∑

j′

γ j j′Ô j′(x j). (42)

The same relation can alternatively be achieved by the analysis of 
the dilatation Ward identity for the correlation function of local 
operators with fundamental fields in Landau gauge. In this gauge 
βξ = 0 holds identically so that the both beta-functions vanish at 
the critical point and scale invariance holds for any Green’s func-
tion.

Using Eq. (42) we can rewrite the conformal Ward identity as 
follows:
∑

j

〈(
K

µ
� j

(x j)Ô j(x j) − 2xµF j(x j) + F̃
µ
j
(x j)

)∏

k 	= j

Ôk(xk)
〉
= 0 ,

(43)

where F̃µ
j
(x) = 2Fµ

j
(x) −

∑
k p jkÔ

µ
k

(x), see Eq. (18). Note that all 

divergent terms in F̃µ
j
(x) have to cancel.

Finally, using Eq. (18), we obtain

δDÔ j(x) =
(
δ j j′ D� j

(x j) + γ j j′

)
Ô j′(x) ,

δKµÔ j(x) =
(
δ j j′ K� j

(x j) + 2xµγ j j′

)
Ô j′(x) + Ô

µ
j
(x) , (44)

where Ôµ
j
(x) = F̃

µ
j
(x) is a gauge-invariant operator and the op-

erator equality holds up to terms that vanish for all correlation 
functions with any number of gauge-invariant operators. Provided 
that the anomalous dimension matrix can be diagonalized3 one 
can go over to the basis of operators with definite scaling dimen-
sions and rewrite these equations in the form (3).

6. To summarize, we have shown by the BRST analysis of the 
corresponding Ward identities that correlation functions of gauge-
invariant operators in QCD in d = 4 − 2ǫ dimensions at the critical 
point transform properly under conformal transformations, as ex-
pected in a conformal invariant theory. This result gives further 
support to the methods based on using conformal invariance in 
higher-order perturbative QCD calculations [13–18,20–23] and can 
be also interesting in a broader context.

2 Our notations are a bit sloppy here. The sum over j′ goes over all operators 
which mix with O j(x j). We do not assume that the operators at different points 
belong to the same class.
3 This is not always possible in theories with fermions where the number of mix-

ing operators can be infinite, see Ref. [37].



V.M. Braun et al. / Physics Letters B 793 (2019) 78–84 83

Acknowledgements

We thank Yu. Pismak for a useful discussion. The work by AM 
was supported by the DFG grant MO 1801/1-3 and the RSF project 
14-11-00598.

Appendix A. Scale and conformal transformations

The dilatation (scale) D and conformal K transformations for 
the fundamental fields take the form

δD�(x) = D��
(x)�(x) =

(
x∂x + ��

)
�(x),

δKµ�(x) = K
µ
��

(x)�(x)

=
(
2xµ(x∂) − x2∂µ + 2��xµ − 2xν�µν

)
�(x) , (A.1)

in particular

Kµq(x) =
(
2xµ(x∂) − x2∂µ + 2�q xµ

)
q(x) +

1

2
[γµ, /x]q(x),

Kµq̄(x) =
(
2xµ(x∂) − x2∂µ + 2�q xµ

)
q̄(x) − q̄(x)

1

2
[γµ, /x],

Kµc(x) =
(
2xµ(x∂) − x2∂µ + 2�c xµ

)
c(x),

Kµc̄(x) =
(
2xµ(x∂) − x2∂µ + 2�c̄ xµ

)
c̄(x),

KµAρ(x) =
(
2xµ(x∂) − x2∂µ + 2�A xµ

)
Aρ(x) + 2gµρ(xA)

− 2xρ Aµ(x), (A.2)

where �� = dim� are the field canonical dimensions. It is conve-
nient to choose them in d = 4 − 2ǫ dimensions to be the same as 
in four-dimensional theory,

�A = 1, �q = �q̄ = 3/2, �c = 0, �c̄ = 2. (A.3)

For this choice the field strength tensor Fσρ transforms in a co-
variant way

KµFσρ =
(
2xµ(x∂) − x2∂µ + 4xµ

)
Fσρ

+ 2
(
gµρx

ν Fσν + gµσ x
ν Fνρ − xρ Fσµ − xσ Fµρ

)
,

(A.4)

and the covariant derivative of the ghost field Dνc transform as a 
vector field,

KµDρc(x) =
(
2xµ(x∂) − x2∂µ + 2xµ

)
Dρc(x)

+ 2
(
gµρ(xD) − xρDµ

)
c(x) . (A.5)

A conformal variation of different pieces of the QCD action 
takes the form

δK

∫
ddxq̄ /Dq = 4ǫ

∫
ddx

(
xµq̄ /Dq +

1

2
q̄γµq

)
, (A.6a)

δK

∫
ddx

1

4
F 2 = 4ǫ

∫
ddx xµ

1

4
F 2 , (A.6b)

δK

∫
ddx

1

2ξ
(∂ A)2 = −

1

ξ

∫
ddx

(
− 2ǫ xµ(∂ A)2

+ 2(d − 2)Aµ(∂ A)
)

, (A.6c)

δK

∫
ddx

(
− c̄∂µDµc

)
= 4ǫ

∫
ddxxµ

(
− c̄∂µDµc

)

+ 2(d − 2)

∫
ddx c̄Dµc. (A.6d)

Note that the ghost and the gauge fixing terms break the confor-
mal symmetry explicitly even in d = 4 dimensions. Summing up 
all contributions yields

δD S =

∫
ddx2ǫL(x) , (A.7)

δKµ S =

∫
ddx

(
4ǫ xµ

(
L(x) −

1

2
∂ρJρ(x)

)
− 2(d − 2)∂ρBρ(x)

)
.

(A.8)

Here Jρ(x) = q̄(x)γρq(x) is the flavor-singlet vector current and

Bµ = c̄Dµc −
1

ξ
Aµ(∂ A) (A.9)

is a BRST operator, Bµ = s(c̄ Aµ).
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