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The hose instability of the drive beam constitutes a major challenge for the stable operation of plasma-

wakefield accelerators. In this Letter, we show that drive beams with a transverse size comparable to the

plasma blowout radius generate a wake with a varying focusing along the beam, which leads to a rapid

detuning of the slice-betatron oscillations and suppresses the instability. This intrinsic stabilization

principle provides an applicable and effective method for the suppression of the hosing of the drive beam

and allows for a stable acceleration process.
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In plasma-wakefield accelerators (PWFAs), highly

relativistic particle beams are used to excite plasma wakes

which carry extreme accelerating fields [1]. The accelerat-

ing gradients surpass those produced in today’s conven-

tional particle accelerators by orders of magnitude and

therefore, PWFAs constitute an attractive solution for the

miniaturization of the future particle acceleration technol-

ogy and its derived applications.

Operating PWFAs in the blowout regime [2] enables

injection methods for the production of high-quality wit-

ness beams [3–8] and the efficient acceleration within the

plasma wake [9,10]. However, due to the extreme focusing

fields in the blowout plasma cavity, the drive and witness

beams in PWFAs are subject to transverse instabilities with

large growth rates. In particular, the hose instability (HI) of

the drive beam constitutes a major challenge for the optimal

operation of PWFAs [11]. The HI is initiated by a trans-

verse deviation of the centroid of the drive beam which

causes a displacement of the center of the focusing ion

channel, which in turn feeds back into the trailing part of

the beam, leading to the resonant buildup of the transverse

centroid oscillations. It was recently shown that the

inherent drive beam energy loss detunes the betatron

oscillations of beam electrons and thereby mitigates the

HI [12]. Still, for drive beams with a substantial hosing

seed, beam breakup can occur before this mitigation

mechanism becomes effective.

In this Letter, we show by means of analytical theory and

particle-in-cell (PIC) simulations with HiPACE [13], that

drive beams with a transverse size comparable to the

plasma blowout radius generate a wake with a varying

focusing along the drive beam, which causes a rapid

detuning of the centroid oscillations and suppresses the

HI. Still, the plasma blowout is completely formed in

regions behind the drive beam, and therefore, the witness

beams can be efficiently accelerated with no emittance

degradation. The damping effect caused by head-to-tail

variations of the betatron frequency is well known in radio

frequency accelerators [14–16], and it has been recently

shown to apply in the linear regime of plasma-wakefield

acceleration [17,18] for the mitigation of the HI. In this

Letter, we show for the first time that this stabilization

principle is compatible with the blowout regime for

sufficiently wide, high-current and moderate-length drive

beams. The blowout regime is the most common regime in

PWFAs, and therefore, this work is of crucial interest

for understanding why the hosing of the drive beam was

avoided in Facility for Advanced Accelerator Experimental

Tests [19] and how it can be further suppressed in future

PWFA experiments [20–22].

We start by considering a relativistic electron beam

entering an initially neutral and homogeneous plasma. As

the beam propagates through the plasma, it expels plasma

electrons by means of its space-charge fields, generating in

this way a plasmawakefieldwhich propagates at the velocity

of the beam. The generated wakefields exert a force
_p ¼ −eW on the beam electrons, where p is the momentum

of a beam electron, e the elementary charge,W¼ðEx−cBy;

EyþcBx;EzÞ the wakefield, and c the speed of light.

Expressions for the wakefield W have been derived in the

linear [23,24] and the blowout regime of PWFAs [25,26], for

axisymmetric drivers and assuming a quasistatic plasma

response. The quasistatic approximation assumes that the

fields and currents of the beam are frozen, or quasistatic,

during the plasma evolution in the comoving frame, i.e.,

∂t ≃ −c∂ζ for these quantities, with ζ ¼ z − ct, denoting the

comoving variable. Under this approximation, it is found from

Maxwell equations that the wakefields satisfy the following

relations,∂xWz¼∂ζWx≃−ðmω2
p=eÞðjp;x=n0cÞ, and∂xWx≃

ðmω2
p=2eÞð1 − np=n0 þ jp;z=n0cÞ, withωp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n0e
2=mϵ0

p

the plasma frequency, n0 and np the unperturbed and
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perturbed plasma electron density, respectively, and jp;z (jp;x)

the longitudinal (transverse) plasma electron current. Ions are

assumed to be immobile and the transverse beam current to be

negligible. Beams with an electron density nb higher than n0
expel essentially all plasma electrons near the propagation

axis, forming a homogeneous ion cavity delimited by a sheath

of plasma electrons. The maximum distance of this sheath

with respect to the beam propagation axis is commonly

referred to as the blowout radius, rbo. Inside this ion cavity

(or blowout) we have that ∂xWz ¼ ∂ζWx ¼ 0 and ∂xWx ¼
mω2

p=2e, and the equation of motion for the beam electrons

can be written as

ẍþ E

γ
_xþK

γ
x ¼ 0; ð1Þ

where both the focusing strength, K≡ ðe=mÞ∂xWx, and the

rate of energy change, E ≡ _γ ¼ −ðe=mcÞWz, are constant for

beam electrons at a fixed ζ position, and γ ≃ pz=mc. When

nb < n0 the blowout is not complete and the charge of

the ions is partially screened by the plasma electron density,

i.e., K ≈ ω2
p½1 − ðnp=n0Þ�=2, for a nonrelativistic plasma

response in the region of the beam. Assuming np constant

with the radius for regions sufficiently close to the propagation

axis, Eq. (1) is still applicable to the beam electrons within a

partial blowout, where nowK obtains a ζ dependency through

npðζÞ. Equation (1) describes the transverse betatron oscil-

lations of the beam electrons, with a frequency ωβðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K=γðtÞ
p

. Given thatωβ is a slowly varying function [27], i.e.,

_ωβ=ω
2

β ¼ E=2
ffiffiffiffiffiffi

Kγ
p

≪ 1, analytical solutions to Eq. (1) can

be given in the following form:

xðtÞ ¼ x0A cosϕþ _x0

ωβ;0

A sinϕ; ð2Þ

with _x0 ¼ px;0=mγ0, the initial transverse velocity of the

electron, ωβ;0 ¼
ffiffiffiffiffiffiffiffiffiffiffi

K=γ0
p

, the initial betatron frequency,

AðtÞ ¼ ½γ0=γðtÞ�1=4, the amplitude modulation, and ϕðtÞ ¼
R

t
0
ωβðt0Þdt0, the phase advance. When KðζÞ and EðζÞ do

not change with time, the phase advance can be written

explicitly as

ϕðtÞ ¼ 2

ffiffiffiffi

K
p

E
ð ffiffiffi

γ
p

−
ffiffiffiffiffi

γ0
p Þ; ð3Þ

which for E → 0 yields ϕ ≃ ωβ;0t. We now consider

an infinitesimal ζ slice of the drive beam, with

an initial phase-space distribution f0ðx0; px;0; γ0Þ ¼
fxðx0; px;0Þδðγ0Þ. Since γðtÞ ¼ γ0 þ Et for all electrons

within the ζ slice, it is straightforward to find an equation

for the transverse centroid XbðtÞ≡
R

xðtÞfxdx0dpx;0, by

taking corresponding averages of Eq. (2). The resulting

equation for Xb has the same functional dependence as

Eq. (2), and therefore, the beam centroids also describe

betatron oscillations with frequency ωβðtÞ and amplitude

AðtÞ ¼ AðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2

b;0 þ ð _Xb;0=ωβ;0Þ2
q

, where Xb;0 and _Xb;0 ≡
R

_x0fxdx0dpx;0 denote the initial transverse displacement and

velocity of the centroid, respectively.

When the drive beam has a small offset in the x direction,
Xb, the resulting wakefields develop an asymmetry in the

transverse direction. At first order perturbation, the modi-

fied wakefields W0
xðxÞ can be considered identical to the

axisymmetric case, but with a certain offset, Xc, with

respect to the propagation axis, i.e., W0
xðxÞ ¼ Wxðx − XcÞ.

In the blowout regime of PWFA a differential equation for

Xc was derived in [11], for a sufficiently narrow drive

beam, completely embedded in the ion cavity:

∂2

ζXc þ k2cðXc − XbÞ ¼ 0; ð4Þ

where kc ¼ kp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cψ ðζÞcrðζÞ=2
p

, and kp ¼ ωp=c. The coef-

ficients cψ ðζÞ and crðζÞ account for the relativistic motion

of electrons in the blowout sheath and for a ζ dependence of

the blowout radius and the beam current [11]. Equation (4)

describes the oscillations of Xc driven by the beam centroid

displacements Xb. In turn, the displacement Xc couples

back to Xb according to

Ẍb þ
E

γ
_Xb þ

K

γ
ðXb − XcÞ ¼ 0: ð5Þ

This set of coupled equations (4) and (5) has been studied

earlier in the ion-channel regime (with kc ¼ kp=
ffiffiffi

2
p

and

E ¼ 0) [28,29], and for the blowout regime of PWFA [11],

assuming perfectly monoenergetic beams with no energy

change (E ¼ 0) and a constant focusing (K ¼ ω2
p=2). These

cases are characterized by an exponential growth of Xb and

Xc in time and towards the tail of the beam. The HI of the

drive beam is initiated by a finite centroid displacement of

the drive beam Xb;0, which is amplified due to a coherent

coupling of different ζ slices of the beam through the

plasma. The effect of a ζ-dependent energy change in the

drive beam, EðζÞ, has been recently studied in Ref. [12]; it

was shown that hosing saturates as soon as the centroid

oscillations of various ζ slices become detuned owing to a

differing rate of energy change and/or an initial energy

spread.

In this Letter, we extend the study of the HI of the drive

beam in PWFAs, from earlier considerations with narrow

beams, to cases where the initial transverse dimensions of

the drive beams are comparable to the blowout radius. For

this analysis we combine PIC simulation results with

theoretical considerations, so as to demonstrate that by

controlling the width of the drive beam at the entrance of

the plasma, it is possible to generate a longitudinally

varying focusing strength along the drive beam only, which

rapidly detunes the centroid oscillations of different beam
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slices, thereby suppressing the HI on a short time scale, on

the order of the betatron oscillation period.

For the PIC simulations, we consider perfectly mono-

energetic, highly relativistic drive beams with an initially

tilted Gaussian electron distribution, which provides a

well-defined seed to the HI: nb ¼ nb;0 exp ½−ζ2=2σ2z �×
exp (f−½x − Xb;0ðζÞ�2 − y2g=2σ2x;0). The beams propagate

through a homogeneous plasma with a density such that

kpσz ¼ 1. At this density, the plasma blowout radius is

approximately given by [26] kprbo ≈ 2
ffiffiffiffiffiffiffiffi

Λb;0

p

, with

Λb;0 ≡ 2Ib;0=IA, IA ¼ 17.05 kA the Alfvèn current, and

Ib;0 the peak current of the beam. In all the simulations

Ib;0 ¼ 2.5 kA, for which kprbo ≈ 1.1. The transverse (rms)

size σx;0 is varied from 0.1 to 0.9k−1p , and accordingly

nb;0=n0 ¼ Λb;0=ðkpσx;0Þ2 goes from 29 to 0.36. For the

narrow cases (σx;0 ≪ rbo) the beam is initially overdense

(nb;0 ≫ n0), while for the wide cases (σx;0 ∼ rbo) it is

underdense (nb;0≲n0). When σx;0≈rbo then nb;0=n0 ≈ 1=4.

See the Supplemental Material [30] for additional simu-

lation parameters.

Figure 1 shows the central ζ − x plane in the beginning

of the propagation in the plasma, for two exemplary

simulation runs: Case Ca with kpσx;0 ¼ 0.1 and case Cb

with kpσx;0 ¼ 0.5. In case Ca, σx;0 ≪ rbo and most of the

slices of the drive beam are completely embedded in the

blowout cavity [Fig. 1(a), top]. In case Cb, the beam is

wider and initially underdense, and therefore, the blowout

formation is only partial in the region of the beam

[Fig. 1(b), top]. The energy change along the beam EðζÞ
is similar for both cases (Fig. 1, middle). The focusing

strength KðζÞ along the beam is perfectly uniform for the

narrow beam case Ca, but it substantially varies for the

wide beam case Cb (Fig. 1, bottom), where a finite plasma

electron density in the region of the beam alters the

focusing field associated with the ion channel.

The beam and plasma electron densities at ωpt ¼ 2045

for the cases Ca and Cb are shown in Figs. 2(a) and 2(b),

respectively. After some propagation, the wide drive beam

(Cb) is transversely compressed by the self-generated

focusing field, enhancing in this way the plasma blowout

formation [Fig. 2(b)]. The average centroid position X̄b

within a central region of the drive beam with length

kpΔζ ¼ 1, is shown as a function of the propagation time in

Fig. 2(c), for five different initial values of the transverse

size (rms). It is apparent that the average centroid oscil-

lations are rapidly suppressed for the cases with a wide

beam. As we explain below, this effect is primarily

associated with a quick decoherence between the oscil-

lations of the slices within the central beam region due to a

nonuniform focusing strength along the drive beam.

We further investigate the stability of the PWFA in the

PIC simulations by studying the evolution of a low-current

witness beam, initially placed on the propagation axis at

comoving position kpζ ¼ −4. The simulations with a

narrow drive beam are affected by the HI and the witness

beam breaks up after a short propagation distance. Only for

the wide drive beam cases with kpσx;0 ¼ 0.7 and 0.9, where

the HI is rapidly suppressed, the witness beams are

efficiently accelerated with no slice emittance degradation.

Remarkably, the acceleration performance is barely

affected, dropping only by 10% and 15%, respectively,

when compared to a symmetric narrow drive beam case

without hosing. Extended information about the PIC

simulation results can be found in the Supplemental

Material [30].

FIG. 1. PIC simulations for a narrow beam with kpσx;0 ¼ 0.1

(a) and a wide beam with kpσx;0 ¼ 0.5 (b), immediately after

entering the homogeneous plasma. Top: plasma electron density

np and beam electron density nb. Middle: rate of energy change,

E ≡ −ðe=mcÞEz. Bottom: focusing strength, K≡ ðe=mÞ∂xWx.

Red curves represent the corresponding lineouts on the propa-

gation axis. The centroids of the beam XbðζÞ and the focusing

channel XcðζÞ are shown in white and purple lines, respectively.

FIG. 2. PIC simulation results for (a) a narrow beam with

kpσx;0 ¼ 0.1 and (b) a wide beam with kpσx;0 ¼ 0.5 (b), after

some propagation in the plasma. (c) Average centroid oscillations

within the central region kpΔζ ¼ 1 of the drive beam as a

function of the propagation time, for five cases with different

initial transverse size.
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The decoherence rates owing to longitudinal variations

of the betatron frequency can be estimated by considering

an infinitesimal ζ slice with constantK and E, together with

the solutions of Eq. (5). Taking partial derivatives of

Eq. (3), we obtain the differential phase advance along

the beam

∂ζϕ ≃
ωβ;0t

2

�

∂ζK

K
−
∂ζγ0

γ0

�

−
ðωβ;0tÞ2

4

∂ζE

ωβ;0γ0
; ð6Þ

wherewe have included the contribution from a ζ-dependent

initial energy variation in the beam. Equation (6) is valid up

to leading order in t=tdp, with tdp ≡ γ0=jEj the energy

depletion time. For an early time, t ≪ tdp, the phase advance

difference between different ζ slices is dominated by either

the relative variation of the focusing strength along the

beam, κ ≡ ∂ζK=K, and/or an initial relative energy chirp,

which is identically 0 in the hereby considered cases. The

differential phase advance caused by the variation of E only

appears at second order in t=tdp.

We now consider a beam region with length Δζ, an

uniform current and with a linear variation of K and E.

The decoherence time for this beam region can be defined

by the time at which the head-to-tail difference of the

phase advance is on the order of π, which corresponds to

opposite oscillation states. Thus, we use Eq. (6) to estimate

the decoherence time when either only ∂ζK ≠ 0, i.e.,

ωβ;0td;κ ¼ 2π=κΔζ, or when only ∂ζE ≠ 0, i.e., ωβ;0td;ε ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi

π=εΔζ

p

with ε≡ ∂ζE=ωβ;0γ0. The centroid oscillations

of various ζ slices along the beam region Δζ are detuned

after the respective decoherence times and the impact of the

beam region onto the focusing channel deviation, which

leads to hosing, is strongly suppressed. As a consequence,

the oscillation amplitude of the individual ζ slices is

expected to saturate and the average centroid displacement

within the beam region, X̄b ¼ Δ
−1
ζ

R

Δζ
XbðζÞdζ, to be

strongly damped after the decoherence time.

This model is used to evaluate the decoherence of the

centroid oscillations within a central beam region with

length kpΔζ ¼ 1 through the quantity X̄b, for two exem-

plary cases C0
a and C0

b, that resemble the PIC simulation

cases Ca, for a narrow beam with kpσx;0 ¼ 0.1, and Cb,

for a wide beam with kpσx;0 ¼ 0.5, respectively. For

simplicity, we assume a fixed channel centroid Xc ¼ 0,

and kpXb;0 ¼ 0.1, _Xb;0 ¼ 0 for all the ζ slices in the cases

C0
a and C0

b. In Fig. 1 we show the values of EðζÞ and KðζÞ
for the PIC simulation cases Ca and Cb in the beginning of

the propagation in plasma. We adopt the central values and

derivatives of these quantities in the analytical calculation

of the model cases C0
a and C0

b. In addition, we perform

a numerical integration of the exact equation of motion

_p ¼ −eW, for a set of 106 particles representing the

considered beam region. This numerical approach allows

us to account for nonlinear effects in the motion of the

beam electrons with a higher oscillation amplitude [31],

which are not included in the purely analytical calculation.

The nonuniformity of K and E for jxj≳ rbo is also

accounted for by adopting the values from the PIC

simulations (cf. Fig. 1).

In Fig. 3 we show the centroid oscillations for 50 ζ slices

along the considered beam region Δζ (colored curves),

together with their average X̄b obtained from the numerical

approach (black line) and as a result of the analytical model

(red dashed line). For case C0
a [Fig. 3(a)], κ ≃ 0 within the

considered beam region and the decoherence occurs

predominantly from a differential energy change along

the beam. In this case, the decoherence time is approx-

imately td;ϵ ≃ 8000=ωp, which is comparable to the energy

depletion time tdp ≃ 9000=ωp. The analytical model is in

excellent agreement with the numerical calculation for this

narrow beam scenario. For case C0
b [Fig. 3(b)], κ ≠ 0 and

the decoherence from a variation of the focusing strength

along the beam region dominates. Hence, the decoherence

time can be estimated by td;κ ≃ 800=ωp, which is on the

order of the initial betatron period of the beam electrons

Tβ;0 ¼ 2π=ωβ;0 ≃ 590=ωp. In this case, the model predicts

that decoherence is reached on a much shorter time scale

than for the narrow beam case C0
a, in good qualitative

agreement with the behavior observed in the PIC simu-

lation cases Ca and Cb.

We note that for the wide beam case C0
b, the nonlinear

effects on the motion of the electrons with a higher

oscillation amplitude cause additional decoherence through

0 2000 4000 6000 8000

0.1

0

0.1

0.1

0

0.1
(a)

(b)

FIG. 3. Centroid displacements of 50 equally spaced ζ slices

within the beam region kpΔζ ¼ 1 for a narrow beam with

kpσx;0 ¼ 0.1 (case C0
a) (a) and a wide beam with kpσx;0 ¼ 0.5

(case C0
b) (b). The centroids are calculated by numerical inte-

gration of the equations of motion for a set of 106 particles

composing the beam region. Yellow curves refer to slices near the

front and blue curves slices at the back of the beam region. The

black curve shows the average centroid displacement of the beam

region, X̄b. The red dashed curve represents the analytical

calculation for X̄b, when just Eq. (5) with Xc ¼ 0 for the beam

centroid displacements is considered.
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intra-slice phase mixing [31], and consequently, a damping

of the centroid oscillation amplitude of the different ζ

slices. As a result, the numerical calculation predicts a

slightly higher damping of X̄b than the analytical model in

case C0
b [Fig. 3(b)]. From the comparison between the

analytical and the numerical approaches, we identify the

decoherence caused by a finite ∂ζK as the main effect

responsible for the fast suppression of the HI observed in

PIC simulations with wide drive beams.

In conclusion, we show that the HI in PWFAs is rapidly

suppressed for drive beams with an initial transverse size

comparable to the blowout radius. The intrinsic variation of

the focusing strength in the beam region for scenarios with

initially wide and underdense drive beams leads to a quick

decoherence between the centroid oscillations of various

slices along the beam, and consequently, to the suppression

of the instability. Still, behind the drive beam the blowout

formation is complete and the witness beams are efficiently

accelerated with no emittance degradation. This intrinsic

stabilization principle provides an applicable and effective

method for the suppression of the HI of the drive beam and

will allow for a stable acceleration process in future PWFA

experiments.
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