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Abstract: We demonstrate multimodal label-free nonlinear optical microscopy in human skin 
enabled by a fiber-based two-color ultrafast source. Energetic femtosecond pulses at 775 nm 
and 1250 nm are simultaneously generated by an Er-fiber laser source employing frequency 
doubling and self-phase modulation enabled spectral selection. The integrated nonlinear 
optical microscope driven by such a two-color femtosecond source enables the excitation of 
endogenous two-photon excitation fluorescence, second-harmonic generation, and third-
harmonic generation in human skin. Such a 3-channel imaging platform constitutes a 
powerful tool for clinical application and optical virtual skin biopsy. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Nonlinear optical microscopy (NLOM) is one of the most important label-free techniques to 
conduct optical virtual skin biopsy [1]. The technique features submicron optical resolution 
and intrinsic sectioning ability, and can provide intercellular information. Depending on the 
interaction between ultrashort pulses and tissues, epidermis and upper dermis can be 
visualized by various mechanisms, such as two-photon excitation fluorescence (2PEF) [2–9], 
second-harmonic generation (SHG) [10–16], and third-harmonic generation (THG) [11–
13,15,16]. Common 2PEF contrast agents in human skin rely on the molecular resonance of 
endogenous fluorophores, e.g., keratin, melanin, or reduced nicotinamide adenine 
dinucleotide (NADH) [2–9]. In contrast, optical harmonics originate from tissue structures. 
Non-centrosymmetric fibrous tissue leads to SHG, which enables the visualization of collagen 
or elastin [10–16]. Arising from interfaces and optical inhomogeneity, THG can reveal the 
cell outline and thus differentiate stratum corneum (SC), stratum granulosum (SG), stratum 
spinosum (SS), and stratum basale (SB) [13,15,16]. These modalities are powerful bio-
imaging tools for histopathology, morphology, and disease diagnosis. For example, 2PEF 
microscopy can alone quantify tumor fluorescence of cancer tissues [17]. 2PEF combined 
with SHG imaging allows the investigation of various biomedical issues, e.g., local invasion 
at tumor-stromal interface [18,19], basal cell carcinoma [20,21], orientation and polarization 
dependence of collagen [22–25], malignant melanoma [26], and squamous cell carcinoma 
[27]. Besides imaging tumors [28,29], THG is able to measure the nuclear-cytoplasmic (NC) 
ratio—an important index for scoring skin aging [30]. 

Implementation of multimodal NLOM towards virtual skin biopsy imposes critical 
requirements on the ultrafast lasers that drive these biomedical imaging modalities. 
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Ti:sapphire lasers that produce femtosecond pulses tunable in the wavelength range of 700-
900 nm are the main driving sources to implement intrinsic 2PEF in human skin [2–9]. 
Excited by the ultrashort pulses in this wavelength range, the SHG (350-450 nm) 
accompanying with 2PEF becomes another modality to visualize collagen and elastin fibers 
[31–33]. However, the corresponding THG (233-300 nm) is in the ultraviolet—a wavelength 
range that suffers from strong tissue attenuation and absence of high-sensitivity detectors. 

To efficiently detect both SHG and THG, longer excitation wavelength within the 
biological transmission window of 1150-1350 nm is desired to conduct harmonic generation 
microscopy (HGM) [10–16]. Use of longer excitation wavelengths for HGM leads to several 
advantages: (i) less overall optical attenuation considering both light scattering and water 
absorption in the biological tissue [34,35], (ii) increased illumination tolerance due to the 
reduced photon energy [36], (iii) better penetrability for deep-tissue imaging [14,37,38], (iv) 
efficient detection of the resulting SHG and THG by gallium arsenide phosphide 
photomultiplier tubes (PMTs), and (v) resonant enhancement of THG from endogenous 
molecules (e.g., melanin, hemoglobin, and lipid) [13,15,39,40]. Conventionally, femtosecond 
pulses that are tunable in the wavelength range of 1150-1350 nm are obtained by Ti:sapphire 
laser pumped optical parametric oscillators (OPOs) [37,41–46] or optical parametric 
amplifiers (OPAs) [38,47,48]. Without the tuning capability, passively mode-locked 
Cr:forsterite lasers can emit femtosecond pulses centered at ~1250 nm [11–16,36,49–51]. 
Unfortunately ultrafast sources at the wavelength range of 1150-1350 nm are not suitable to 
drive 2PEF. For most of the endogenous fluorophores in skin the 2PEF excitation wavelength 
falls in the range of 700-900 nm [2–9]. 

Apparently two-color ultrafast sources that can provide femtosecond pulses in both the 
wavelength range of 1150-1350 nm and 700-900 nm are required to implement multimodal 
NLOM in skin that incorporates 2PEF, SHG, and THG. In principle, a Ti:sapphire laser plus 
an OPO can meet the wavelength requirement. In this scenario, a small portion of the 
Ti:sapphire laser output is employed to drive 2PEF and the rest of the output pumps the OPO 
to provide femtosecond pulses at longer wavelength for driving SHG and THG. Though not 
demonstrated in the context of multimodal human skin imaging, this type of two-color 
sources has been applied to implement multimodal NLOM platforms for imaging mouse liver 
tissues [43], human cornea [44], mouse brain tissues [45], and mouse skin [46]. However, 
such a solid-state laser solution exhibits several disadvantages such as high cost, high 
complexity (e.g., requiring water cooling and cavity synchronization), and large footprint, 
which have spurred the intensive development of fiber-laser-based ultrafast sources for 
driving NLOM [52]. 

In this paper, we demonstrate a versatile fiber-based two-color femtosecond source to 
drive a laser scanning microscope for multimodal skin imaging. Derived from a 31-MHz Er-
fiber laser followed by nonlinear wavelength conversion, the two-color source provides 6.7-
nJ, 190-fs pulses at 775 nm and 11.7-nJ, 47-fs pulses at 1250 nm. With these two excitation 
wavelengths, we carry out 3-channel imaging (2PEF, SHG, and THG) of human skin ex vivo, 
which, to the best of our knowledge, represents the first demonstration of NLOM in human 
skin using all these three modalities simultaneously. Compared with solid-state Ti:sapphire 
lasers plus OPOs/OPAs or Cr:forsterite lasers, our proposed configuration constitutes a 
relatively simple and practical solution to conduct multimodal optical virtual skin biopsy for 
clinical applications. 

2. Experimental setup 

Figure 1 illustrates the multimodal NLOM platform consisting of a high-power Er-fiber laser 
pump source, two nonlinear wavelength converters [i.e., frequency doubling and self-phase 
modulation enabled spectral selection (SESS)], and a scanning microscope. The Er-fiber laser 
system operates at 31-MHz repetition rate and generates 290-fs pulses centered at 1550 nm 
with 160-nJ pulse energy; more details about this laser system were presented in [53]. A half-
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The transform-limited pulse has a duration of 150 fs, showing that the pulses at 775 nm are 
close to transform-limited. 

2.2. Generation of 1250-nm femtosecond pulses via self-phase modulation enabled 
spectral selection 

Fiber-optic ultrafast sources are emerging as an advantageous alternative to drive NLOM 
[52]. These sources typically include an ultrafast fiber laser emitting femtosecond pulses at a 
fixed wavelength and then rely on fiber-optic nonlinear techniques to derive ultrafast pulses 
in the wavelength range of 1150-1350 nm. For example, soliton self-frequency shift in 
combination with frequency doubling can generate 6.5-nJ, 86-fs pulses at 1150 nm [62] and 
32-nJ, 99-fs pulses at 1200 nm [63]. Recently we demonstrated a new approach to generate 
wavelength widely tunable (>400 nm) and nearly transform-limited femtosecond pulses for 
NLOM [53,64–67]. The core concept is to employ self-phase modulation (SPM) [68] in 
optical fibers to significantly broaden a narrowband input optical spectrum followed by 
filtering the leftmost or the rightmost spectral lobes. This method—dubbed as SPM-enabled 
spectral selection (SESS)—allows us to generate >10-nJ, ~100-fs pulses at 1215 nm from a 
large-mode-area fiber pumped by an Yb-fiber laser [65], or >15-nJ, ~100-fs pulses at 1300 
nm or 1700 nm from a dispersion-shifted fiber (DSF) pumped by an Er-fiber laser [66]. With 
a lower-repetition-rate energetic pump source, SESS can produce >100-nJ, ~100-fs pulses at 
1250 nm with ~MW peak power [66], which is highly desired by deep-tissue imaging. 

In this paper, we employ SESS in 9-cm DSF to generate pulses at 1250 nm for SHG/THG 
microscopy. The DSF has a 10-µm mode-field diameter and −10 fs2/mm group-velocity 
dispersion at 1550 nm as used in [66,67]. Figure 3(a) shows the broadened spectrum that 
spans more than 500 nm for 85-nJ pulses coupled into the DSF. The spectral lobe at 1150 nm 
can be attributed to optical wave breaking [69]. We use a 1300-nm shortpass filter (#89-676, 
Edmund Optics) and a 1200-nm longpass filter (#89-662, Edmund Optics) to select the 
spectral lobe peaking at 1250 nm [inset of Fig. 3(b)]. The filtered power amounts to 365 mW, 
corresponding to 11.7-nJ pulse energy and 14% conversion efficiency. The red curve in Fig. 
2(b) shows the measured intensity autocorrelation trace of the filtered pulses at 1250 nm. The 
FWHM duration is 72 fs, implying that the estimated pulse duration is 47 fs assuming a 
hyperbolic-secant pulse with a deconvolution factor of 1.54. Also plotted in the same figure is 
the calculated autocorrelation trace (black dashed curve) of the transform-limited pulse 
allowed by the filtered spectrum. The transform-limited pulse has a duration of 41 fs, showing 
that the filtered pulses are nearly transform-limited. 

 

Fig. 3. (a) Spectral broadening from 9-cm DSF. (b) Measured autocorrelation trace of the 
filtered pulses at 1250 nm (red curve) and calculated autocorrelation trace of the transform-
limited pulse allowed by the filtered spectrum (black dashed curve). Inset: filtered spectrum 
centered at 1250 nm. 
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2.3. Multimodal scanning microscope 

The 775-nm and the 1250-nm femtosecond pulses are combined by a dichroic mirror (DM1) 
(Di02-R1064-25 × 36, Semrock) before entering the scanning microscope (MPM-2PKIT, 
Thorlabs), which consists of an 8-kHz resonant scanner and a mirror galvanometer with 
variable scanning speed. The frame rate is 8 Hz while capturing an image with 1024 × 1024 
pixels. The 25 × objective (XLPLN25XWMP2, Olympus) is water immersive with 1.05 
numerical aperture and 2-mm working distance. The transmittance is >70% at 1250 nm and 
>80% between 400 nm and 1000 nm. The emitted 2PEF/SHG/THG signals are epi-collected 
by the same objective and reflected by dichroic mirror DM2 (FF665-Di02-25 × 36, Semrock). 
Two more dichroic mirrors—DM3 (FF435-Di01-25 × 36, Semrock) and DM4 (FF562-Di03-
25 × 36, Semrock)—are set to separate the resulting SHG, THG, and 2PEF into three PMTs. 
SHG and 2PEF are detected by two identical PMTs (H7422P-40, Hamamatsu), and THG by a 
different PMT (H10721-210, Hamamatsu). The sensitivity of these two types of PMT peaks 
at 580 nm and 420 nm, respectively. 

3. Experimental results 

To demonstrate the capability of our multimodal platform for multiphoton label-free imaging 
in human skin, we conduct SHG/THG microscopy excited by 1250-nm pulses and 2PEF 
microscopy excited by 775-nm pulses. During the experiment we use two ex vivo human skin 
tissues: the trunk part shown in Fig. 4 and the head part shown in Figs. 5-7. A comparison 
between the THG and the 2PEF imaging in epidermis shows that both these two imaging 
modalities can reveal different stratums. In this paper we use the following pseudo-colors to 
present the imaging results: SHG is colored in red hot, THG in cyan hot, and 2PEF in yellow 
hot. 

3.1. SHG/THG imaging of ex vivo human skin 

Figure 4 shows the SHG/THG imaging of human skin in epidermis from the trunk part 
excited by 1250-nm pulses ex vivo. The maximum excitation power after the objective is 80 
mW (~2.6-nJ pulse energy). The field of view (FOV) is 270 µm × 270 µm. 
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