Separation of hadronic WW/ZZ decays at the ILC Research Practice Presentation

Jakob Beyer ^{1,2}, Michael Kobel ², Jenny List ¹

¹DESY Hamburg

²Technische Universität Dresden

April 23, 2018

The International Linear Collider

The International Large Detector

Hadronic WW/ZZ decays

My plan

WW/ZZ separation

Jet reconstruction

Jet corrections

WW/ZZ separation as performance check

Summary

The International Linear Collider (ILC)

- Future linear e^+e^- Collider: $\sqrt{s}=250\,{\rm GeV}$ (First stage, extendable up to $1\,{\rm TeV}$)
- ► Construction under political consideration in the Kitakami mountains, Tōhoku region, Japan
- ▶ Both beams (e^+ , e^-) are polarized: $P_{e^-}=\pm 80\%, \quad P_{e^+}=\pm 30\%$

ILC physics case

Current running scenario: 2 ab⁻¹ @ 250 GeV

- Higgs factory
 - Model-independet measurements
 - Precision coupling measurements
- Precision electro-weak physics
 - Triple Gauge Couplings
 - BSM model discrimination
- New particles
 - ► Light scalar searches

Extendable up to 1 TeV:

- Top physics
- ▶ Electroweak measurements ⇒ Quartic Gauge Couplings
- New particles

DESY.

Testing & Optimizing the physics case

Currently severe lack of ILC data...

⇒ Physics studies based on detector simulations

► Highly detailed simulation using Geant4 → ATLAS, ALICE, ISS, LISA, ... (geant4.web.cern.ch)

Simulation validated against R&D testbeam data

Recent developements:

- Geometry description switched to CERN-developed DD4HEP
- Detector & software optimizations
 - detector size
 - subdetector options (calorimeters types)
 - additional magnet structure

The International Linear Collider

The International Large Detector

Hadronic WW/ZZ decays

My plan

WW/ZZ separation

Jet reconstruction

Jet corrections

WW/ZZ separation as performance check

Summary

The International Large Detector (ILD)

The International Large Detector (ILD)

Figure : $\nu\nu+4$ jets event in current ILD model.

Optimized for:

Particle Flow and precision physics

- Particle Flow: Use only information from subdetector with best resolution
- ► Highly granular calorimeters
- Efficient tracking using Time Projection Chamber
- Full solid angle coverage

Electroweak precision at the ILD

- ► TPC + high-granularity calorimeters
 - ⇒ Cluster/Particle separation
- Particle Flow:
 - ► Find clusters & tracks Combine Particles
 - Charged particle info from tracker + PID (not CALs!)
 - ⇒ Jet Energy Resolution (JER) ~ few %
- ► Can separate hadronic W/Z decays! (BR \sim 70%)
 - \rightarrow Precision EW physics in hadronic final states

Figure: 250 GeV jet in the ILD [arXiv:1308.4537]

- lacksquare Separate W and Z by invariant dijet mass
 - \rightarrow Benchmark:

JER: $\sigma_E/E \sim 3-4\%$

- ▶ Tested in full detector MC simulation
 - \Rightarrow Achievable with current technology

9/37

Hadronic WW/ZZ decays

$e^+e^- \longrightarrow \nu\nu q\bar{q}q\bar{q}$: physical motivation

Matrix Element (ME) for $\nu\nu q\bar{q}q\bar{q}$ final state includes Vector Boson Scattering (VBS):

- ▶ In SM w/o Higgs: $WW \to WW/ZZ$ scattering ME diverges at $\sqrt{s} \ge 1.2\,\text{TeV}$ \Rightarrow Higgs restores unitarity
- If Higgs not SM-like:
 Scenarios of delayed unitarity restoration
 → Test for BSM physics
- Semi-/Leptonic final states also possible, but: BR($W/Z \rightarrow q\bar{q}$) $\sim 70\%$
- ▶ Requires high \sqrt{s} ⇒ Studies in this talk at $\sqrt{s} = 1 \text{ TeV}$ \hookrightarrow Test of detector design

$$\Longrightarrow$$
 Study $e^+e^- o
u
u WW/ZZ o
u
u q ar q q ar q$ at $\sqrt{s}=1$ TeV at the ILD

VBS searches: What can be achieved?

Previous study (incl. $WW \to WW/ZZ$ search) tested limit setting for EW extensions of SM w/ ILC [hep-ph/0604048]:

Theory:

$$\mathcal{L}_0 = \mathcal{L}_{\mathsf{SM}} + \sum_i lpha_i \mathcal{L}_i^{\mathsf{anomalous}} \;, \, \mathsf{e.g.} \; \mathcal{L}_4 = (\mathsf{tr} \, \{ \, V_\mu \, V_
u \})^2$$

Results: 1 TeV, 1 ab⁻¹, $80\%e_L^-$, $40\%e_R^+$

C11/21

30(2)		
coupling	$\sigma-$	$\sigma+$
α_4	-1.41	1.38
α_5	-1.16	1.09

SILLYT

(2) صر		
coupling	$\sigma-$	$\sigma+$
α_4	-2.72	2.37
α_5	-2.46	2.35
α_6	-3.93	5.53
α_7	-3.22	3.31
α_{10}	-5.55	4.55

However: Study from 2006 \rightarrow old software, detector model, theory...

⇒ Needs updates...

The International Linear Collider

The International Large Detector

Hadronic WW/ZZ decays

My plan

WW/ZZ separation

Jet reconstruction

Jet corrections

WW/ZZ separation as performance check

Summary

Steps toward VBS analysis

- 1. $\nu\nu q\bar{q}q\bar{q}$ final state reconstruction \longrightarrow Investigate + optimize
 - ightharpoonup WW/ZZ separation
 - jet reconstruction

- 2. VBS analysis
 - Analysis with full SM and overlay background
 - Interpretation using Higgs EFT

The International Linear Collider

The International Large Detector

Hadronic WW/ZZ decays

My plan

WW/ZZ separation

Jet reconstruction

Jet corrections

WW/ZZ separation as performance check

Summary

Previous studies

Study has been performed before:

- ▶ 2001: Strong EWSB Singal in WW Scattering at TESLA (Chierici, Rosati, Kobel [[LC-PHSM-2001-038])
- 2009: $\nu_e \bar{\nu_e} WW / \nu_e \bar{\nu_e} ZZ@1000 \text{GeV}$ for ILD Letter of Intent (Ward, Yan [arXiv:1006.3396])

⇒ Follow the same 4 basics steps:

- 1. Define WW/ZZ events in $\nu\nu q\bar{q}q\bar{q}$ sample on generator level
- 2. Detector simulation & event reconstruction
- 3. Apply preselection for SM background reduction
- 4. Find invariant masses of the W/Z candidates

Motivation for new study

Goal: Investigate separation of WW and ZZ in $e^+e^- \to \nu\nu WW/ZZ \to \nu\nu q\bar{q}q\bar{q}$ with new detector model, new software, new physics knowledge

- 1. Define WW/ZZ events in $u
 u q \bar{q} q \bar{q}$ sample on generator level
- 2. Detector simulation & event reconstruction using iLCSoft (github.com/iLCSoft)
- 3. Apply preselection for SM background reduction
- 4. Find invariant masses of the W/Z candidates

WW/ZZ event definition

Goal: Investigate separation of WW and ZZ in $e^+e^- o \nu\nu\,WW/ZZ o \nu\nu\,q\bar{q}q\bar{q}$

- 1. Define WW/ZZ events in $\nu\nu q\bar{q}q\bar{q}$ sample on generator level:
 - ightarrow Want events with $q \bar q q \bar q$ from WW
 ightarrow WW/ZZ, but samples use full $\nu \nu q \bar q q \bar q$ ME
 - \rightarrow Define $WW \rightarrow WW/ZZ$ events on generator level:
 - ▶ Incoming particles: e⁻ left-handed, e⁺ right-handed
 - $lackbox{ Quark flavours in agreement with } WW/ZZ$
 - ▶ $147.0 < m_{qq}^1 + m_{qq}^2 < 171.0 \text{ (}WW\text{)},$ $171.0 < m_{qq}^1 + m_{qq}^2 < 195.0 \text{ (}ZZ\text{)}$
 - $|m_{qq}^1 m_{qq}^2| \le 20.0 \text{GeV}$
 - $m_{\nu_e \bar{\nu}_e} \ge 100.0 \text{GeV}$

Figure: 2D di-quark mass distributions for events classified as WW or ZZ (normalized).

- 2. Detector simulation & event reconstruction using iLCSoft (github.com/iLCSoft)
- 3. Apply preselection for SM background reduction
- 4. Find invariant masses of the W/Z candidates

Find W/Z invariant masses

Goal: Investigate separation of WW and ZZ in $e^+e^- \to \nu\nu\,WW/ZZ \to \nu\nu\,q\bar{q}q\bar{q}$

- 1. Define WW/ZZ events in $u
 u q \bar{q} q \bar{q}$ sample on generator level
- 2. Detector simulation & event reconstruction using iLCSoft (github.com/iLCSoft)
- 3. Apply preselection for SM background reduction
- 4. Find invariant masses of the W/Z candidates
 - \rightarrow Use reconstructed particle to calculate invariant masses of W/Z candidates
 - Cluster particles into 4 jets
 - Pair up jets into 2 boson-dijet candidates by minimizing $|m_{jj,1}-m_{jj,2}|$
 - ▶ Plot boson masses m_{jj} for (WW) and (ZZ) events

WW/ZZ separation plots

- 4. Find invariant masses of the W/Z candidates:
 - ightarrow Use reconstructed particle to calculate invariant masses of W/Z candidates
 - Cluster particles into 4 jets
 - lacktriangle Pair up jets into 2 boson-dijet candidates by minimizing $|m_{jj,1}-m_{jj,2}|$
 - ▶ Plot boson masses m_{jj} for (WW) and (ZZ) events
 - ▶ Lumi: $\mathcal{L} = 1 \text{ ab}^{-1}$, Polarisations: $P_{e^{-}} = -80\%$, $P_{e^{+}} = +30\%$

- ▶ Good separation of WW and ZZ peaks.
- ► Shifted mass peaks wrt. boson masses → ?
- ▶ Long tails to high and low m_{jj}

Recreation of performance plots

Letter of Intent

► Well-separated and resolved <u>WW</u> and <u>ZZ</u> peaks

Own analysis

- Distribution tails (not observed in Lol)
- Mass peaks shifted wrt. boson masses

Performance plots - Tail regions

First try: Cause for tail regions?

- ► Tested for ISR effects
 - → How much of detected energy linked to ISR?
- ▶ Tested for detector region using $V\left(W/Z\right)$ boson angle
 - \rightarrow Is mass tail angle specific?
- ► Tested jet pairing
 - \rightarrow Does my jet pairing method cause the tails?

 \Rightarrow No cause found \longrightarrow look into jets!

Figure: Using own pairing method.

Figure: Using Lol pairing method

The International Linear Collider

The International Large Detector

Hadronic WW/ZZ decays

My plan

WW/ZZ separation

Jet reconstruction

Jet corrections

WW/ZZ separation as performance check

Summary

Influence of heavy quarks

Conjecture: Mass peak shifted due to energy lost to neutrinos

⇒ Dominant in heavy quark jets

 \longrightarrow Test influence of number of c and b quarks on reconstructed m_{ii} distributions

► Plot:

- WW & ZZ event definition on generator level
- reconstructed m_{ii}
- Heavy quarks shift mass peaks
 - ⇒ Further investigation!
- Even without heavy quarks tail remains

The TrueJet processor

- partonic decays, e.g.

- TrueJet:
 - Processor within iLCSoft
 - Use MC/simulation information to check parton/jet information on intermediate stages of event measurement
 - ⇒ Distinguish clustering, detector resolution, detector acceptance, ...

quarks Parton | shower partons Hadronization, fragmentation hadrons Detector acceptance detected particles Det. resolution, Particle Flow

reconstructed particles

Overlay, | jet-clustering

clustered jets

Comparing MC and Reconstructed

Deeper look into influence of jet flavour:

Individual jet \rightarrow flavour of q origin (generator level) $\rightarrow E_{jet}$: generator level VS reconstructed

 \Rightarrow **b** jets: Reconstructed E_{jet} underestimated and stronger fluctuating

 \longrightarrow Again: Hint to ν 's

Jakob Beyer $\mid WW/ZZ$ @ ILC \mid April 23, 2018 \mid

Jet flavour influencing Jet Energy Resolution

How is σ_E/E influenced by jet flavour ($\rightarrow \nu$'s)?

- ⇒ Use TrueJet for physical approach to JER
 - ▶ JER plots so far:
 - ▶ JER from total energy in uds dijet-event (not individual E_{jet})
 - Truncated mean/sigma: Used inner 90% of E distribution

With True.Jet:

- Compare true and reconstructed E_{jet} for individual jets!
- Only clustering cheated unphysically (→ study separately)

27/37

Cheating jet-clustering and pairing w/ TrueJet

From generator level: q colour information \Rightarrow Colour neutral $\{q\bar{q}\}=W/Z$

- ► Take jets linked to initial colour neutrals
 - \longrightarrow Cheat jet clustering and jet pairing = realistic detector + ideal algorithm

Figure : Own jet-clustering and jet pairing. Figure : TJ-cheated jet-clustering and pairing.

→ Tails seem to be problem with my jet-clustering/-pairing!

Results of jet investigation

So why the difference to Letter of Intent?

- ▶ Mass peaks: originating from heavy quarks
 - \longrightarrow Difference to Lol: No b quarks in samples!
- ► Tails: originating from jet-clustering
 - → Difference to LoI: Different clustering algorithm!
 - ightharpoonup LoI: Undocumented ightharpoonup possibly cheated
 - ▶ Here: $e^+e^- k_T$ algorithm

Figure: Letter of Intent results.

Figure : Own results.

Results of jet investigation

So why the difference to Letter of Intent?

- Mass peaks: originating from heavy quarks
 - \longrightarrow Difference to Lol: No b quarks in samples!
- ► Tails: originating from jet-clustering
 - → Difference to LoI: Different clustering algorithm!
 - ightharpoonup LoI: Undocumented ightarrow possibly cheated
 - ▶ Here: $e^+e^- k_T$ algorithm

Figure: Letter of Intent results.

Figure: Own, jet clustering & pairing cheated

Results of jet investigation

So why the difference to Letter of Intent?

- Mass peaks: originating from heavy quarks
 - \longrightarrow Difference to Lol: No b quarks in samples!
- ► Tails: originating from jet-clustering
 - → Difference to LoI: Different clustering algorithm!
 - ightharpoonup LoI: Undocumented ightharpoonup possibly cheated
 - ▶ Here: $e^+e^- k_T$ algorithm

Figure: Letter of Intent results.

Figure: Own, jets cheated, uds only.

The International Linear Collider

The International Large Detector

Hadronic WW/ZZ decays

My plan

WW/ZZ separation

Jet reconstruction

Jet corrections

WW/ZZ separation as performance check

Summary

Neutrino corrections

Hadron in jet gives off $l^{\pm}\nu$ pair

- → Correctable if:
 - $ightharpoonup l^{\pm}$ found
 - Secondary vertex found
 - ightharpoonup X found
 - Assumptions about initial hadron possible

 \Longrightarrow Investigate l
u pairs in TrueJet jets

hadron

- No simple correction possible
- → Find visible particles & secondary vertex
 - + assume hadron mass

Reconstruct ν

Jakob Bever | WW / ZZ @ ILC | April 23, 2018 | 31/3

The International Linear Collider

The International Large Detector

Hadronic WW/ZZ decays

My plan

WW/ZZ separation

Jet reconstruction

Jet corrections

WW/ZZ separation as performance check

Summary

Making a WW/ZZ separation plot

Recipe for this plot:

- 1. $\nu\nu q\bar{q}q\bar{q}$ event generation
- Detector simulation
- Particle reconstruction
- 4. Event analysis
- ⇒ When run in full: Test for

detector model

simulation & reconstruction software!

Ongoing detector & software developments:

- → Use such plots for model / version validation
- ⇒ iLCSoft contains ILDPerformance package (github.som/iLCSoft/ILDPerformance)

Goal: Standardized algorithms for performance plots!

WW/ZZ in ILDPerformance

Implemented script into ILDPerformance to run:

- ▶ Detector simulation → DDSim (github.com/iLCSoft/lcgeo)
- ► Event reconstruction → PandoraPFA (github.com/PandoraPFA) & ILDConfig (github.com/iLCSoft/ILDConfig)
- ightharpoonup WW/ZZ analysis ightharpoonup Marlin (github.com/iLCSoft/Marlin)

on existing generator files with simple command.

Problem:

- ightharpoonup simulation + reconstruction = $\sim 5 \, \mathrm{min/event}$
- ▶ need ~ 30 k events

Solution: Run sim+reco distributed on grid with *ILCDirac*

(A Tsaregorodtsev, 2010 J. Phys.: Conf. Ser. 219 062029)

⇒ Get plot starting from generator file within few hours!

Figure : Plot with current software & detector model.

The International Linear Collider

The International Large Detector

Hadronic WW/ZZ decays

My plan

WW/ZZ separation

Jet reconstruction

Jet corrections

WW/ZZ separation as performance check

Summary

Conclusion & outlook

$$e^+e^- \to \nu\nu\,WW/ZZ \to \nu\nu\,q\bar{q}\,q\bar{q}$$
 at $\sqrt{s}=1\,\text{TeV}$ at the ILD

So far:

- ▶ Investigated WW/ZZ separation
 - recreated previous studies
 - ▶ found deviations: shifted mass peaks + long tails
- Studied causes for deviations
 - Causes found in jet reconstruction
 - \triangleright Shifted mass peak from ν s in b jets
 - Tails from jet-clustering
 - Started work on ν correction
- lacktriangle Implemented WW/ZZ separation as performance check in ILDPerformance

Plan:

- Build jet corrections (ν, JES)
- ▶ VBS analysis using complete Standard Model background

Thanks for your attention!

37/37

BACKUP

ILC-250 staging

Staging scenario changed from Technical Design Report (TDR, ILC-500)

- \implies 2 possibilities (cost-neutral):
 - ▶ Beam parameters as for ILC-500
 - $lackbox{ More aggressive beam parameters}
 ightarrow {\sf Higher lumi, slightly more beamstrahlung}$

Preselection

Goal: Investigate separation of WW and ZZ in $e^+e^- o
u\nu WW/ZZ o
u\nu q\bar{q}q\bar{q}$

- 1. Define WW/ZZ events in $u\nu q \bar{q} q \bar{q}$ sample on generator level
- 2. Detector simulation & event reconstruction using iLCSoft (github.com/iLCSoft)
- 3. Apply preselection for SM background reduction:
 - \rightarrow apply cuts as in previous work (ILD Letter of Intent arXiv:1006.3396):
 - ightharpoonup Cuts on jet content to reject $t\bar{t}$ events
 - ▶ $Y_{34} > 0.0001 \rightarrow$ Event does not have less than 4 jets
 - ▶ Suppress 2- and 4-fermion and $ZWW/ZZZ(,Z \to \nu\nu)$ background using $m_{missing}$, $E_{T,visible}$ and $p_{T,visible}$
 - Missing momentum not from particles going to beam pipe
 - lacksquare Suppress ISR- γ \to hadrons events using highest energetic track
 - lacktriangle Reject tar t o bar b qar q l
 u using cone around most energetic track
- 4. Find invariant masses of the W/Z candidates

https://atlas.web.cern.ch/Atlas/GROUPS/ PHYSICS/CONFNOTES/ATLAS-CONF-2012-160/ figaux_03.png

- ► Several interactions / bunch crossing (average ~30-40)
- Background form other partons and other interactions

- average of 1 interaction per bunch crossing
- ▶ Background from beamstrahlung ⇒ pair production, $\gamma\gamma$ → hadrons
- background events are generated separately and overlayed onto samples

Impact parameter resolution

Need to find secondary vertex to reconstruct ν 's

⇒ Requires good vertex position resolution! **Impact Parameter Resolution Z0 Resolution** $\sigma_{d0}(mm)$ a_{Z_0} (mm θ = 85° 10^{-1} 10^{-1} 10^{-2} 10^{-2} 10^{-3} Momentum (GeV) Momentum (GeV)