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Abstract 

The structure of Ge22Ga3Sb10S65 and Ge15Ga10Sb10S65 glasses was investigated by neutron diffraction 

(ND), X-ray diffraction (XRD), and extended X-ray absorption fine structure (EXAFS) measurements 

at the Ge, Ga and Sb K-edges. Experimental data sets were fitted simultaneously in the framework of 

the reverse Monte Carlo (RMC) simulation technique. Short range order parameters were determined 

from the obtained large-scale configurations. It was found that the coordination numbers of Ge, Sb and 

S are around the values predicted by the Mott-rule (4, 3 and 2, respectively). The Ga atoms have on 

average 4 nearest neighbors. The structure of these stoichiometric glasses can be described by the 

chemically ordered network model: Ge-S, Ga-S and Sb-S bonds are the most important. Long Sb-S 

distances (0.3 – 0.4  Å higher than the usual covalent bond lengths) are observed, suggesting that Sb 

atoms can be found in various local environments. 
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1. Introduction 

 

Chalcogenide glasses have remarkable physical properties such as their wide transparency window in 

the mid-infrared range far beyond that of the silica glasses (up to 12, 16, 28 microns for sulfide-, 

selenide- and telluride-based glasses respectively) [1], large linear and nonlinear refractive indices 

[2 - 5], low phonon energy [6, 7] or unique photosensitivity [8]. Passive optical properties of these 

glasses can be tuned by their chemical composition what makes them suitable for various applications 

in infrared (IR) optic, using these chalcogenide glasses as IR lenses, optical fibers or optical 

waveguides [9 - 15]. Their utilization can be further expanded by rare-earth doping which makes them 

applicable as active optical media. They are or may be used for optical fiber amplifiers [16], sensors 

and detectors [17 - 19] or as laser devices [7, 20, 21] 

Germanium based sulfide glasses, such as Ge-Ga-S, have a relatively good rare-earth ion solubility 

thanks to the addition of gallium in the glass network [22 - 24]. Moreover, the Ge-Ga-S system can be 

stabilized against crystallization by the addition of arsenic or antimony [10, 25, 26] and efficient rare 

earth ion solubility to enable fabrication of conventional and tapered fibers, thin films and rib 

waveguides presenting an efficient luminescence [27 - 35]. 

A comprehensive description of the structure of these glasses can be helpful for the better 

understanding of their properties. The structure of the chalcogenide glasses can be described as a 

covalently connected network of the participant elements. In glasses consisting elements from the 14-

15-16 groups of the periodic table, the total coordination number of the elements (Ni) follows the Mott-

rule [36]: It is equal to 8-N, where N is the number of electrons in the valence shell of the ith element (e. 

g. Ge-As-Se [37], Ge-As-Te [38], Ge-Sb-Se [39], Ge-Sb-Te [40]). However glasses containing group 

13 elements can deviate from this rule, and the total coordination number of Ga or In can be four 

instead of three [41 - 44].  

The structure of several chalcogenide glasses can be described in the framework of the chemically 

ordered network model (CONM) [45, 46]. This model predicts that M-Ch bonds are preferable, where 

M denotes the elements from groups 13, 14 or 15, and Ch means the chalcogen element. The structure 

of the stoichiometric glass can be built from tetrahedral and/or pyramidal units such as [GeCh4/2] or 

[SbCh3/2]. The M-M and Ch-Ch bonds are present only in non-stoichiometric glasses: M-M bonds in 

Ch-deficit (Ch-under stoichiometric) compositions and Ch-Ch bonds in Ch-rich (Ch-over 

stoichiometric) glasses. 
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There are several publications about the structure of the ternary Ge-Ga-S glasses [43, 47 - 51]. It was 

demonstrated that Ge and S atoms follow the Mott-rule and their average coordination numbers are 4 

and 2 respectively, but the average coordination number of Ga is higher than the predicted 3. [GeS4/2], 

[GaS4/2] units were reported in these glasses, as well as [S3Ge(Ga)-Ge(Ga)S3] ethane-like units in S-

deficient samples. A small amount of M-M and S-S bonds in stoichiometric samples showed some 

violation in the chemical order [47, 49]. 

In Ge-Sb-S glasses [GeS4/2] and [SbS3/2] units are the main building blocks as shown in a lot of studies 

[52 - 57]. S-S bonds were found in S-rich compositions [52, 55, 57]. M-M bonds were reported in S-

deficient samples [52, 57, 58] and in stoichiometric compositions as well [53, 55], which shows some 

chemical disorder.  

The structure of quaternary Ge-Ga-Sb-S glasses is much less known. Raman scattering spectroscopy 

and mass-spectrometry investigations [26, 30, 59 - 61] suggested that the main building blocks are 

[GeS4/2], [GaS4/2] and [SbS3/2] units in these glasses too. But there is no comprehensive study on their 

structure on the atomic level.   

In this paper we present our X-ray diffraction (XRD), neutron diffraction (ND) and extended X-ray 

absorption fine structure (EXAFS) measurements on Ge22Ga3Sb10S65 and Ge15Ga10Sb10S65 glasses. 

Short range order parameters are investigated by combining the experimental results using the reverse 

Monte Carlo (RMC) simulation technique [62, 63].     

 

2. Experimental 

Samples were prepared by conventional melt quenching. High purity raw materials were used for 

preparing Ge22Ga3Sb10S65 and Ge15Ga10Sb10S65, i.e. 5N for germanium, gallium, antimony or sulphur. 

Commercial sulphur was further purified by successive distillations to remove carbon (CO2, CS2, COS) 

and hydrates or sulphide hydride (H2O, OH, SH) impurities. Then, the required amounts of chemical 

reagents were put in silica ampoules and pumped under vacuum (10
-4

 mbar) for a few hours. The 

tubes were then sealed and heated at 850°C for 12h in a rocking furnace to ensure the homogenization 

of the melt. After water quenching, the glass rods were annealed near their glass transition temperatures 

for 6h. The densities of the samples were determined using a Mettler Toledo XS64 system measuring 

the weights of the samples in air and water. The density values are shown in Table 1.  

Neutron diffraction experiments were carried out at the 7C2 diffractometer of LLB (Saclay, France). 
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The wavelength of incident radiation was 0.72 Å. Powdered samples were filled into thin walled (0.1 

mm) vanadium containers of 6 mm diameter. Raw data were corrected for background scattering, 

detector efficiency and multiple scattering. 

The XRD structure factors were measured at the beamline P07 of the Petra III source (Hamburg, 

Germany). The energy of the incident radiation was 80 keV. Raw intensities were recorded by a 

Perkin-Elmer 2D detector. Wavelength, detector position and tilting were determined by measuring a 

LaB6 standard. 2D counts were integrated circularly and corrected for background, absorption, detector 

solid angle and Compton scattering by the program Fit2D [64]. Corrected ND and XRD structure 

factors are presented in Fig. 1. 

The extended X-ray absorption fine structure measurements at the Ge, Ga and Sb K-edges were carried 

out at HASYLAB (beamline X). Glassy samples were finely ground, mixed with cellulose and pressed 

into tablets. The sample quantities in the tablets were adjusted to the compositions and to the selected 

edges. The spectra were collected in the transmission mode using fixed exit double-crystal Si(111). The 

intensities before and after the sample as well as after the reference samples were recorded by 

ionization chambers filled with a mixture of Ar/Kr (~10% absorption), Ar (~50% absorption) and Kr 

(~100% absorption), respectively. Intensities were converted to χ(k) curves by the Viper programme 

[65]. Filtered EXAFS curves are plotted in Fig. 2. The χ(k) curves are multiplied by k
3
 to emphasize 

high-k oscillations decaying quickly with k. 

Both diffraction and EXAFS are sensitive to pair correlations. However, the ways the partial pair 

correlation functions are transformed to structure factors or χ(k) curves are different (see below). For 

this reason the most straightforward and economic procedure of creating models compatible with 

diffraction and EXAFS data simultaneously is to calculate first partial pair correlation functions and 

then refine them gradually to reproduce all measurements. In practice this goal is reached by the 

reverse Monte Carlo simulation technique.  

 

3. Reverse Monte Carlo simulations 

The reverse Monte Carlo method [62] is a powerful tool to get large three dimensional atomic 

configurations consistent with diffraction (ND or XRD) or EXAFS data. The experimental data sets 

can be fitted simultaneously by this simulation technique. Further physical and chemical properties, 

such as density or preferred bond angles and coordination numbers can be taken into account. During 



5 

 

the simulations particles are moved around to minimize the discrepancies between the experimental 

and model curves, and finally particle configurations can be obtained which are compatible with all the 

experimental data sets within their experimental error. From these configurations short range order 

parameters (partial pair correlation functions, nearest neighbor distances, average coordination numbers 

etc.) can be determined.  

The Smod(Q) model structure factor can be calculated from the partial pair correlation functions (gij(r)) 

according to the following equations: 

𝑆𝑖𝑗(𝑄) − 1 =
4π𝜌0

𝑄
∫ 𝑟(𝑔𝑖𝑗(𝑟) − 1)sin(𝑄𝑟)d𝑟

∞

0
     (1) 

𝑆mod(𝑄) = ∑ 𝑤𝑖𝑗
N,X(𝑄)𝑆𝑖𝑗(𝑄)𝑖≤𝑗 .       (2) 

Here Q is the scattering variable, ρ0 is the average number density. The wij
N,X 

neutron and X-ray 

scattering weights are given by Eqs. (3-5): 

𝑤𝑖𝑗
𝑁 = (2 − 𝛿𝑖𝑗)

𝑐𝑖𝑐𝑗𝑏𝑖𝑏𝑗

〈𝑓(𝑄)〉2 ,        (3) 

𝑤𝑖𝑗
X (𝑄) = (2 − 𝛿𝑖𝑗)

𝑐𝑖𝑐𝑗𝑓𝑖(𝑄)𝑓𝑗(𝑄)

〈𝑓(𝑄)〉2        (4) 

and 

〈𝑓(𝑄)〉2 =  [∑ 𝑐𝑖𝑓𝑖(𝑄)𝑖 ]2        (5) 

where δij is the Kronecker delta, bi is the coherent neutron scattering length, ci is the atomic 

concentration, and fi(Q) is the atomic form factor. 

The model EXAFS curves are calculated according to Eq. (6) 

𝜒𝑖
mod(𝑘) = ∑ 4π𝜌0𝑐𝑗 ∫ 𝑟2𝛾𝑖𝑗(𝑘,𝑟)𝑔𝑖𝑗(𝑟)d𝑟

𝑅

0𝑗 ,     (6) 

where i is the index of the absorbing component, and γij(k,r) is the photoelectron backscattering matrix. 

In this study the two total structure factors from neutron and X-ray diffraction measurements and 3 χ(k) 

EXAFS (Ge-, Ga- and Sb-  K-edges) data sets are fitted by the RMC++ code [63]. The EXAFS 

backscattering coefficients were calculated by the FEFF8.4 program [66]. The wij
N
 neutron weighting 

factors of the investigated glasses are shown in Table 2, while the Q-dependent X-ray weights are 

presented in Fig. 3. 
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The cubic simulation boxes contained 8000 atoms in test runs and 30 000 particles in the final runs 

presented here. The box sizes were determined according to the experimental densities, which are 

shown in Table 1.  Several test runs were performed to determine the various bond types, which are 

necessary to get proper fit for the experimental data sets. Hence different minimum interatomic 

distances (cut-offs) were used depending on whether the specific bond was allowed or not. The applied 

cut-off distances are presented in Table 3. Initial particle configurations were created by placing the 

atoms randomly in the cubic box and moving them around to satisfy the cut-off distance requirements. 

Initial sigma parameters used to calculate the RMC cost function [62, 67] were reduced in three steps 

and have final values as 0.001-0.0015 for XRD and ND, and 5 x 10
-6 

– 2 x 10
-5

 for EXAFS data sets. 

The number of accepted moves was around 1-2 x 10
7
 steps.  

Some ‘background’ coordination constrains were used to avoid segregated atoms and unrealistically 

high (7 or more for Ge and Ga, 6 or more for Sb and 4 or more for S atoms) and low (1 and 2 for Ge 

and 1 for Sb and Ga) coordination numbers. (Models with only these ‘background’ constraints will be 

called ‘free’ or ‘unconstrained’ hereafter.)  

The tested models were compared by checking their R-factors, which measures the quality of the fit: 

𝑅=
√∑ (𝑆mod(𝑄𝑖)−𝑆exp(𝑄𝑖))

2

𝑖

√∑ 𝑆exp
2

𝑖 (𝑄𝑖)
         (7) 

Here Smod(Qi) and Sexp(Qi) are the model and experimental structure factors and the summation runs 

over the experimental Qi values. The R-factor for EXAFS data is calculated similarly, using the 

corresponding model and experimental χ(k) curves. The relative R-factor of a configuration (with 

respect to a reference model) is defined as the ratio of the R-factor of the configuration and that of the 

reference model. A simple average of the relative R-factors of the five experimental data sets gives a 

cumulative relative R-factor (Rc), which was used to categorize the investigated model. 

A four component system has 10 independent partial pair correlation functions (PPCF, gij(r)), meaning 

that the same number of independent measurements would be necessary to determine the PPCFs in a 

purely algebraic way. Various constraints (coordination constraints, forbidding some bonds etc.) can 

help to decrease the uncertainty of the short range order parameters of the system. For this reason it is 

advisable to keep the number of allowed bonds at its minimum value. The M-S bonds (Ge-S, Ga-S and 

Sb-S) were always allowed, the necessity of the M-M and S-S bonds were investigated. 

The average partial coordination numbers (Nij) were calculated by integrating the partial pair 
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correlation functions up to the first minimum (rmin) : 

𝑁𝑖𝑗 = 4π𝑟2𝜌0𝑐𝑗 ∫ 𝑔𝑖𝑗
𝑟min

0
(𝑟)d𝑟        (8) 

where ρ0 is the average density, cj is the concentration of the jth element. To estimate the uncertainty of 

the average coordination numbers dedicated simulation runs were performed. The value of the 

investigated Nij was forced to change systematically (in ± 10% increments). By monitoring the R-

factors, the range of Nij values, in which the quality of the fit is appropriate, can be determined.   

The Ni total coordination numbers are calculated as: 

𝑁𝑖 = ∑ 𝑁𝑖𝑗𝑗 .             (9) 

 

4. Results and discussion 

Experimental total structure factors S(Q) and k
3
 weighted, filtered EXAFS signals (χ(k) curves) are 

presented in Figs. 1 and 2. Model configurations were obtained by simultaneous fitting the 5 

experimental data sets for both compositions.  

Assuming that the Ge, Ga, Sb and S atoms are 4-, 4-, 3- and 2-fold coordinated respectively, the 

investigated compositions are stoichiometric. According to the CONM and earlier Raman scattering 

spectroscopy results [26, 30, 61] in stoichiometric glasses M-S (M=Ge, Ga, Sb) bonds are the most 

dominant, and only a small amount of S-S and M-M bonds is expected. Several test runs were carried 

out to determine the bond types which are significant in the studied glasses. It was found that applying 

the model in which only Ge-S, Ga-S and Sb-S bonds are allowed, the experimental data sets can be 

fitted properly. The simulated curves obtained by applying this model are also shown in Figs. 1 and 2. 

The presence of other bond types did not improve the quality of the fits. It means that neither of the Ge-

Ge, Ge-Ga, Ge-Sb, Ga-Ga, Ga-Sb, Sb-Sb and S-S coordination numbers are higher than 0.3-0.4, which 

is the sensitivity of our method. 

The partial pair correlation functions calculated from the obtained particle configurations are presented 

in Fig. 4.  The Ge-S, Ga-S and Sb-S PPCFs have sharp peaks in the 2.1-3.0 Å region, which is in the 

first coordination shell of the participant atoms. Positions of the first peaks are shown in Table 4. The 

average nearest neighbor distances are independent of the compositions within their errors.  

The first peak of the Ge-S and Ga-S PPCFs are around 2.22 Å and 2.27-2.28 Å, respectively. These 
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values agree well with that obtained earlier in ternary Ge-Ga-S glasses by XAFS spectroscopy [48] 

(2.22 Å and 2.28 Å) and by RMC method with EXAFS and XRD measurements [43].  

The Sb-S bond length (2.44 Å) is somewhat shorter than that found in Ge-Sb-S glasses by ND (2.48 Å  

[56]), but agrees with the values obtained by EXAFS for Sb-S systems (2.45-2.46 Å [68]) and by RMC 

method with EXAFS, ND and XRD measurements for ternary Ge-Sb-S glasses (2.45 Å [57]). (The Sb-

S bond length of Kakinuma et al. [56] is deduced from the total scattering function of S-deficient Ge-

Sb-S glasses, where the presence of Ge-Sb pairs (with bond length around 2.61 -2.65 Å [57, 58]) can 

cause the shift of the peak to higher values.  

The average coordination numbers are calculated up to 2.9 Å for NGeS and NGaS and to 3.0 Å for NSbS; 

the values are presented in Table 5. In these unconstrained simulation runs only the above mentioned 

‘background’ coordination constraints were used, the average coordination numbers of the different 

pairs were allowed to change freely. The average coordination number of sulphur, antimony and 

germanium are around 2, 3 and 4 respectively, as they were expected. 

The average coordination number of gallium (NGa) is definitely higher than 3 for both compositions. 

Due to the small amount of gallium in the Ge22Ga3Sb10S65 glass, the uncertainty of this number is 

inevitably higher. Simulation runs were carried out to test the coordination number of Ga. In these runs 

the average coordination number of the Ga-S pair (NGaS, which is equal to NGa since Ga-Ge, Ga-Ga and 

Ga-Sb bonds were forbidden) was constrained at different values and the changes in the quality of the 

fits were monitored. The R-factors of the curves were an average 20 % higher for those test runs in 

which the Ga-S coordination number was constrained to be 3, and they only slightly increased (below 

5%) when the NGaS= 4 constraint was used. It was thus concluded that the total coordination number of 

Ga must be close to 4. It is to be mentioned that unconstrained simulation runs gave 3.85 and 3.67 for 

NGa in Ge-Ga-S glasses [43]. 

In all M-S curves smaller and less sharp second peaks can be observed in the 2.6 - 3.0 Å region (see 

Fig. 4). The significance of these peaks was tested with simulation runs in which the presence of these 

‘long bonds’ were forbidden (by applying zero coordination constraints for NGeS, NGaS and NSbS in the 

above mentioned region). It was found that the quality of the fits decreased for this model significantly 

(on the average the R-factors increased with 50%). The ND and Ge EXAFS fits of Ge22Ga3Sb10S65 

glass with and without ‘long bonds’ are shown in Fig. 5. Further investigations showed that introducing 

M-M type bonds in the RMC model does not improve fit quality. It is more sensitive to Ge-S and Sb-S 

‘long bonds’, which are equally important to get proper fits for the present set of experimental data. We 
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also checked whether the finite range of diffraction data has any effect on the position of the ‘long 

bonds’. Test runs with Qmax= 10 Å
-1

 for ND and Qmax= 15.6 Å
-1

 for XRD gave very similar PPCFs 

proving that the finite data range does not influence the presence of ‘long bonds’. 

Similar pair distances in the 2.6 - 3.0 Å region were reported earlier in the Ge-Sb-S system [56,58]. A 

‘hump’ observed around 2.8 – 2.9 Å in the total XRD pair correlation function of S-deficient Ge-Sb-S 

glasses was explained by the presence of Sb-Sb pairs and/or by the distance of Ge-Ge pairs in edge-

shared GeS4/2 tetrahedra (Fig. 3 and 4 of Ref. [58]). A small peak can be seen in the g(r) function of S-

deficient Ge-Sb-S glasses, obtained from ND experiments (Fig. 3. of Ref. [56]) as well. Recently, S-

rich, stoichiometric and S-deficient Ge-Sb-S glasses were investigated by RMC method fitting ND, 

XRD, Ge and Sb EXAFS data [57]. The presence of long Sb-S bonds was reported both in sulphur rich 

and poor region. Long Sb-S bonds are in crystalline Sb2S3, where SbS3 and SbS5 units can be found 

with 5 different Sb-S bond lengths in the 2.46 – 2.85 Å region [69, 70]. The combination of these units 

was proposed in glassy Sb2S3-As2S3-Tl2S systems as well [71]. 

The above results suggest that the observed ‘long bonds’ are most probably of Sb-S type. The data 

analyzed in the present study allows the presence of long Ge-S bonds as well. However, as they were 

not found in Ge-Ga-S glasses [43] the presence of longer Ge-S type bonds is probably due to the ‘cross 

talk’ between Ge-S and Sb-S correlations. Further studies are under way to reveal where and why these 

long bonds appear in Sb2S3 based glasses.  

The presence of Ge(Ga)-Ge(Ga) second neighbors that share two common S atoms (edge-shared 

Ge(Ga)S4 tetrahedra) was also studied. The second coordination shells of Ge and Ga atoms are clearly 

visible in the corresponding PPCFs, as definite peaks around 3.5 Å. Analysis of the obtained 

configurations revealed, that the Ge(Ga)-Ge(Ga) distances in the 3.1 – 4.1 Å region originate not just 

from corner sharing (CS) pairs, but the typical distance of edge sharing (ES) Ge(Ga)-Ge(Ga) pairs is 

also around 3.1 – 3.6 Å (see Fig. 6). (Similar distances were also found in ternary Ge-Ga-S glasses in 

Ref. [43].) The ratio of Ge atoms participating in ES units is around 40% in the investigated glasses; 

the presence of ES units is supported by Raman spectroscopy. 

The first sharp diffraction peak (FSDP) is considered as a sign of medium range order. According to 

Fig. 1 both X-ray and neutron diffraction structure factors exhibit a pronounced FSDP at about 1.07 Å
-1

. 

A quick view at the Sij(Q) partial structure factors (Fig. 7) reveals that in case of the Ge-Ga-Sb-S 

glasses investigated the FSDP can be assigned mostly to Ge(Ga)-Ge(Ga) and Ge(Ga)-S correlations. 

With some rearrangement of Eq. (1) one gets the following: 
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𝑆𝑖𝑗(𝑄) − 1 = 4π𝜌0 ∫ 𝑟2(𝑔𝑖𝑗(𝑟) − 1)
sin(𝑄𝑟)

𝑄𝑟
d𝑟

∞

0
      (10) 

Eq. (10) shows that an elemental component of r
2
(gij(r)-1) is transformed into a sin(x)/x type damped 

oscillation in Q-space. (The partial structure factor is then obtained as the superposition of such 

elemental oscillations.) The first maximum of sin(x)/x (after x = 0) is at x ≈ 7.72. Thus, the correlation 

length corresponding to Qmax, the FSDP peak position is defined as rFSDP = 7.72/Qmax (see also the 

Ehrenfest relation [72]). In our case rFSDP ≈ 7.2 Å. This value is roughly equal to the double of the 

mean distance of centers of CS/ES tetrahedra.  

 

Conclusions 

Short range order of Ge22Ga3Sb10S65 and Ge15Ga10Sb10S65 glasses was studied by neutron- and X-ray 

diffraction, combined with EXAFS measurements. The experimental data sets were fitted 

simultaneously by reverse Monte Carlo simulation technique. It has been established that Ge and Ga 

are both fourfold coordinated, while Sb and S atoms have 3 and 2 nearest neighbors, respectively.  The 

structure of the examined glasses can be described by the chemically ordered network model: Ge-S, 

Ga-S and Sb-S bonds are the most preferred. The typical bond lengths are 2.22 Å for Ge-S, 2.28 Å for 

Ga-S and 2.44 Å for Sb-S pairs, but some longer distances, most probably Sb-S pairs, in the 2.6 – 3 Å 

region were also observed. 
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⁠ 

Table 1 Densities of the investigated Ge-Ga-Sb-S glasses 

Composition Density (g/cm
3
) (± 0.01) Number density (Å

-3
) 

Ge22Ga3Sb10S65  3.15 0.03711 

Ge15Ga10Sb10S65  3.32 0.03930 

 

Table 2 Neutron scattering weights (wij) of the investigated glasses used for the calculation of the ND 

total structure factors. 

 

i-j pairs Ge22Ga3Sb10S65 Ge15Ga10Sb10S65 

Ge-Ge 0.16546 0.07914 

Ge-Ga 0.04018 0.09396 

Ge-Sb 0.10236 0.07181 

Ge-S 0.34008 0.23859 

Ga-Ga 0.00244 0.02789 

Ga-Sb 0.01243 0.04263 

Ga-S 0.04129 0.14163 

Sb-Sb 0.01583 0.01629 

Sb-S 0.10519 0.10824 

S-S 0.17474 0.17981 
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Table 3 Minimum interatomic distances (cut-offs) applied in the simulation of Ge-Ga-Sb-S glasses (in 

Å) 

Pair Bond is allowed Bond is forbidden 

Ge-Ge 2.25 2.75 

Ge-Ga 2.35 2.75 

Ge-Sb 2.35 2.9 

Ge-S 2.0 - 

Ga-Ga 2.45 2.9 

Ga-Sb 2.5 2.9 

Ga-S 2.05 - 

Sb-Sb 2.7 3.15 

Sb-S 2.25 - 

S-S 1.95 2.9 

 

Table 4 Nearest neighbor distances (in Å) in the studied Ge-Ga-Sb-S glasses. The uncertainty of 

distances is usually ± 0.02 Å. 

 Glass composition 

Pair Ge22Ga3Sb10S65  Ge15Ga10Sb10S65 

Ge-S 2.22 2.22 

Ga-S 2.27 2.28 

Sb-S 2.44 2.44 
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Table 5 Coordination numbers of the investigated compositions obtained for the model in which only 

Ge-S, Ga-S and Sb-S bonds are allowed and coordination constraints were not used.  

 Glass composition 

 Ge22Ga3Sb10S65 Ge15Ga10Sb10S65 

NGeS =NGe 4.1 (-0.1 +0.3) 4.4 (-0.2 +0.6) 

NGaS=NGa 3.8 (±0.4) 4.1 (±0.4) 

NSbS=NSb 3.0 (-0.2 +0.3) 3.1 (±0.3) 

NSGe 1.4 (-0.05 +0.1) 1.03 (-0.06+0.12) 

NSGa 0.175 (±0.015) 0.63 (±0.06) 

NSSb 0.46 (-0.03 +0.05) 0.48 (±0.05) 

NS 2.04 2.14 
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Figures 

 

Figure 1. (a) ND and (b) XRD total structure factors of Ge22Ga3Sb10S65 and Ge15Ga10Sb10S65 (symbols) 

and fits (lines) obtained by RMC simulations. (The curves of the Ge15Ga10Sb10S65 glass are shifted 

upward for clarity.) 

  

0

1

2

 

 

 

S
 (

Q
)

Ge
15

Ga
10

Sb
10

S
65

Ge
22

Ga
3
Sb

10
S

65

(a)ND

0 5 10 15 20 25

0

1

2

 

 

S
 (

Q
)

Q [Å
-1
]

 Ge
22

Ga
3
Sb

10
S

65

 Ge
15

Ga
10

Sb
10

S
65

(b)XRD



22 

 

 

Figure 2. k
3
 weighted, filtered (a) Ge, (b) Ga and (c) Sb K-edge EXAFS spectra of the investigated 

glasses (symbols) and fits (lines) obtained by RMC simulations. (The curves of the Ge15Ga10Sb10S65 

glass are shifted upward for clarity.) 
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Figure 3 X-ray diffraction weights of the partial structure factors of (a) Ge22Ga3Sb10S65 and (b) 

Ge15Ga10Sb10S65 glasses. 
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Figure 4. Partial pair correlation functions of the investigated Ge-Ga-Sb-S glasses. 
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Figure 5. (a and b) Ge K-edge EXAFS and (c and d) ND fits of Ge22Ga3Sb10S65 glass (a and c) with 

and (b and d) without long Ge-S, Ga-S and Sb-S pairs. 
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Figure 6. Decomposition of gGeGe (r) of Ge15Ga10Sb10S65 to contributions from corner shared (CS), 

edge shared (ES) tetrahedra and topologically distant Ge-Ge pairs. 
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Figure 7 Neutron weighted partial structure factors of the Ge15Ga10Sb10S65 glass obtained by RMC 

simulation. Ga-X (X=Ga, Sb) partial structure factors are rather similar to the corresponding Ge-X ones, 

therefore they are not shown for clarity.   


