Introduction

A functionally graded shape memory alloy was investigated by thermal, mechanical, thermomechanical and structural analysis, namely using in-situ synchrotron-based x-ray diffraction during cyclic tensile load/unload. Diffraction patterns were recorded under applied stress during the stress-induced martensitic transformation, analyzed and interpreted in view of the evolution of microstructure. The phase transformations temperatures were determined by DSC analyses. The thermomechanical behavior was analyzed by three-point bending test. The present study focusses on the localized heat treatment (Joule heat effect) of NiTi wires, using an equipment that gives a large variety of graded treatments [1]. Structural, mechanical and thermomechanical characterization is presented in order to get a perspective of the optimization parameters for the adequate graded functionality.

Experimental results

Figure 1 – XRD analysis of wire heat treated at 300 °C for 10 min:

- a) scan along the gauge length;
- b) Superelastic cycle.

XRD analysis showing the structural evolution of the central point of the gauge length during full superelastic cycle:
- c) 3D plot;
- d) contour plot.
The modified Dilatometer Bähr DIL 805 A/D at the HEMS (P-07, PETRA-III, DESY) has been used to characterize the structural evolution during a full superelastic cycle. Before the tensile test, a full scan of the gauge length was made (Fig. 1-a). Two types of experiments have been carried on during a full load/unload cycle: (i) with the X-ray beam was always hitting the central point of the gauge length (Fig. 1-c,d), (ii) at previously defined points, the load/unload cycle was interrupted and the full gauge length has been scanned (Fig. 2).

Conclusion

The preliminary scan along the full gauge length identified the functional gradient created by the localized heat treatment with a clear presence of the R-phase at the central region and the occurrence of two steps for the stress-induced transformation plateau.

Acknowledgements

PFR and FMBF acknowledge MIDAS Project No 612585 “MIDAS — Micro and Nanoscale Design of Thermally Actuating Systems” Marie Curie Actions, FP7-PEOPLE-2013-IRSES. PFR, EC and FMBF acknowledge the funding of CENIMAT/I3N by COMPETE 2020, through FCT, under the project UID/CTM/50025/20132013, the Project POCI-01-0145-FEDER-016414 (FIBR3D) and the project CALIPSOplus under the Grant Agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020. P.F.R acknowledge the funding of CAPES (APQ-1 2009/02 E-26/110.414/2010, APQ-1 2011-2 E-26/110.269.2012, E-26/111.435/2012 - CsF/ Brazil – BEX 11943-13-0) and CNPq (research productivity scholarship PQ-2 – Process 307798/2015-1). Parts of this research were carried out at beamline P-07-HEMS at DESY, a member of the Helmholtz Association (HGF).

References