Search for a pseudoscalar boson produced in decays of the 125 GeV Higgs boson and decaying into au leptons

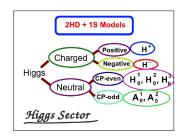
S. Choudhury 3 , S. Consuegra Rodríguez 1 , E. Gallo 1 , A. Kalogeropoulos 2 , T. Lenz 1 , Danyer Pérez Adán 1 , and A. Raspereza 1

¹ DESY-Hamburg, ² Princeton University, ³ Indian Institute of Science

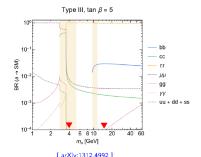
DPG Spring Meeting

Aachen, 25-29 March 2019

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

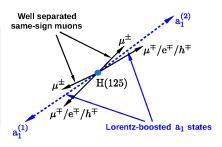


Introduction:


. . .

- This analysis focuses on 2HD+1S models
- Higgs sector composed by 7 physical states
- That is realized for example in the NMSSM

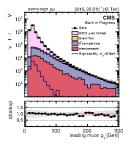
. . .


- There exist scenarios that can have a very light a₁ state
- Potentially accessible in $H(125) o a_1 a_1 o 4 au$, especially for $2m_ au < m_{a_1} < 2m_b$
- In case of fermion couplings of Type III (for taneta>1) the decay to $\tau^+\tau^-$ even dominates above the $b\overline{b}$ -threshold

Signal Signature and Analysis Strategy

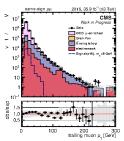
• • •

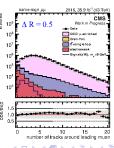
- Highly boosted a₁ bosons
 - Collimated decay products
 - Non-isolated leptons in final state
- Exploit $a_1 \to \tau_{\mu} \tau_{1-prong}$ decays
- Primarily targets ggH but other production modes are taken into account


Dataset and Selection

- 35.9 fb^{-1} collected by the CMS experiment at $\sqrt{s}=13~{\rm TeV}$
- ullet Same sign muons separated in $[\eta,\phi]$ plane
- Each muon is accompanied by one particle with charge opposite to the charge of muon

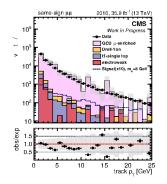
3 / 12


Same-sign-muons selection


• Control plots: (QCD scaled by 0.52)

Isolation requirement

- ullet Each muon required to have only one close-by track within predefined isolation cone ΔR_{lso}
- Optimized value of isolation cone: $\Delta R_{lso} = 0.5$



Selection in signal region

Selection of the 1-prong candidates

- · Net charge of track and close-by muon: $q_{\mu} + q_{trk} = 0$
- $\Delta R(\mu, trk) < 0.5$
- p_T(trk) > 2.5 GeV

· Selection of two isolated muon-track pairs

Sample	Number of events		
Data	2035		
QCD multijet (MC)	1950 ± 650		
$t\bar{t} + \text{single-top (MC)}$	12.0 ± 2.2		
Electroweak (MC)	10.0 ± 1.2		

Signal channels:

•
$$a_1a_1 \rightarrow 4\tau$$
: ggH , VBF , VH , $t\overline{t}H$

•
$$a_1a_1 \rightarrow 2\mu 2\tau$$
: ggH

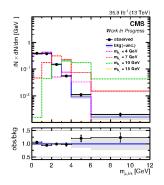
$$\frac{\Gamma(\mathbf{a}_1 \to \mu \mu)}{\Gamma(\mathbf{a}_1 \to \tau \tau)} = \frac{m_{\mu}^2}{m_{\tau}^2 \sqrt{1 - \left(2m_{\tau}/m_{a_1}\right)^2}} \tag{1}$$

Signal Extraction

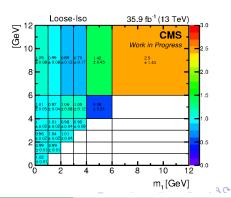
Constructing the final discriminant

- Reconstruct the invariant mass of each pair of selected muon and nearby track, m₁ = m(μ₁ - trk₁) and m₂ = m(μ₂ - trk₂)
- 2D distribution filled with ordered values of masses, m₂ > m₁
- Unroll the 2D template into a 1D distribution

Procedure followed for signal extraction

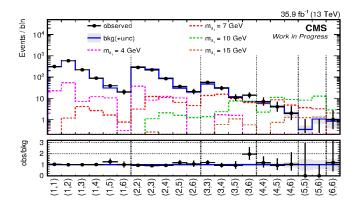

- Extract signal by means of a binned Max-likelihood fit applied to the unrolled 2D (m_1, m_2) distribution
- Performed with background and signal normalizations freely floating

. . .

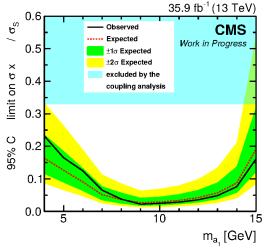

- Modeling of the background shape (2D probability density function) done with data
- Background model, constructed as:

$$f_{2D}(i,j) = C(i,j) \cdot (f_{1D}(i) \cdot f_{1D}(j))$$
 (2)

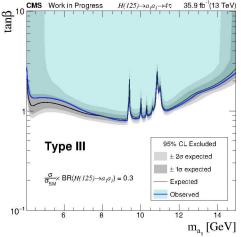
f_{1D}: derived from sideband region N23 in data


 C(i,j): calculated in Loose-Iso control region in data

Final Discriminant : 2D (m_1, m_2) Distribution


 Background distribution is obtained after performing fit to data under the background-only hypothesis

Branching ratio :
$$B(H(125) \rightarrow a_1 a_1) \cdot B^2(a_1 \rightarrow \tau \tau) = 20\%$$


Expected and Observed limits with 2016 dataset

- Limits are set in terms of 95% CL on $\frac{\sigma}{\sigma_{SM}} \times B(H(125) \to a_1 a_1) \cdot B^2(a_1 \to \tau \tau)$
- Reference exclusion by coupling analysis: JHEP 08 (2016) 045

Constraints on 2HD+1S models

- Exclusion limits on $\tan \beta$ vs m_{a_1} for 2HD+1S model of type III.
- Benchmark value of $\frac{\sigma}{\sigma_{SM}} imes B(H(125)
 ightarrow a_1 a_1) = 0.3$

Summary

• • •

• A search for a very light pseudoscalar Higgs boson in $H(125) o a_1 a_1 o 4 au$ channel was presented

• • • •

- ullet Search covers the range of m_{a_1} between 4 and 15 GeV
- Performed with full 2016 dataset
- Signal extraction from 2D (m_1, m_2) distribution
- No significant deviations of data from the background expectation were observed
- Limits were set on BR($H(125) \rightarrow a_1 a_1 \rightarrow 4\tau$)
- Model dependent limits were set on the parameter phase space for different 2HD+1S scenarios

Thanks for your attention!

12 / 12

Backup

13 / 12

Dataset, objects and selection

Dataset:

 Dataset corresponding to an integrated luminosity of 35.9 fb⁻¹ collected by the CMS experiment during proton-proton collision at 13 TeV

Objects and Selection:

MUONS:

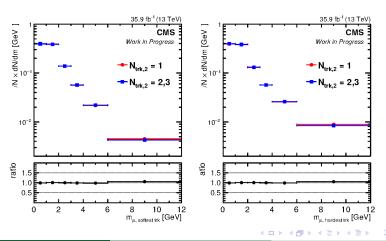
- Events are triggered if they contain two same sing muons. Those muons are required to pass the following
 offline selection:
- $p_T > 9 \text{ GeV}, |\eta| < 2.4$
- p_T > 18 GeV, |η| < 2.4
- no isolation requirement imposed
- impact parameter w.r.t. primary vertex

$$|d_0| < 0.5 \text{ mm}$$

$$|d_7| < 1.0 \text{ mm}$$

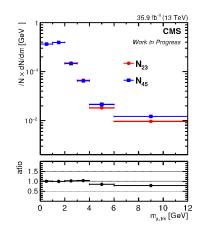
- ΔR(μ₁, μ₂) > 2
- ullet If # same-sign muon pair>1 o pair with the largest sum of muons p_T chosen

TRACKS:


- Very good quality tracks are selected and the following requirements are imposed:
- $p_T(trk) > 1 \text{ GeV}$, $|\eta| < 2.4$
- Loose impact parameter cuts: $|d_{xy}| < 1.0 \text{ cm}$, $|d_z| < 1.0 \text{ cm}$

Data/MC corrections

- Corrections to simulation to account for differences between data and MC:
 - Pileup reweighting
 - The MC distribution of the number of primary vertices is reweighted to match the number of pile-up interactions in data
 - Muon ID, tracking and trigger efficiency
 - Scale Factors (SF) are applied to simulated samples
 - Combined muon-track isolation and one-prong tau decay identification efficiency
 - Measurement is done with $Z o au_{\mu} au_{1-prong}$ sample
 - ullet SF are derived by fitting $m_{\mu+trk}$ distribution in bins of track p_T
 - Higgs p_T reweighting
 - Simulated samples (LO PYTHIA8) reweighted to match higher order predictions for H (125) p_T spectrum and, therefore, to improve estimate of signal acceptance


Validation of f_{1D}

- Shapes of invariant mass distributions of the first muon and the softest or hardest accompanying track compared for the two different isolation requirements on the second muon
- Varying the # of tracks around μ_2 does not affect the shape of f_{1D} for μ_1 , allowing use of N23 to derive f_{1D}

Validation of f_{1D}

- Potential dependence of the muon-track invariant mass on the isolation requirement imposed is verified
- Additional comparison of shapes in the control regions N23 and N45 (analogous to N23)
- Difference is taken as a shape uncertainty in the f_{1D} template

- This difference is related to the fact that the selected samples in N23 and N45 regions have different fractions of non-QCD contributions
 - Electroweak processes like W/Z + Jets and $t\bar{t}$ contribute mainly at higher values of the muon-track invariant mass

Validation of C(i,j)

- Direct validation impossible due to limited statistics of simulated muon-enriched QCD multijet samples
 - ullet Difference in C(i,j) between signal region and background sideband assessed with a dedicated simulation study
 - MC sample used to compute probability of parton of flavor f to yield the signal topology of $a_1 \to \tau_\mu \tau_{1-prong}$ decay with a given mass of muon-track pair

$$pdf = F(f, sign(q_{\mu} \cdot q_f), p_{u}/p_f, p_f, m_{\mu, trk})$$

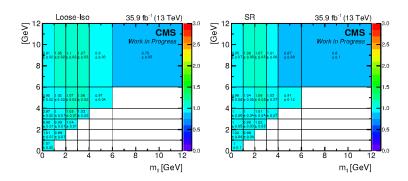
$$f: \text{ parton flavor (u, d, s, c, b, g)}$$

$$sign(q_{\mu} \cdot q_f): \text{ net charge of parton and muon in the associated jet}$$

$$p_f: \text{ momentum of parton}$$

$$p_{u}/p_f: \text{ ratio of muon momentum and momentum of matched parton}$$

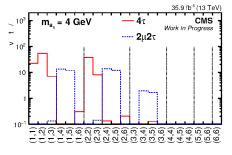
$$m_{\mu, trk}: \text{ invariant mass of isolated muon-track pair in jet}$$

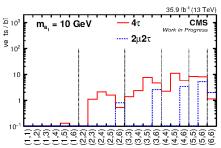

- Modeling of $f_{2D}(i,j)$ using MC sample:
 - Select QCD MC events with at least one isolated muon-track pair appearing as result of fragmentation/hadronization in one of jets
 - Model mass of the muon-track pair in the recoiling jet according to derived pdf

4□ > 4回 > 4回 > 4 = > 4 = > ■ 990

28/03/2019

18 / 12

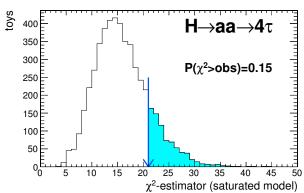

Validation of C(i,j)



Good agreement observed between C(i,j) obtained in Loose-Iso and in Signal region

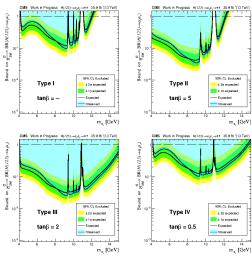
Signal Modeling

• The signal templates are derived from the simulated samples of the $H(125) \rightarrow a_1 a_1 \rightarrow 4\tau$ decays in the ggH, VBF, VH and ttH production modes, and the $H(125) \rightarrow a_1 a_1 \rightarrow 2\mu 2\tau$ decays in the ggH (contribution from other production modes is expected to be less than 2%) production mode.

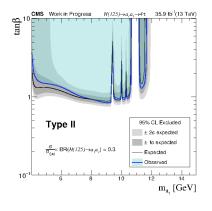


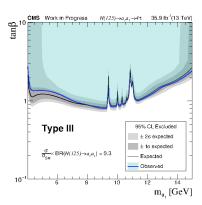
Summary of systematic uncertainties

Source	Value	Affected sample	Туре	Effect on the total yield	
Statistical uncertainties in $C(i, j)$	3–60%	bkg.	bin-by-bin	=	
Extrapolation uncertainties in $C(i, j)$	_	bkg.	shape	1	
Uncertainty in the 1D template $f_{1D}(i)$	_	bkg.	shape	_	
Integrated luminosity	2.5%	signal	norm.	2.5%	
Muon ID and trigger efficiency	2% per muon	signal	norm.	4%	
Track selection and isolation efficiency	4–12% per track	signal	shape	10–18%	
MC stat. uncertainties in signal yields	8-100%	signal	bin-by-bin	5-20%	
Theory uncertainties in the signal acceptance					
$\mu_{ m r}$ and $\mu_{ m f}$ variations		signal	norm.	0.8–2%	
PDF		signal	norm.	1-2%	
Theory uncertainties in the signal cross sections					
$\mu_{ m r}$ and $\mu_{ m f}$ variations (gg $ ightarrow$ H(125))		signal	norm.	+4.6% -6.7%	
μ_{r} and μ_{f} variations (VBF)		signal	norm.	+0.4% -0.3% +1.8%	
$\mu_{\rm r}$ and $\mu_{\rm f}$ variations (VH)		signal 	norm.	-1.6% +5.8%	
$\mu_{\rm r}$ and $\mu_{\rm f}$ variations (ttH) PDF (gg \rightarrow H(125))		signal signal	norm.	-9.2% 3.1%	
PDF (VBF) ` '		signal	norm.	2.1%	
PDF (VH) PDF (ttH)		signal signal	norm.	1.8% 3.6%	


Goodness of fit test

- Goodness-of-fit test using the saturated model
- ullet Observed value of χ^2 -like goodness-of-fit indicator compared to distribution of goodness-of-fit indicator in the ensemble of Monte Carlo toy experiments
- \circ Probability of having in the ensemble of Monte Carlo toy experiments the value of goodness-of-fit indicator greater than that observed in data, is found to be $\sim 15\%$


Constraints on 2HD+1S models


• Exclusion limits on $\frac{\sigma}{\sigma_{SM}} \times B(H(125) \to a_1 a_1)$ vs m_{a_1} for different $\tan \beta$ scenarios in four types (I, II, III, and IV) of 2HD+1S models

Constraints on 2HD+1S models

• Exclusion limits on $\tan \beta$ vs m_{a_1} for a benchmark scenario of $\frac{\sigma}{\sigma_{SM}} \times B(H(125) \to a_1 a_1) = 0.3$ in two types (II and III) of 2HD+1S models

