Search for the Higgs Boson Decaying to Two Muons in Proton-Proton Collisions at $\sqrt{s} = 13$ TeV

A. M. Sirunyan et al.*
(CMS Collaboration)

(Received 17 July 2018; revised manuscript received 28 October 2018; published 14 January 2019)

A search for the Higgs boson decaying to two oppositely charged muons is presented using data recorded by the CMS experiment at the CERN LHC in 2016 at a center-of-mass energy $\sqrt{s} = 13$ TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. Data are found to be compatible with the predicted background. For a Higgs boson with a mass of 125.09 GeV, the 95% confidence level observed (background-only expected) upper limit on the production cross section times the branching fraction to a pair of muons is found to be 3.0 (2.5) times the standard model expectation. In combination with data recorded at center-of-mass energies $\sqrt{s} = 7$ and 8 TeV, the background-only expected upper limit improves to 2.2 times the standard model value with a standard model expected significance of 1.0 standard deviation. The corresponding observed upper limit is 2.9 with an observed significance of 0.9 standard deviation. This corresponds to an observed upper limit on the standard model Higgs boson branching fraction to muons of 6.4×10^{-4} and to an observed signal strength of $1.0 \pm 1.0\text{(stat)} \pm 0.1\text{(syst)}$.

DOI: 10.1103/PhysRevLett.122.021801

In the standard model (SM), the masses of fermions are generated by their Yukawa coupling to the Higgs field H, whose existence was confirmed by the Higgs boson (H) discovery [5–7]. Measurements at CMS and ATLAS provided evidence that the Higgs boson couples to bottom quarks [8,9] and top quarks [10,11] and top quarks [12,13]. The Higgs boson mass has been measured and is found to be $m_H = 125.09 \pm 0.24$ GeV in a combination of ATLAS and CMS data samples [14]. The study of the Higgs boson decays to muons is of particular importance, because it extends the investigation to its couplings to fermions of the second generation. For a Higgs boson with a mass of 125.09 GeV, the expected branching fraction (B) to muons is 2.17×10^{-4} [15], and the narrow decay width of the Higgs boson [16,17] is several orders of magnitude smaller than the $O(\text{GeV})$ experimental dimuon mass resolution. The signal would appear as a narrow resonance over a smoothly falling mass spectrum from the SM background processes, primarily Drell-Yan (DY) and leptonic $t\bar{t}$ decays.

The CMS and ATLAS Collaborations placed upper limits on the product of the Higgs boson production cross section and branching fraction $B(H \rightarrow \mu^{+}\mu^{-})$ of approximately 7 times the SM value at 95% confidence level (C.L.) with LHC run 1 data [18,19], collected at center-of-mass energies $\sqrt{s} = 7$ and 8 TeV. The ATLAS Collaboration improved its expected limit to 2.9 times the SM expectation by adding 36.1 fb$^{-1}$ of data collected at 13 TeV [20] and measured an observed limit of 2.8 times the SM expectation. This Letter presents a search for $H \rightarrow \mu^{+}\mu^{-}$ events with the CMS detector using 35.9 fb$^{-1}$ of proton-proton (pp) collision data collected in 2016 at $\sqrt{s} = 13$ TeV and its combination with the data collected at $\sqrt{s} = 7$ and 8 TeV corresponding to integrated luminosities of 5.0 and 19.7 fb$^{-1}$, respectively.

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two end cap sections. Forward calorimeters extend the pseudorapidity (η) coverage provided by the barrel and end cap detectors. Muons are detected in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [21].

The Monte Carlo (MC) simulated events used to model the signal include the four leading Higgs boson production processes: gluon-gluon fusion (ggH), vector boson fusion (VBF), and associated production with a vector boson (VH, $V = W$ or Z) or top quarks ($t\bar{t}H$). The Higgs boson MC samples are generated at next-to-leading order (NLO) for masses of 120, 125, and 130 GeV with POWHEG2.0 [22],
using the parton distribution function sets of NNPDF3.0 [23]. The ggH acceptance in each analysis category is found to be in agreement with that calculated at NLO with the MadGraph5_aMC@NLO [24] generator. The SM background processes considered are DY, single and pair production of top quarks (st and $t\bar{t}$, respectively), and di- and triboson production (VV and VVV, respectively). Simulated background processes are used only to optimize the event selection and not for the final background estimate, which is obtained from the data. Background samples are generated using MadGraph5_aMC@NLO and POWHEG. Spin correlations in multiboson processes generated using MadGraph 5_aMC@NLO are simulated using MadSpin [25]. The parot shower and hadronization processes are modeled by the PYTHIA8.212 [26] generator with the CUETP8M1 [27] underlying event tune. The detector response is based on a detailed description of the CMS detector and is simulated with the GEANT4 package [28]. Simultaneous pp interactions overlapping the event of interest (pileup) are included in the simulated samples. The distribution of the number of additional interactions per bunch crossing in the simulation corresponds to that observed in the 13 TeV data collected in 2016, with an average of 23 interactions. The SM Higgs boson cross section and branching fractions are taken from the LHC Higgs boson cross section working group recommendations [15], while cross sections for the background processes are taken from FEWZ3.1 [29], TOP++2.0 [30], HATHOR [31,32], and MCFM [33].

The particle-flow (PF) algorithm [34] is used to reconstruct observable particles in each event. It combines all subdetector information to reconstruct individual particles and identify them as charged or neutral hadrons, photons, or leptons. Electron and muon candidates are formed by associating a track in the silicon detectors with a cluster of energy in the electromagnetic calorimeter [35] or a track in the muon system. The relative transverse momentum (p_T^{rel}) resolution of muon candidates with $p_T < 100$ GeV is $\lesssim 1.6\%$ in the barrel [36]. Jets are reconstructed using the anti-k_T clustering algorithm [37] with a distance parameter of 0.4, as implemented in the FASTJET package [38]. Jets are required to have a minimum p_T of 30 GeV and a maximum $|\eta|$ of 4.7. Further identification criteria are applied in order to reject jets from pileup or noise present in the detector [39]. For jets with $|\eta| < 2.4$, multivariate algorithms discriminate jets arising from the hadronization of b quarks [40]. The missing transverse momentum p_T^{miss} is defined as the magnitude of the negative vector \vec{p}_T sum of all reconstructed particles (charged and neutral) in the event and is modified by corrections to the energy scale of reconstructed jets. The reconstructed vertex with the largest value of summed physics object p_T^2 is taken to be the primary pp interaction vertex.

Events are selected by the trigger system requiring the presence of at least one isolated muon with $p_T > 24$ GeV [41]. The offline selection, optimized to maximize the sensitivity of the analysis, requires at least two oppositely charged muons with $p_T > 26$ GeV ($p_T > 20$ GeV) for the leading (subleading) muon and $|\eta| < 2.4$. To reject events with muons from nonprompt decays, muons must be isolated, with a relative isolation sum $< 25\%$. The relative isolation sum is calculated as the scalar p_T sum of PF objects, excluding the muon, within a cone of radius $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.4$ centered on the direction of the muon, and divided by the muon p_T. Charged particles not associated with the event vertex are not considered in this sum, and a correction is applied in order to account for the neutral particle contamination arising from pileup [42]. The invariant mass of the Higgs boson candidate ($m_{\mu\mu}$) is constructed from the two highest p_T oppositely charged muons, and the event is retained for further analysis if $110 < m_{\mu\mu} < 150$ GeV. The overall trigger efficiency for these events is 98.5%.

Events are classified into categories using variables that are largely uncorrelated with $m_{\mu\mu}$ in order to enhance the sensitivity to the Higgs boson signal. The primary Higgs boson production mechanisms targeted by this analysis are VBF and ggH. The p_T and η of the dimuon system, and the $|\Delta \eta|$ and $|\Delta \phi|$ between the muons, distinguish between ggH signal events and the DY background. The $|\eta|$ of each of the two highest p_T jets, the mass and $|\Delta \eta|$ between the jets in each of the two highest mass dijet pairs, and the number of jets with $|\eta| < 2.4$ (central jets) and $|\eta| > 2.4$ (forward jets) identify VBF signal events. Finally, the number of b-tagged jets and p_T^{miss} identify events with $t\bar{t}$ decays. These variables are used as input to a boosted decision tree (BDT) [43], which was trained with simulated signal and background events normalized to their respective SM cross sections. The dimuon mass and its resolution are not used as input to the BDT in order to avoid biasing the background shape but are used in the signal extraction as discussed later. Simulated signal events used in the training steps are not used later in the analysis. Figure 1 shows the BDT output distributions for data and for simulated events. The output of the classifier was transformed such that the sum of all signal events has a uniform distribution. A large fraction of the VBF signal events can be distinguished from background processes and corresponds to events with the highest BDT score.

The event categories are defined using the BDT score and the expected dimuon mass resolution, gauged by the largest $|\eta|$ of the two muons. The best mass resolution is obtained when both muons are located in the central part of the detector $|\eta| < 0.9$, where the muon momentum resolution is approximately constant, and degrades when one of the muons is more forward, especially in the region $|\eta| > 1.9$, where there are reduced lever arm and increased multiple scattering within the tracking volume.

The number of categories and the values of the BDT and $|\eta|$ boundaries of the categories were optimized according
to an iterative process using $\sum_i S_i^2 / B_i$ as a figure of merit, where S_i and B_i are the number of expected signal and background events, respectively, in each category in the ith mass bin from 120 to 130 GeV with 0.5 GeV spacing. A first category boundary is created by optimizing the figure of merit against all possible boundaries in $|\eta|$ and in the BDT score separately and then choosing the one with the larger gain. The process is then repeated recursively within each of the two newly created categories to create additional category boundaries within them until a set number of categories is achieved. Some rounding of the values of the boundaries was made afterward, checking that the simplification does not significantly worsen the expected limit.

This procedure incorporates the dimuon mass resolution into the definition of the categories, optimizing the sensitivity of the analysis. This optimization results in 15 categories shown in Table I. Simulated events are used to optimize the event categories and to estimate the selection efficiency for signal events. In each category, the shape and the normalization of the dimuon mass distribution of the background contributions are obtained from a parametric fit to the data using a set of empirical functions. The product of signal acceptance and efficiency for the $H \rightarrow \mu^+ \mu^-$ signal varies depending on the production process. This product is shown in Table I for each category for a Higgs boson mass of 125 GeV, together with the functional form used to derive the background from the data and the S/\sqrt{B} ratio within the full width at half maximum (FWHM) of the expected signal distribution.

The reconstructed invariant mass of the signal is modeled with a sum of up to three Gaussian functions, which provides a satisfactory description of the low-mass tail of the distribution, and each model is separately fit to the

![Graph](image)

FIG. 1. The transformed BDT output distributions in data (solid points) and MC simulation (histograms). The stacked solid histograms represent the background processes, while the stacked dashed histograms represent the signal. In the legend, V denotes the vector bosons W and Z, and TTX indicates the top quark pair production in association with a vector boson V or another top quark pair. The vertical lines denote the BDT response intervals indicated in Table I.

Table I. The optimized event categories, the product of acceptance and selection efficiency in percent for the different production processes, the total expected number of SM signal events ($m_H = 125$ GeV), the estimated number of background events per GeV at 125 GeV, the FWHM of the signal peak, the background functional fit form, and the S/\sqrt{B} ratio within the FWHM of the expected signal distribution.

| BDT response quantile (%) | Maximum muon $|\eta|$ (%) | ggH (%) | VBF (%) | WH (%) | ZH (%) | $t\bar{t}H$ (%) | S_i^2 / B_i Signal | Bkg/GeV @125 GeV | FWHM (GeV) | Bkg fit function | S/\sqrt{B} @FWHM |
|---------------------------|-------------------------|----------|--------|--------|--------|-------------|---------------------|------------------|-------------|----------------|-----------------|
| 0–8 | $|\eta| < 2.4$ | 4.9 | 1.3 | 3.3 | 6.3 | 32 | 21.2 | 3.13 x 10^3 | 4.2 | $D_{MBW}B_{deg 4}$ | 0.12 |
| 8–39 | $1.9 < |\eta| < 2.4$ | 5.6 | 1.7 | 3.9 | 3.5 | 1.3 | 22.3 | 1.34 x 10^3 | 7.2 | $D_{MBW}B_{deg 4}$ | 0.16 |
| 8–39 | $0.9 < |\eta| < 1.9$ | 10 | 2.8 | 6.5 | 6.4 | 5.2 | 41.1 | 2.24 x 10^3 | 4.1 | $D_{MBW}B_{deg 4}$ | 0.29 |
| 8–39 | $|\eta| < 0.9$ | 3.2 | 0.8 | 1.9 | 2.1 | 3.5 | 12.7 | 7.83 x 10^2 | 2.9 | $D_{MBW}B_{deg 4}$ | 0.18 |
| 39–61 | $1.9 < |\eta| < 2.4$ | 2.9 | 1.7 | 2.7 | 2.7 | 0.3 | 11.8 | 4.37 x 10^2 | 7.0 | $D_{MBW}B_{deg 4}$ | 0.14 |
| 39–61 | $0.9 < |\eta| < 1.9$ | 7.2 | 3.3 | 6.1 | 5.2 | 1.3 | 29.2 | 9.70 x 10^2 | 4.0 | $D_{MBW}B_{deg 4}$ | 0.31 |
| 39–61 | $|\eta| < 0.9$ | 3.6 | 1.1 | 2.6 | 2.2 | 0.9 | 14.5 | 4.81 x 10^2 | 2.8 | D_{MBW} | 0.26 |
| 61–76 | $1.9 < |\eta| < 2.4$ | 4.2 | 1.5 | 1.8 | 1.7 | 0.7 | 5.2 | 1.48 x 10^2 | 7.6 | $D_{MBW}B_{deg 4}$ | 0.11 |
| 61–76 | $0.9 < |\eta| < 1.9$ | 4.8 | 3.6 | 4.5 | 4.4 | 0.7 | 20.3 | 5.12 x 10^2 | 4.2 | $D_{MBW}B_{deg 4}$ | 0.29 |
| 61–76 | $|\eta| < 0.9$ | 3.2 | 1.6 | 2.3 | 2.1 | 0.6 | 13.1 | 3.22 x 10^2 | 3.0 | D_{MBW} | 0.28 |
| 76–91 | $1.9 < |\eta| < 2.4$ | 4.2 | 3.1 | 2.2 | 2.1 | 0.2 | 5.8 | 1.04 x 10^2 | 7.1 | $D_{MBW}B_{deg 4}$ | 0.14 |
| 76–91 | $0.9 < |\eta| < 1.9$ | 4.4 | 8.7 | 6.2 | 6.0 | 1.1 | 20.3 | 3.60 x 10^2 | 4.2 | $D_{MBW}B_{deg 4}$ | 0.35 |
| 76–91 | $|\eta| < 0.9$ | 3.1 | 4.0 | 3.8 | 3.6 | 0.9 | 13.7 | 2.36 x 10^2 | 3.2 | D_{MBW} | 0.34 |
| 91–95 | $|\eta| < 2.4$ | 1.7 | 6.4 | 2.5 | 2.6 | 0.5 | 8.6 | 96.0 | 4.0 | D_{MBW} | 0.28 |
| 95–100 | $|\eta| < 2.4$ | 2.0 | 1.9 | 1.4 | 1.7 | 0.3 | 83.4 | 4.1 | D_{MBW} | 0.48 |
| Total | $|\eta| < 2.4$ | 59 | 61 | 51 | 52 | 49 | 253 | 1.30 x 10^4 | 3.9 | | |
simulated dimuon invariant mass distribution for each production process in each category for $m_H = 120, 125,$ and 130 GeV. The fit parameters are interpolated for masses within that range. The invariant mass distribution of the background primarily follows the smoothly falling spectrum of the high-mass DY background. Secondary contributions come from the single and pair production of top quarks. In each category, the background distribution is modeled by fitting the data with a single analytic function, chosen from a set of alternative options. These include a sum of exponential functions, Bernstein polynomials ($B_{\text{deg},k}$), and a modified version of the Breit-Wigner Z boson line shape D_{MBW} derived and validated by fitting FEWZ predictions of the DY invariant mass distribution at next-to-NLO [44,45]:

$$D_{\text{MBW}}(x) = \frac{e^{a_{x^2}+a_x}}{(x-m_Z)^{a_1} + (\frac{\Gamma}{2})^{a_2}},$$

where m_Z and Γ_Z are the mass and the width, respectively, of the Z boson fixed to known values [46]. In addition, FEWZ spectra templates multiplied by polynomial functions are considered, as well as a modified Breit-Wigner distribution multiplied by a Bernstein polynomial of up to degree 4 ($B_{\text{deg},k}$). The chosen function maximizes the expected sensitivity while introducing only a negligible bias in the measured signal yield, which is determined as follows. In each category, background-only fits to the data are performed with every function. From each of these fits, thousands of pseudodata sets are generated, taking into account the uncertainties in the fit parameters and their correlations, and simulated signal events are added according to their expected SM yields. Each of the background functions is then used to fit the pseudodata sets generated from every other function, with the total signal yield floating freely in the fit. The bias is estimated as the median excess or deficit in the measured signal yield relative to the SM expectation. Accepted functions in each category have a maximum possible bias of less than 20% of the statistical uncertainties for $m_H = 120, 125,$ and 130 GeV. Including these deviations as spurious signals leads to an overall uncertainty in the calculated limit of less than 1%, which is neglected. Correlation between bias terms is also found to be negligible.

The systematic uncertainties considered in the analysis account for possible mismodeling in the signal shape or rate. The shape of the reconstructed Higgs boson invariant mass is affected by the muon momentum scale and resolution. Uncertainties in the calibration of these values are propagated to the shape of the invariant mass distribution of the Higgs boson, assuming a Gaussian prior, yielding variations of up to 0.05% in the position of the peak and up to 10% in its width. Jet energy uncertainties in scale and resolution affect the analysis through migrations between categories. The largest variation of this kind amounts to 6% of the relative yield. Uncertainty in the simulation of additional pileup events is modeled by varying the total inelastic cross section [47,48] by $\pm 5\%$, which translates to $\approx 1\%$ variations in the yields. The systematic uncertainty in the b tagging or light-quark and gluon jet mistagging efficiencies results in event migration across categories of $\approx 1\%$. Lepton efficiency mismodeling is accounted for with trigger and isolated muon identification uncertainties ($\approx 2\%$). The factorization and renormalization scales used in the MC simulations are varied up and down separately by a factor of 2, translating to changes of up to 6% in the signal acceptance per category. The parton distribution functions used in the signal MC simulations are varied using the NNPDF3.0 replicas, which yield differences of $\approx 2\%$. In the comparison of measured signal yields with expectation, additional uncertainties in the calculated signal cross sections are considered. They are due to the choice of factorization and renormalization scale ($3.9, 0.4, 3.8, 1.9$, and $\leq 10\%$, for ggH, VBF, ZH, WH, and $t\bar{t}H$, respectively) and parton distribution functions ($3.2, 2.1, 1.6, 1.9$, and 3.7%), as well as the 1.7% uncertainty in the $H \rightarrow \mu^+\mu^-$ branching fraction [15]. Finally, a 2.5% uncertainty is associated with the integrated luminosity measurement [49].

A maximum likelihood signal-plus-background fit to the dimuon invariant mass spectrum is performed across all categories to measure the signal strength modifier μ, defined as $(\sigma B)_{\text{obs}}/(\sigma B)_{\text{SM}}$ where σ indicates the Higgs boson production cross section. The best fit signal strength for a Higgs boson mass hypothesis of 125.09 GeV ($\hat{\mu}_{125}$) and 68% C.L. interval is extracted with a profile likelihood ratio, according to the procedure described in Ref. [50], yielding $\hat{\mu}_{125} = 0.7 \pm 1.0(\text{stat})^{0.7}(\text{syst})$ for $m_H = 125.09$ GeV [51]. Figure 2 shows the background component and the signal-plus-background fits to the data in all categories combined, weighted by the expected ratio of signal to signal plus background in each category. The 95% C.L. upper limit on the signal strength modifier computed with the asymptotic CL$_{s}$ method [52–54] and the compatibility of the dimuon yield with the background-only hypothesis for the 2016 data set (13 TeV) are also derived. The observed (expected for $\mu = 0$) upper limit at 95% C.L. for $m_H = 125.09$ GeV is 3.0 (2.5), with an observed (expected for $\mu = 1$) significance of the incompatibility with the background-only hypothesis of 0.6 (0.9) standard deviation (s.d.).

The 95% C.L. upper limit on the signal strength as a function of m_H in the region around the Higgs boson mass for a combination of data recorded at center-of-mass energies of 7, 8, and 13 TeV is shown in Fig. 3 and yields an observed (expected for $\mu = 0$) limit on the production rate of 2.9 (2.2) times the SM value at $m_H = 125.09$ GeV. The observed limit generally agrees well with the expected limit curve for $\mu = 1$ that is also shown and corresponds to an upper limit on the $H \rightarrow \mu^+\mu^-$ branching fraction of
of 13 TeV, corresponding to an integrated luminosity of 35.9 fb\(^{-1}\). No significant evidence for this decay is observed. Limits are set on the cross section times the branching fraction of the Higgs boson decaying to two muons. The combination with data recorded at center-of-mass energies of 7 and 8 TeV yields a 95% confidence level observed upper limit of 2.9 times the standard model value for \(m_H = 125.09\) GeV. The corresponding expected upper limit in the absence of a SM decay in this channel is 2.2, which is the most sensitive to date. This corresponds to an observed (standard model expected) significance of the Higgs boson decaying into two muons of 0.9 (1.0) standard deviation and an observed signal strength of 1.0 ± 1.0(stat) ± 0.1(syst). Assuming standard model production cross sections for the Higgs boson, the observed limit corresponds to an upper limit of \(6.4 \times 10^{-4}\) on the Higgs boson branching fraction to two muons.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, and RFBR (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); and DOE and NSF (USA).

In summary, we present a search for the Higgs boson decaying to two muons using data recorded by the CMS experiment at the LHC in 2016 at a center-of-mass energy of \(\sqrt{s} = 13\) TeV, corresponding to an integrated luminosity of 35.9 fb\(^{-1}\). No significant evidence for this decay is observed. Limits are set on the cross section times the branching fraction of the Higgs boson decaying to two muons. The combination with data recorded at center-of-mass energies of 7 and 8 TeV yields a 95% confidence level observed upper limit of 2.9 times the standard model value for \(m_H = 125.09\) GeV. The corresponding expected upper limit in the absence of a SM decay in this channel is 2.2, which is the most sensitive to date. This corresponds to an observed (standard model expected) significance of the Higgs boson decaying into two muons of 0.9 (1.0) standard deviation and an observed signal strength of 1.0 ± 1.0(stat) ± 0.1(syst). Assuming standard model production cross sections for the Higgs boson, the observed limit corresponds to an upper limit of \(6.4 \times 10^{-4}\) on the Higgs boson branching fraction to two muons.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, and RFBR (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); and DOE and NSF (USA).

(CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia
2Institut für Hochenergiephysik, Wien, Austria
3Institute for Nuclear Problems, Minsk, Belarus
4Universiteit Antwerpen, Antwerpen, Belgium
5Vrije Universiteit Brussel, Brussel, Belgium
6Université Libre de Bruxelles, Bruxelles, Belgium
7Ghent University, Ghent, Belgium
8Université Catholique de Louvain, Louvain-la-Neuve, Belgium
9Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
10Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
11Universidade Estadual Paulista, São Paulo, Brazil
12Universidade Federal do ABC, São Paulo, Brazil
13Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
14University of Sofia, Sofia, Bulgaria
15Beihang University, Beijing, China
16State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
17Tsinghua University, Beijing, China
18Universidad de Los Andes, Bogota, Colombia
19University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
20University of Split, Faculty of Science, Split, Croatia
21Institute Rudjer Boskovic, Zagreb, Croatia
22University of Cyprus, Nicosia, Cyprus
23Charles University, Prague, Czech Republic
24Escuela Politecnica Nacional, Quito, Ecuador
25Universidad San Francisco de Quito, Quito, Ecuador
26Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
27National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
28 Department of Physics, University of Helsinki, Helsinki, Finland
29 Helsinki Institute of Physics, Helsinki, Finland
30 Lappeenranta University of Technology, Lappeenranta, Finland
31 IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
32 Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Université Paris-Saclay, Palaiseau, France
33 Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
34 Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
35 Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
36 Georgian Technical University, Tbilisi, Georgia
37 Tbilisi State University, Tbilisi, Georgia
38 RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
39 RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
40 RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
41 Deutsches Elektronen-Synchrotron, Hamburg, Germany
42 University of Hamburg, Hamburg, Germany
43 Karlsruher Institut fuer Technologie, Karlsruhe, Germany
44 Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
45 National and Kapodistrian University of Athens, Athens, Greece
46 National Technical University of Athens, Athens, Greece
47 University of Ioannina, Ioannina, Greece
48 MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
49 Wigner Research Centre for Physics, Budapest, Hungary
50 Institute of Nuclear Research ATOMKI, Debrecen, Hungary
51 Institute of Physics, University of Debrecen, Debrecen, Hungary
52 Indian Institute of Science (IISc), Bangalore, India
53 National Institute of Science Education and Research, HBNI, Bhubaneswar, India
54 Panjab University, Chandigarh, India
55 University of Delhi, Delhi, India
56 Saha Institute of Nuclear Physics, HBNI, Kolkata, India
57 Indian Institute of Technology Madras, Madras, India
58 Bhabha Atomic Research Centre, Mumbai, India
59 Tata Institute of Fundamental Research-A, Mumbai, India
60 Tata Institute of Fundamental Research-B, Mumbai, India
61 Indian Institute of Science Education and Research (IISER), Pune, India
62 Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
63 University College Dublin, Dublin, Ireland
64a INFN Sezione di Bari, Bari, Italy
64b Università di Bari, Bari, Italy
64c Politecnico di Bari, Bari, Italy
65 INFN Sezione di Bologna, Bologna, Italy
65a Università di Bologna, Bologna, Italy
66 INFN Sezione di Catania, Catania, Italy
66a Università di Catania, Catania, Italy
67 INFN Sezione di Firenze, Firenze, Italy
67a Università di Firenze, Firenze, Italy
68 INFN Laboratori Nazionali di Frascati, Frascati, Italy
69a INFN Sezione di Genova, Genova, Italy
69b Università di Genova, Genova, Italy
70a INFN Sezione di Milano-Bicocca, Milano, Italy
70b Università di Milano-Bicocca, Milano, Italy
71a INFN Sezione di Napoli, Napoli, Italy
71b Università di Napoli ‘Federico II’, Napoli, Italy
72a INFN Sezione di Padova, Padova, Italy
72b Università di Padova, Padova, Italy
73a INFN Sezione di Pavia, Pavia, Italy
73b Università di Pavia, Pavia, Italy
Istanbul Technical University, Istanbul, Turkey
Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
University of Bristol, Bristol, United Kingdom
Rutherford Appleton Laboratory, Didcot, United Kingdom
Imperial College, London, United Kingdom
Brunel University, Uxbridge, United Kingdom
Baylor University, Waco, Texas, USA
Catholic University of America, Washington, DC, USA
The University of Alabama, Tuscaloosa, Alabama, USA
Boston University, Boston, Massachusetts, USA
Brown University, Providence, Rhode Island, USA
University of California, Davis, Davis, California, USA
University of California, Los Angeles, California, USA
University of California, Riverside, Riverside, California, USA
University of California, San Diego, La Jolla, California, USA
University of California, Santa Barbara—Department of Physics, Santa Barbara, California, USA
California Institute of Technology, Pasadena, California, USA
Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
University of Colorado Boulder, Boulder, Colorado, USA
Cornell University, Ithaca, New York, USA
Fermi National Accelerator Laboratory, Batavia, Illinois, USA
University of Florida, Gainesville, Florida, USA
Florida International University, Miami, Florida, USA
Florida State University, Tallahassee, Florida, USA
Florida Institute of Technology, Melbourne, Florida, USA
University of Illinois at Chicago (UIC), Chicago, Illinois, USA
The University of Iowa, Iowa City, Iowa, USA
Johns Hopkins University, Baltimore, Maryland, USA
The University of Kansas, Lawrence, Kansas, USA
Kansas State University, Manhattan, Kansas, USA
Lawrence Livermore National Laboratory, Livermore, California, USA
University of Maryland, College Park, Maryland, USA
Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
University of Minnesota, Minneapolis, Minnesota, USA
University of Mississippi, Oxford, Mississippi, USA
University of Nebraska-Lincoln, Lincoln, Nebraska, USA
State University of New York at Buffalo, Buffalo, New York, USA
Northeastern University, Boston, Massachusetts, USA
Northwestern University, Evanston, Illinois, USA
University of Notre Dame, Notre Dame, Indiana, USA
The Ohio State University, Columbus, Ohio, USA
Princeton University, Princeton, New Jersey, USA
University of Puerto Rico, Mayaguez, Puerto Rico
Purdue University, West Lafayette, Indiana, USA
Purdue University Northwest, Hammond, Indiana, USA
Rice University, Houston, Texas, USA
University of Rochester, Rochester, New York, USA
Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
University of Tennessee, Knoxville, Tennessee, USA
Texas A&M University, College Station, Texas, USA
Texas Tech University, Lubbock, Texas, USA
Vanderbilt University, Nashville, Tennessee, USA
University of Virginia, Charlottesville, Virginia, USA
Wayne State University, Detroit, Michigan, USA
University of Wisconsin—Madison, Madison, Wisconsin, USA

Deceased.
Also at Vienna University of Technology, Vienna, Austria.
Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France.
Also at Universidade Estadual de Campinas, Campinas, Brazil.
Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
Also at Université Libre de Bruxelles, Bruxelles, Belgium.
Also at Institute for Theoretical and Experimental Physics, Moscow, Russia.
Also at Joint Institute for Nuclear Research, Dubna, Russia.
Also at Cairo University, Cairo, Egypt.
Also at Helwan University, Cairo, Egypt.
Also at Zewail City of Science and Technology, Zewail, Egypt.
Also at Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia.
Also at Université de Haute Alsace, Mulhouse, France.
Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia.
Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany.
Also at University of Hamburg, Hamburg, Germany.
Also at Brandenburg University of Technology, Cottbus, Germany.
Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary.
Also at Institute of Physics, University of Debrecen, Debrecen, Hungary.
Also at IIT Bhubaneswar, Bhubaneswar, India.
Also at Institute of Physics, Bhubaneswar, India.
Also at Shoolini University, Solan, India.
Also at University of Visva-Bharati, Santiniketan, India.
Also at Isfahan University of Technology, Isfahan, Iran.
Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Also at Università degli Studi di Siena, Siena, Italy.
Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia.
Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia.
Also at Consejo Nacional de Ciencia y Tecnología, Mexico city, Mexico.
Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland.
Also at Institute for Nuclear Research, Moscow, Russia.
Also at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia.
Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia.
Also at University of Florida, Gainesville, Florida, USA.
Also at P.N. Lebedev Physical Institute, Moscow, Russia.
Also at California Institute of Technology, Pasadena, California, USA.
Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia.
Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia.
Also at INFN Sezione di Pavia, Università di Pavia, Pavia, Italy.
Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.
Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy.
Also at National and Kapodistrian University of Athens, Athens, Greece.
Also at Riga Technical University, Riga, Finland.
Also at Universität Zürich, Zurich, Switzerland.
Also at Stefan Meyer Institute for Subatomic Physics.
Also at Adiyaman University, Adiyaman, Turkey.
Also at Istanbul Aydin University, Istanbul, Turkey.
Also at Mersin University, Mersin, Turkey.
Also at Piri Reis University, Istanbul, Turkey.
Also at Gaziosmanpasa University, Tokat, Turkey.
Also at Ozyegin University, Istanbul, Turkey.
Also at Izmir Institute of Technology, Izmir, Turkey.
Also at Marmara University, Istanbul, Turkey.
Also at Kafkas University, Kars, Turkey.
Also at Istanbul University, Faculty of Science, Istanbul, Turkey.
Also at Istanbul Bilgi University, Istanbul, Turkey.
Also at Hacettepe University, Ankara, Turkey.
Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.
Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.
Also at Monash University, Faculty of Science, Clayton, Australia.
Also at Bethel University, St. Paul, Minnesota, USA.
Also at Utah Valley University, Orem, Utah, USA.
Also at Purdue University, West Lafayette, Indiana, USA.
Also at Beykent University, Istanbul, Turkey.
Also at Bingol University, Bingol, Turkey.
Also at Sinop University, Sinop, Turkey.
Also at Mimar Sinan University, Istanbul, Istanbul, Turkey.
Also at Texas A&M University at Qatar, Doha, Qatar.
Also at Kyungpook National University, Daegu, Korea.