Hadron Production in Photon-Photon Processes at the ILC and BSM signatures with small mass differences

DPG Spring Meeting 2018

Swathi Sasikumar, Jenny List, Mikael Berggren

19th-23rd March 2018

Introduction

> Naturalness requires light higgsinos at electroweak scale

$$m_Z^2 = 2\frac{m_{H_d}^2 + \Sigma_d^d - (m_{H_u}^2 + \Sigma_u^u) \tan^2 \beta}{\tan^2 \beta - 1} - 2\mu^2$$

- Natural region is μ =100-300 GeV (accessible for ILC500) [arXiv: 1212.2655, arXiv:1404.7510]
- > Light higgsinos $\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$ and $\tilde{\chi}_1^{\pm}$ nearly mass degenerate

$$\Delta M(\tilde{X}_{1}^{\pm}, \tilde{X}_{1}^{0}) = 770 \text{ MeV} => \text{dM}770$$

$$\Delta M(\tilde{X}_1^{\pm}, \tilde{X}_1^0) = 1.6 \text{ GeV} => \text{dM}1600$$

Ref: Tomohiko Tanabe

ILC as a lepton Collider

- The International Linear Collider (ILC) is a proposed e+e- collider
 - ♦ Tunable \sqrt{s} = 250 500 GeV
 - ◆ Clean and completely reconstructible final states
 - ◆ No trigger all events included
 - ◆ Japan under political consideration

Photons in e⁺e⁻ collider

>e⁺e⁻ beams accompanied by photons:

>Real Photons:

 Beamstrahlung - emission of real photons in high electrical field of oncoming bunch

>Virtual Photons:

 Weiszaecker-Williams process emission of virtual photons interacting with oncoming photon or electron

Photon-Photon Interactions

- > Photons from beamstrahlung (real) and Weiszacker-Williams (virtual) process
- > Vector meson dominance -Most dominating subprocess $\rho, \omega, \phi, J/\psi, \Upsilon$
- > Photon fluctuates into a vector meson since it has got the same quantum properties
- > Highest probability to fluctuate into rho meson

Motivation

- > $\gamma\gamma$ \rightarrow low pt hadron backgrounds is a challenge for some specific cases e.g low ΔM higgsino
- > Visible decay products of higgsinos very soft and thus similar to $\gamma\gamma \to low\ p_T$ hadron backgrounds
- > Analysis for higgsinos still an exception to k_T algorithm (Jet Clustering algorithm) method -
 - the low pt visible decay products misidentified as $\gamma\gamma$ overlay in exclusive mode and discarded
- Important to study the effect of overlay on the higgsino events

Possible method to remove $\gamma\gamma \rightarrow low pT$ hadrons

- Displacement of vertices in z direction
- Vertices of $\gamma\gamma$ overlay events displaced from that of signal vertices
- Identifying the tracks coming from such vertices and removing them would be an effective method
- This method cannot be used for purely neutral events like $\gamma \gamma \to \pi^0 \pi^0$

Z position of MC vertices

- > Every chargino decays to one charged particle and other particles as per the Branching Ratio
- > Signal green and overlay in reddish-brown
- > At 500 GeV we have 1.05 events/BX

Ηa

vtx_z[mm]

- > Every $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \gamma$ gives two tracks
- > Events with different number of $\gamma\gamma$ overlay events shown
- > Vertices for signal and background nicely separated

Reconstruction level and the track parameters

- >Standard vertex finding algorithm reconstructs one single primary vertex for each event
- >more complex algorithm to group the tracks to find different vertices
- > z_0 parameter of the track is important
- > Unlike the particles in $\gamma\gamma \rightarrow$ low pt hadron events, charginos have a finite life time which makes the d₀ parameter important
- >develop a new algorithm which groups the closest tracks to form vertex positions

Detailed study of do parameter

Algorithm

Results from the algorithm

- >d₀ method only partially used for dM770 highest d₀ track removed
- >d₀ separation still not used in dM1600
- >80% of tracks separated using d₀ parameter for dM770 charginos !!!
- >60% of the events (dM770) diagonal

Conclusion and Outlook

- >Impact of $\gamma\gamma \rightarrow low$ pt hadron overlay on the higgsino events very important
- >Existing standard methods to remove these backgrounds remain inefficient in this case
- >Displaced vertices for the signal and background events and the finite life time of the charginos very important factors to develop new method
- New algorithm leading towards the method to remove the $\gamma\gamma \rightarrow$ low pt hadron events developed
- > Work in progress!!!

>OUTLOOK:

- Algorithm is to be optimized using d0 separation
- Check total charge of a group
- To identify groups (background or signal)

Questions??

> Weighted avg position = $\sum_{i} \frac{Z0[track_{i}]}{Z0[error_{i}]} / \sum_{i} \frac{1}{Z0[error_{i}]}$

> Weighted Avg Error =
$$1/\Sigma_i \frac{1}{Z0[error_i]}$$

Vertex Smearing

- > Beam spot not a perfect spot has a spread
- > Simulated $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \gamma$ samples with vertex smeared along z axis benchmark scenario dM770 (196.8)
- > Four different samples of $\gamma\gamma$ \rightarrow low pt hadron events simulated with smeared vertices Guinea Pig

Reconstruction efficiency for $\gamma\gamma \rightarrow low\ pt\ hadron\ tracks$

- ILDPerformance -Diagnostics package used for tracking efficiency
- Silicon Tracking algorithm used to reconstruct tracks
- Reconstruction efficiency of $\gamma \gamma \rightarrow low p_T$ hadron events consistent with $t\bar{t}$ events
- Reconstruction efficiency for the low pt hadron events
 - Above 300 MeV and at higher angles 99%
- Important to develop method to remove $\gamma\gamma \rightarrow \text{low pt hadron events}$

ref. Tomohiko Tanabe

Precuts for the Algorithm

- The event should have a hard ISR photon with E > 10 GeV
- >ISR photon gives a pt kick to the beam electron - beam electron within detector acceptance
- > Missing energy from beam particles overlay events
- > For signals the pt kick balanced by the invisible neutralinos
- > No effect on the signal decay products or the beam electron

Summary and Outlook

- > Although physics environment at ILC is very clean $\gamma\gamma$ backgrounds is still important
- > The impact of this overlay is found on a very few specific but important events
- > A better generator to produce $\gamma\gamma$ —low pt hadrons was developed with more realistic particle contents for events
- > Investigating whether different z_vtx position and vector meson tag can be used to remove the backgrounds
- Work in progress!!
- > OUTLOOK:
 - The method developed will be applied on higgsino samples and Hale Sert's study would be repeated but with inclusion of overlay

Detailed study of do parameter

- > Chargino different branching ratios but always decays into one charged particle
- > Every event should have two tracks from the signal $(\tilde{\chi}_1^+, \tilde{\chi}_1^-)$
- > The d₀ significance of the two tracks of the signal are plotted
- >60 % cases one track has high value of d0 significance and other is smaller
- > Rest 40 % cases d₀ significance for both tracks are similar

Method Development to remove backgrounds

- > Primary step separating events as in table
 - Pythia events complex 55 % events good chances for finding vertex
 - Only Separating Barklow events as below 45 %

Processes	No. events [%]	Methods to tackle
$\gamma\gamma \to \pi^+\pi^-$		displaced vertices
$\gamma\gamma \to \pi^0\pi^0$	5.68 %	only photons 😀
$\gamma\gamma \to \rho^+\rho^-$	1.26 %	displaced vertices & rho tag
$\gamma\gamma o ho^0 ho^0$	2.68 %	displaced vertices & rho tag
$\gamma\gamma \to \rho^0\omega$	0.7 %	displaced vertices & rho tag

Method - Using Rho meson tag

- > $\gamma\gamma \to \rho^0\rho^0$ events rho meson decay to two π^+ and two π^- (2.68 %)
 - Events with exactly 2 +ve and 2 -ve tracks selected
 - Invariant mass calculated from two different combinations
 - mass closest to rho meson chosen and plotted
 - The pion combinations give rho mass 770 145 MeV
 - Only 0.54% events reconstructed exactly as 2 +ve and 2 -ve tracks

Event Properties of Pythia

- Direct Interactions(DIR) Real photons interacts directly
- Vector Meson Dominance(VMD) Photon fluctuates into a vector meson
- Anomalous Interactions(GVMD) Photon fluctuates into a $q\bar{q}$ pair of larger virtuality
- Deep inelastic Scattering(DIS) A process of probing the Hadrons with very high energy leptons.

Subprocesses	Cross-sections (nb)
VMD * VMD	239.2
DIR * VMD	87.52
GVMD * DIR	9.77
GVMD * GVMD	12.05

> Pythia cannot simulate below 2 GeV

Cross sections for Pythia events

- \rightarrow Comparison of $\gamma\gamma$ Tow Pt hadron process cross sections from Pythia with PDG, Amaldi et.al(hep-ph/9305247) and data from LEP, PETRA and VEPP
- $> \sqrt{s_{\gamma\gamma}} > 10 \text{ GeV}$: Good description of LEP data with Pythia
- $> \sqrt{s_{\gamma\gamma}} < 10$ GeV: Measurements have large uncertainties and widespread
- > Pythia event properties studied in detail for better understanding

Does $\sqrt{s_{\gamma\gamma}}$ < 1 GeV matter?

- > Detector acceptance for $\sqrt{84}$ GeV
 - Select events $\sqrt{s} \le 1 \text{ GeV}$
 - Events generated from real-real, real-virtual and virtual-virtual photon collisions
 - Simulate ILD in SGV fast simulation
- > Reconstruction in SGV
 - Particles having <u>3</u> layer hits: "Charged"
 - Particles hitting calorimeter: "Neutral"

Ref: archiv:1203.0217v1

Event Properties of Pythia

Momentum acceptance for Pions

- > Momentum acceptance:
 - Dividing seen stable pions with all true pions
 - The acceptance for most particles > 80%
 - Particles with high Pt but moving in forward direction - low acceptance

A dedicated event generator for $\gamma\gamma$ processes

- > For $\sqrt{s_{\gamma\gamma}}$ > 2 GeV Pythia 6 used to simulate $\gamma\gamma \rightarrow \text{low pT hadron processes}$
- Below 2 π_m pure QED beam-beam interactions modeled by dedicated programs - Guinea Pig
- Need to evaluate the impact of uncovered region how can it be modeled?
- Dedicated generator developed in ILC community to study low energy region by Tim Barklow
- The particles below 2 GeV Very low Pt
- Could these particles be observed in the detector?
- How important is it to model this area?

Angular acceptance for Pions

4000

2000

0.5

- Angular acceptance:
 - Dividing seen stable pions with all true pions
 - The acceptance for most particles > 80%
 - Particles with high Pt but moving in forward direction - low acceptance

Momentum acceptance of pions with full simulation

- > Cross checked the results with full simulation
- > acceptance for pions at $\sqrt{2}$ GeV
- Acceptance reasonable enough to model the region below 2 GeV
- Work under progress to confirm the results

Modeling the low energy regime

- > The issues discovered studied and conveyed to the author
- > As expected from Chiral sum rule and Regge theory the generator now produces large variety of events
- > The cross-sections for producing is greater than ρ^{\pm}
- > A better version of the generator was thus developed correcting the issues in older version-big progress!!!

