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1. Introduction/Approach

The proton consists of two valence up quarks and one down quark together with a ‘sea’ of
quark anti-quark pairs and gluons. How each constituent contributes to the total spin of the pro-
ton has remained a mystery for many years. In particular the quark contribution is much smaller
than expected from the naive quark model. We discuss here our lattice QCD determination of the
quark contribution, using a novel technique, based on a field theoretic application of the Feynman-
Hellmann theorem, [1, 2].

There are two common spin decompositions or ‘schemes’: Jaffe-Manohar (JM), [3], and Ji,
[4]. They both have a common quark spin term, AX/2 but other pieces vary. In particular the JM
approach has a gluon spin piece, AG, which can be measured in pp machines, while the Ji approach
is more suitable for polarised DIS and DVCS processes and also lattice QCD determinations.

The Ji gauge invariant decomposition of the proton spin derived from the symmetric energy—
momentum tensor is given by

1 1

2AZP+ZLq+Jg, (1.1)
q

where L, is the orbital angular momentum of valence quark g and J, is the gluon angular mo-
mentum. We shall not discuss these terms further here. The total quark spin A, = ALY + AX*
with

con __ con con dis __ dis dis dis
AT = AU+ AdS" AT = Aut + Ad o+ As (1.2)

where Agy™® are the quark line connected and disconnected proton, p, matrix elements of the
axial current respectively. We shall discuss the disconnected matrix elements further in the next
section noting here that for the proton there is only a disconnected piece for the strange quark, so
As‘;js = As,. Similar relations also hold for the other members of the baryon, B, nucleon octet.

The ‘Spin crisis’, discovered many years ago is that AX, is small and only around ~ 35% of
total spin, whereas in the naive quark model it would be expected that the valence quarks give the

complete contribution AX, ~ 1. Here we shall consider AXj® and the Asy® pieces.

2. Feynman-Hellmann applied to field theories

If we modify the action by S(A) = S+ A0, then it can be shown that [1]

JdEg(A) 1 ~
- B ‘: ) :‘B> , 2.1
(where : ... : means that the vacuum term has been subtracted.) Thus by suitably choosing O and

by identifying numerically the gradient of Eg(A) at A = 0 we can determine the desired matrix
element. The computation requires only 2-point correlation functions (rather than the more com-
plicated 3-point functions).

The modification location determines the contributions we access, as indicated in Fig. 1. We
can modify the Dirac fermion matrix before quark propagator inversion

)
pl=p+ro]t = 07l =plop™,
A=0
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Figure 1: Left panel: Quark line connected 3-point correlation functions; Right panel: Quark line discon-
nected 3-point correlation functions.

which inserts connected contributions on the quark line or we can modify the field weighting during
the HMC

d
detD'e % =detlD+A0]e ™ = 37 detD'| =tr(D'0)detD, (2.2)
A=0
which acesses disconnected contributions. (Or do both modifications and obtain both connected
and disconnected terms.) While the connected piece is easy to implement, the disconnected piece
requires the generation of new configurations.
For a nucleon polarised in the z-direction we have

(B,oligysysq|B,0) =2MgoAg o ==, (2.3)
which may be determined by applying the FH theorem to
Co(A,1) = (To)pa(Ba(t)Bp(0))2 = Ap(oA)e M) (2.4)

with corresponding projection operator I's = (14 1) (1 +ic7375). As can be seen from eq. (2.3)
flipping the sign of A is equivalent to flipping the spin polarisation, so we can write the amplitude
and energy as a combined function of oA . For the connected contributions this is sufficient, but a
further complication arises for the disconnected terms, as for the generation of configurations using
HMC the fermion matrix in the action must be y5-hermitian for HMC, i.e. we now need

§S=58;+ Zqu(x)'}/ﬂ/SQ(x) ) (2.5)

qx

(rather than for the connected pieces, D' = D+iY, A,q(x)%3¥5q(x)). The correlation function thus
develops imaginary parts in both the amplitude Az(GA) — Az(0A)e’®(°}) and energy Ez(cA) —
Ep(oA)+i¢(oA). Forming the ratio

_ ImCy(A,t) —ImC_(—A,t)

R(A‘at) - ReC+(l,t) —RCC_<—2/,Z‘) = —tan((j)(?t)t - 5(A’))a (26)
with effective phase shift
O(A) = %tan_l (“R(A.0)),  where ¢(A) = doAh+0A>+.. | @.7)
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giving

99 (1)

T A’ZO . (2.8)

AqB =
This expression also holds for the connected piece and a test has been performed for the connected
piece using the imaginary signal, to demonstrate its feasibility. (But of course it is better to use in
this case the form where no imaginary piece develops.)

3. SU(3) flavour symmetry breaking quark mass expansion

In [5] we developed SU (3) flavour breaking expansions for hadron masses for 2 + 1 flavours
and extended it to matrix elements in [6]. We follow and extend the results given there (here just to
‘leading order’ or LO). The flavour structure is given from

Al= \% (ayu+dyd +5ys), A* = \2 (fyu—dyd), A"= \% (ityu+dyd —25ys) (3.1)
where ¥y ~ 7%, A for the axial current. So we can solve for §yg ~ Ag in terms of A, A™ and
A", SU(3) flavour breaking expansions for A™ , A", are given in [6]. In addition for the singlet
operators, A’ we need to consider 8 x 1 x 8 tensors, which are similar to the mass expansions, [5].

We now consider the quark line ‘connected’ and ‘disconnected’ pieces separately and just give
here the results for the disconnected part. (Complete expansions will be given in [7].) To LO we
have for the SU(3) flavour breaking expansion for A’ for the baryon octet

1 . : _
%AZ?\I/S = adols + 3acils6m[
1 Azdis _ dis 3 dis6
\*@ Y = dg —2d; omy
1 dis dis dis dis
%AZE = 4 —3(611 —a )6m[, (32)
together with ALY /v/3 = af 4 3a$*8m; and AZY /v/3 = aj® — 6a{*6m;, where ALy = Aujy +
Adg® + Asy. All the expansions used here are for 2 4 1 quark flavours, m, = my = my, my and the
‘distance’ from the flavour symmetric point (m; = my) is given by dm; = m; — i, [5], where 7 is
the average quark mass, held constant in simulations, so the expansion parameters remain constant.
We have extended the nucleon octet to include a fictitious nucleon consisting of strange quarks,
denoted by N;. (As well as the N, ¥ and Z this state can also be measured in a lattice simulation.)
As we are primarily interested in the nucleon, and hence just a{®, it is convenient to consider the
average of the X and E expansions

1 . . L3,
e \/g(A %S+AZ‘§‘):ad‘“—§a‘{'55ml. (3.3)

Using the above results together with those for A™ and A" gives the separate expansions of

. 1 . 2 .
Asy = %ag‘s + <\@a‘i“ - \@r‘i‘s) om;
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Asdls _ < \/>adls_ rdls> 5ml
\[ 2 \/6 1
, 2
Asdh _ dls + < \/g dis 7ad15 _ rdls) 6m17 (34)
\f ) ( 2 ) \@ 1
together with As}® = d‘“/\f—i— (\fa““ —2( ““+2r“‘“)/\f)6ml, As}‘\‘; = a%“/f%— (—Z\Tad“ —
74 /y/6)8m;. Due to isospin invariance we have Aqy = Agy = Aqy, Ags' = Ags® =Aqgs”, Aqzy =
Aqd‘s = Aqg¥, for ¢ =u, d, s. Note that due to constraints, the cancellation of the disconnected piece
in Auy — Ady?, Aug® — Ady® and Aug® — Adg® leads to the vanishing of f, d*, r$®, s{°, s9° in [6].
The results are more complicated for the ‘connected’ pieces; there are less constraints, [7].
Useful results are here to consider a ‘singlet of singlets’ and the strange quark terms alone

ng‘, = g( Zdls +A2dls _I_Az%s) — \/gag)is

1 1

, 2
g (Asdls +A d1s+A dls) — ﬁagls _ \/;rllséml’ (35)
dis dis

which together with eq. (3.3) allow separate determinations of ap°, a§ .

and ry

4. Renormalisation

As the axial non-singlet currents A™ and A" are (partially) conserved currents, they have no
anomalous dimensions and so are scheme and scale independent. However the singlet current, A’
is no longer conserved if ny # 0, as a topological term o< 2n (0l / 471,')Fuvfuv appears in the Ward
identity. Thus we expect the renormalisation constant to become scheme and scale dependent. It is
also convenient to again consider the renormalisation of the quark line connected and disconnected
pieces separately. We find [8, 9, 10]

1 .
(Z3 — Z4) (A" + AX) 4.1)

A conR Z chon A disR Z Aqd1s+ 3

where Z4 is the non-singlet renormalisation and Zﬁ is the singlet renormalisation factor. This gives

AZOR = ZUAT" AZSR = ZSATE 4 (78 — Z4) AT (4.2)

5. Results and Conclusions

We have a pion mass range from the flavour symmetric point M; ~ 460MeV down to ~
300MeV on a ~ 0.074fm, 323 x 64 lattices and configurations as given in Table 1.
We first consider X35. In the left panel of Fig. 2 we show ¢ax = AarXay, from eq. (3.5) the

dis Note that we can now use all the available data sets, 1-6, to

gradient gives an estimation of /3 3ay
determine X35 and hence af)°.

In the RH panel of Fig. 2 we show AX{/Xgs, (AXEE + AXE) /(2X5y) and AZY /X4 for data
set 6. From eqs. (3.2,3.3) we expect the numerical values of 1+ 3a{*/ag*0my, 1+3/2a{*/ay>om
and 1 — 6af*/ay*Sm; (where m; ~ —0.07) for N, (£ + &) /2 and N; respectively. We presently see

very little pattern in the data, so presently we take a{* ~ 0. This indicates that this disconnected
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Data set # K K A As
1 0.120900 -0.00625
2 0.120900 -0.0125
3 0.120900 0.0300
4 0.121095 0.120512 | 0.0000 0.0500
5 0.121095 0.120512 -0.0250
6 0.121095 0.120512 -0.0750

Table 1: Data sets used in the analysis.
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Figure 2: Left panel: ¢ax = AaxX3y together with a linear fit using data sets 1-3 and 5, 6; Right panel:
AZY /X5, (AXE +AXE) /(2X)3) and ALY /X33 for data set 6.

part is very small for all the baryons in the octet. A tentative general conclusion is that there is very
little sign of SU(3) flavour symmetry breaking effects in the disconnected pieces. Furthermore
with a{* ~ 0 this also implies that

. 1 . . '
Asiy ~ 3 (Asy + As$” + AsT) | (5.1)

also away from the SU(3) flavour symmetry point. So when using data set 4 we can avoid a direct
determination of r{*.

We have computed Z, and Zg at 2GeV in [11], also using the FH method to give Zy =
0.8458(8), Z5(2GeV) = 0.8662(34) (the latter in the MS scheme). Note that this means that,
as expected (Zg —Z4)/ Zg ~ 2% a small difference, which we shall presently ignore. In Fig. 3 we
show the renormalised results for Asy in the MS scheme at a scale of 2GeV. Linearly extrapolating
to the physical pion mass we find a preliminary result of Asy(2GeV) = —0.032(26).

In conclusion ‘disconnected’ quantities are notoriously difficult quantities to compute as they
are a short distance quantity and suffers from large fluctuations. As alternative to more standard
‘stochastic’ approaches we have developed a method using the Feynman—Hellmann theorem, to-

gether with a SU (3) flavour breaking expansion.
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Figure 3: Asy in the MS scheme at a scale of 2GeV versus dmy;. The vertical line indicates where the
physical pion mass lies, [12].
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