Polarization and Electroweak Precision Measurements at the ILC for $\sqrt{s}=250\,{\rm GeV}$ DPG-Frühjahrstagung, Würzburg

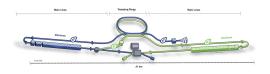
Robert Karl^{1,2}

 $^{1} {\sf DESY}$

 2 Universität Hamburg

22.03.2018

The International Linear Collider (ILC)

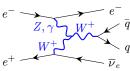


► Future linear e⁺e[−] collider: $\sqrt{s} = 250 \, \text{GeV}$ (As a first stage)

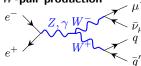
- Japan Morioka Citu Kuoto Iwate Pref Tokuo
- Construction under political consideration in the Kitakami region, Prefecture Iwate, Japan
- ▶ At the ILC both beams (e^+ , e^-) are polarized: $P_{e^-} = \pm 80\%$, $P_{e^+} = \pm 30\%$
- Switch of polarization sign (helicity reversal) \rightarrow choice of spin configuration
- Designed for precision studies for physics of the standard model and beyond

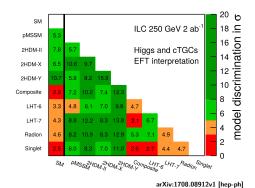
Anomalous Triple Gauge Couplings (aTGCs)

TGC for e.g.: single ${\cal W}$



and W-pair production

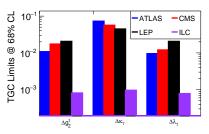




- The constraint of TGCs and their precision of $\approx 10^{-3}$ is necessary for the distinction of different Higgs-models beyond the SM
- Additional bosons (e.g. Z') will affect TGCs
- ⇒ TGCs have to be precisely measured
- \Rightarrow aTGCs described by an Effective Field Theory (EFT)

ILC Aims for Precision Measurements

Triple Gauge Couplings (TGC)



- ⇒ Polarization has to be known as precisely as the luminosity!
- ⇒ Requirement for a permille-level precision of the luminosityweighed average polarization

8 TeV ATLAS:
$$20.3 \, \text{fb}^{-1}$$
; CMS: $19.4 \, \text{fb}^{-1}$

Previously achieved polarization precision

HERA:
$$\Delta P/P = 2\%_{\mathsf{stat}} \oplus 1\%_{\mathsf{sys}}$$
 [1]

SLAC:
$$\Delta P/P = 1.1\%$$
 [2]

- \Rightarrow More than one order of magnitude better precision on both TGC and polarization measurement (for $2\,\mathrm{ab}^{-2}$ at $250\,\mathrm{GeV}$)
- ⇒ Accomplished by simultaneous measurement of both of them

Beam Polarization Dependent Cross Section

▶ Theoretical polarized cross section in general:

$$\begin{split} \sigma_{\text{theory}}\left(P_{e^{-}},P_{e^{+}}\right) &= \frac{(1-P_{e^{-}})}{2}\frac{(1-P_{e^{+}})}{2} \cdot \sigma_{\text{LL}} + \frac{(1+P_{e^{-}})}{2}\frac{(1+P_{e^{+}})}{2} \cdot \sigma_{\text{RR}} \\ &+ \frac{(1-P_{e^{-}})}{2}\frac{(1+P_{e^{+}})}{2} \cdot \sigma_{\text{LR}} + \frac{(1+P_{e^{-}})}{2}\frac{(1-P_{e^{+}})}{2} \cdot \sigma_{\text{RL}} \end{split}$$

Nominal ILC polarization values

$$\underbrace{P_{e^-}^- = -80\%,}_{\text{"left"-handed e^--beam}} \qquad \underbrace{P_{e^+}^+ = 80\%,}_{\text{"right"-handed e^--beam}} \qquad \underbrace{P_{e^+}^- = -30\%,}_{\text{"left"-handed e^+-beam}} \qquad \underbrace{P_{e^+}^+ = 30\%,}_{\text{"right"-handed e^+-beam}}$$

Cross section of the 4 polarization configurations

$$\sigma_{--} := \sigma \left(P_{e^{-}}^{-}, P_{e^{+}}^{-} \right) \qquad \sigma_{++} := \sigma \left(P_{e^{-}}^{+}, P_{e^{+}}^{+} \right) \\
\sigma_{-+} := \sigma \left(P_{e^{-}}^{-}, P_{e^{+}}^{+} \right) \qquad \sigma_{+-} := \sigma \left(P_{e^{-}}^{+}, P_{e^{+}}^{-} \right)$$

 σ_{LL} , σ_{RR} , σ_{LR} , σ_{RL} are theoretically calculated including Initial State Radiation (ISR) and beam spectrum

Polarized Cross Section Measurement

Measured polarized cross section:

$$\sigma_{\mathsf{data}} = \frac{D - \mathfrak{B}}{\varepsilon \cdot \mathcal{L}}$$

D: Number of selected events \mathfrak{B} : Background expectation value

 ε : Detector selection efficiency \mathcal{L} : Integrated luminosity

Remark:

All of them can variate between the different data sets $(\sigma_{-+}, \ \sigma_{+-}, \ \sigma_{--}, \ \sigma_{++})$

Uncertainty of the polarized cross section is calculated via error propagation

Remark:

Statistical uncertainty is always uncorrelated: corr $\left(\sigma_i^D,\;\sigma_j^D\right)\equiv\delta_{ij}$

And it is determined by Poisson fluctuations: $\Delta D \equiv \sqrt{D}$

Usage of the Differential Polarized Cross Section

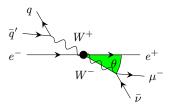
Choice of the angle:

- √ Individual for each channel
- √ High dependence of the angular distribution on the chiral structure
- ✓ Angle has to be well measurable
- √ Multi-angle distribution available

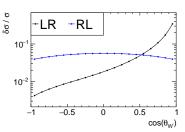
Bin-wise cross section calculation:

- Cross section calculated for each bin:
 - \rightarrow Labeled for the *i*-th bin as $\delta_i \sigma$
- Analog for the selected events, background and selection efficiency
 - → Calculated bin-wise

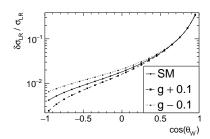
e.g.: $e^+e^- \to W^+W^- \to q\bar{q}'\mu^-\bar{\nu}$

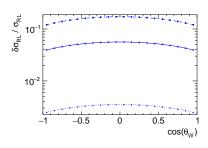


Projection on the θ_{W^-} -axis



Effect of Anomalous TGC in $e^-e^+ o \mu\nu q\bar q$ at 250 GeV





- ► The effect of the TGC g on the angular distribution
 - Variation the TGC within $\pm 10\%$ corresponds to $\pm 5\sigma$ deviation at LEP
 - → Only a very small impact on the angular distribution
 - ⇒ Especial sensitive only for ranges of low differential cross sections
- Precision measurement of TGCs:
 - A clear angular dependence: Event rates are affected simultaneously over the full angular range
 - + Strong dependence of the chiral structure

Fit Procedure

Considered Channels and their Parameters:

channel	cross section	left-right asymmetry		TGC
$e^-e^+ \longrightarrow e^-\bar{\nu}q\bar{q}$	$\sigma_{e^-ar{ u}qar{q}}$	$A_{RR}^{e^-\bar{\nu}q\bar{q}}$	$=rac{\sigma_{LR}-\sigma_{RR}}{\sigma_{LR}+\sigma_{RR}}$	g_Z^1 , κ_γ , λ_γ
$e^-e^+ \longrightarrow e^+ \nu q \bar{q}$	$\sigma_{e^+ u q \overline{q}}$	$A_{LL}^{e^+ u q \bar{q}}$	$=rac{\sigma_{LR}-\sigma_{LL}}{\sigma_{LR}+\sigma_{LL}}$	g_Z^1 , κ_γ , λ_γ
$e^-e^+ \longrightarrow \mu\nu q\bar{q}$	$\sigma_{\mu u qar q}$	$A_{RL}^{\mu\nu q \bar q}$	$=rac{\sigma_{LR}-\sigma_{RL}}{\sigma_{LR}+\sigma_{RL}}$	g_Z^1 , κ_γ , λ_γ
$e^-e^+ \longrightarrow \mu^+\mu^-q\bar{q}$	$\sigma_{\mu\mu qar q}$	$A_{RL}^{\mu\mu q \bar{q}}$	$=rac{\sigma_{LR}-\sigma_{RL}}{\sigma_{LR}+\sigma_{RL}}$	_
$e^-e^+ \longrightarrow q\bar{q}$	$\sigma_{qar{q}}$	$A_{RL}^{q \overline{q}}$	$=rac{\sigma_{LR}-\sigma_{RL}}{\sigma_{LR}+\sigma_{RL}}$	_
$e^-e^+ \longrightarrow ll$	σ_{ll}	A_{RL}^{ll}	$=rac{\sigma_{LR}-\sigma_{RL}}{\sigma_{LR}+\sigma_{RL}}$	_

- $\blacktriangleright P_{_{o}^{-}}^{-}$, $P_{_{o}^{+}}^{+}$, $P_{_{o}^{+}}^{+}$ determined globally for all channels
- Using the method of least squares:

$$\begin{split} \chi^2 &= \sum_{\text{channel}} \left[\sum_{\text{bin } i} \left(\delta_i \vec{\sigma}_{\text{data}} - \delta_i \vec{\sigma}_{\text{theory}} \right)^T \left(\delta_i \Xi \right)^{-1} \left(\delta_i \vec{\sigma}_{\text{data}} - \delta_i \vec{\sigma}_{\text{theory}} \right) \right]; \\ \vec{\sigma} &:= \left(\delta_i \sigma_{-+} \quad \delta_i \sigma_{+-} \quad \delta_i \sigma_{--} \quad \delta_i \sigma_{++} \right)^T \quad \text{Robert Karl } \mid \text{Polarimetry+EW} \mid 22.03.2018 \mid 1 \text{ Polarimetry} \mid 22.03.2018 \mid 1 \text{ Polarime$$

$$\vec{\sigma} :=$$

$$\sigma_{-+}$$
 $\delta_i \sigma_{+-}$

$$\delta_i \sigma_{--}$$

$$\delta_i \sigma_{++}$$

Results

Using the following global parameter values:

$$\varepsilon = 0.6$$

$$\pi = \frac{D - \mathfrak{B}}{D} = 0.8$$

$$\mathcal{L} = 2 \operatorname{ab}^{-1}$$

$$\Delta \varepsilon = \Delta \pi = \Delta \mathcal{L} = 0$$

Luminosity sharing:

$$-+:45\%, +-:45\%, --:5\%, ++:5\%$$

All results are in the order of $10^{-3}!$

Cross Section $[10^{-4}]$

Δ /	10.0
$\Delta \sigma_{e^+ \nu q \bar{q}} / \sigma$	12.9
$\Delta\sigma_{e^-ar{ u}qar{q}}/\sigma$	13.3
$\Delta \sigma_{\mu u q ar{q}} / \sigma$	11.4
$\Delta\sigma_{\mu\muqar{q}}/\sigma$	13.8
$\Delta\sigma_{qar{q}}/\sigma$	3.78
$\Delta\sigma_{ll}/\sigma$	3.91

Asymmetry $[10^{-4}]$

$\Delta A_{RR}^{e^+ \nu q \bar{q}}$	6.37
$\Delta A_{LL}^{e^-\bar{\nu}q\bar{q}}$	19.1
$\Delta A_{LR}^{\mu u qar{q}}$	3.32
$\Delta A_{LR}^{\mu\mu q ar{q}}$	15.4
$\Delta A_{LR}^{qar{q}}$	6.66
ΔA_{LR}^{ll}	7.72

Polarization $[10^{-4}]$

$\Delta P_{e^{-}}^{-}$	7.68
$\Delta P_{e^{-}}^{+}$	3.4
$\Delta P_{e^+}^-$	8.11
$\Delta P_{e^+}^+$	10.7

TGC $[10^{-4}]$

Δg	8.18
$\Delta \kappa$	10.1
$\Delta \lambda$	9.33

Conclusion

- Polarization provides a deep insight into the chiral structure of the standard model and beyond
 - A permille-level precision of the luminosity-weighted average polarization at the IP is required
- A full electroweak precision fit is achievable at the ILC
 - ▶ The beam polarization, unpolarized cross section, the left-right asymmetry and anomalous Triple Gauge couplings can be determined with a relative precision of $\mathcal{O}\left(10^{-3}\right)$
- Additional studies on the dependence of systematic quantities and their uncertainties will follow

References

- [1] S. Baudrand, M Bouchela, V Brissona, R Chichea, M Jacqueta, S Kurbasova, G Lia, C Pascauda, A Rebouxa, V Soskova, Z Zhanga, F Zomera, M Beckinghamb, T Behnkeb, N Coppolab, N Meynersb, D Pitzlb, S Schmittb, M Authierc, P Deck-Betinellic, Y Queinecc and L Pinardd, A high precision Fabry-Perot cavity polarimeter at HERA, Journal of Instrumentation 2010, (http://www.slac.stanford.edu/cgi-wrap/getdoc/slac-pub-6700.pdf)
- [2] P. C. ROWSON, PRECISION ELECTROWEAK PHYSICS WITH THE SLD/SLC: THE LEFT-RIGHT POLARIZATION ASYMMETRY, SLAC-PUB-6700, December 1994, (http://www.slac.stanford.edu/cgi-wrap/getdoc/slac-pub-6700.pdf)

Backup Slides

Polarized Cross Section Measurement

Measured polarized cross section:

$$\sigma_{\mathsf{data}} = \frac{D - \mathfrak{B}}{\varepsilon \cdot \mathcal{L}}$$

D: Number of selected events

B: Background expectation value

 ε : Detector selection efficiency $\mid \mathcal{L}$:

 \mathcal{L} : Integrated luminosity

Remark:

All of them can variate between the different data sets $(\sigma_{-+},\ \sigma_{+-},\ \sigma_{--},\ \sigma_{++})$

Uncertainty of the polarized cross section is calculated via error propagation

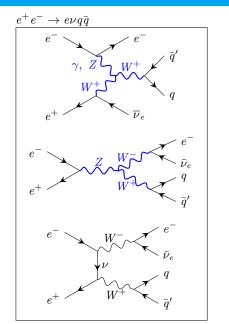
e.g.
$$(\Xi_{\mathcal{L}})_{ij} = \operatorname{corr}\left(\sigma_i^{\mathcal{L}}, \ \sigma_j^{\mathcal{L}}\right) \frac{\partial \sigma_i}{\partial \mathcal{L}_i} \frac{\partial \sigma_j}{\partial \mathcal{L}_j} \Delta \mathcal{L}_i \Delta \mathcal{L}_j \qquad i, j \in \{-+, +-, --, ++\}$$

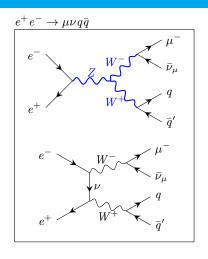
$$\Xi := \underbrace{\Xi_D}_{\substack{\text{statistical} \\ \text{uncertainty}}} + \underbrace{\Xi_{\mathfrak{B}} + \Xi_{\varepsilon} + \Xi_{\mathcal{L}}}_{\text{systematic uncertainty}};$$
systematic uncertainty

Remark:

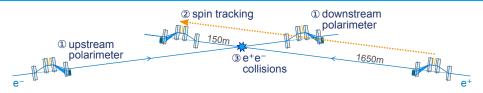
Statistical uncertainty is always uncorrelated: corr $\left(\sigma_i^D,\ \sigma_j^D\right) \equiv \delta_{ij}$ And it is determined by Poisson fluctuations:

TGC Contribution for the Final State





ILC Polarimetry Concept for Permille-Level Polarization Precision



The time-resolved beam polarization:

- Measured with 2 laser-Compton polarimeters before and after the e^-e^+ IP
- Polarimeter precision $\Delta P/P=0.25\%$ from the start
- Extrapolated to the e^-e^+ IP via spin tracking

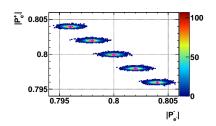
The luminosity-weighed averaged polarization:

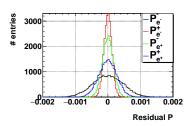
- Calculated from collision data at the IP
- Using the cross section measurement of well known standard model processes

Combination of both measurements

 \rightarrow With the aim to reach the permille-level precision $\Delta P/P=0.1\%$

Testing for a Non-Perfect Helicity Reversal





▶ Variation in the absolute polarization

- Toy Measurement for 5 different polarization discrepancies for both beams
- Nominal initial polarizations: $|P_{e^+}| = 80\%$, $|P_{e^+}| = 30\%$
- Statistical uncertainties only
- $ightharpoonup \chi^2$ -Fit:
 - Correct determination of the 4 polarization values
 - No noticeable impact on polarization precision using total cross sections
- Can compensate for a non-perfect helicity reversal

Consider Constraints from the Polarimeter Measurement

Simplified approach: (as a first step)

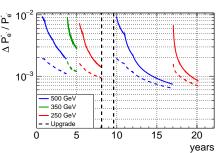
- Neglect spin transport
- ▶ Using $\Delta P/P = 0.25\%$:
- ► Gaussian distribution
 - Mean: $|P_{e^-}| = 80\%, |P_{e^+}| = 30\%$
 - Width: ΔP

Implementation:

$$\chi'^2 = \chi^2 + \sum_P \left[\frac{\left(P_{e^\pm}^\pm - \mathcal{P}_{e^\pm}^\pm\right)^2}{\Delta \mathcal{P}^2} \right]$$

- $P_{e^{\pm}}^{\pm}$: 4 fitted parameters
- $\triangleright \mathcal{P}_{e^{\pm}}^{\pm}$: Polarimeter measurement
- \blacktriangleright $\Delta \mathcal{P}$: Polarimeter uncertainty

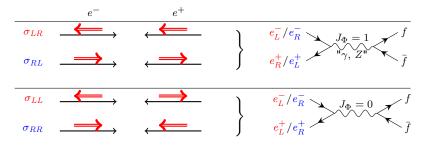
E[GeV]	500	350	250	500	250
$\mathcal{L}[1/fb]$	500	200	500	3500	1500
$[10^{-3}]$	Without Constraint				
$\Delta P_{e^-}^-/P$	1.9	2.8	1.4	0.74	0.84
[10 ⁻³]	With Constraint				
$\Delta P_{e^{-}}^{-}/P$	1.1	1.2	0.93	0.63	0.69



Robert Karl | Polarimetry+EW | 22.03.2018 | 18/12

Polarization at an e^-e^+ Collider

- Consider only one electron positron pair:
 - ▶ Helicity is the projection of the spin vector on the direction of motion
 - ▶ In case of massless particles, helicity is equal to chirality (left and right handedness)
 - If $E_{\rm kin}\gg E_0 \longrightarrow m_e \approx 0$ e.g. ILC: $E_{\rm kin}/E_0 \approx \mathcal{O}\left(10^5-10^6\right)$



▶ For a bunch of particles the polarization *P* is defined as:

$$P:=rac{N_R-N_L}{N_R+N_L} \qquad egin{cases} N_R: & ext{The number of right-handed particles} \ N_L: & ext{The number of left-handed particles} \end{cases}$$

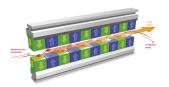
Production of Polarized Beams

Electron beam:

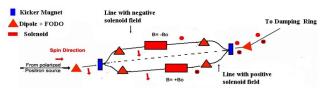
- ▶ Shooting of a circular polarized laser on a photocathode
- ► Switch between polarization signs (helicity reversal)
 - ⇒ Switch between signs of the laser polarization

Positron beam:

- Production of circular polarized γ 's from e^- -beam propagating through a helical undulator
 - \Rightarrow e⁺ obtained via pair-production of the γ 's
- ► Helicity reversal
 - ⇒ Switch between two beam lines



www.xfel.eu/ueberblick/funktionsweise/



Laser-Compton Polarimeters

Spin Tracking

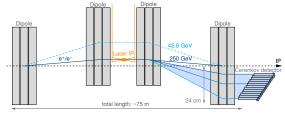
Collision Data

Improvement by Constraints from Polarimeter Measurement

Outlook

Laser-Compton Polarimeters

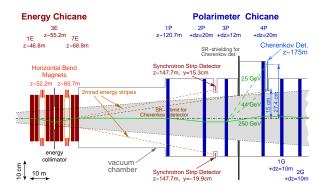
Magnetic chicane of the upstream polarimeters



- Compton scattering of the beam with a polarized Laser
- $\mathcal{O}(10^3)$ particles per bunch $(2\cdot 10^{10})$ are scattered
- Magnetic chicane: energy spectrum
 ⇒ spatial distribution

- Energy spectrum measurement:
 - ⇒ Counting the scattered particles at different positions
- Design of the magnetic Chicane:
 - ▶ Laser-bunch interaction point moves with beam energy → position of the Compton edge stays the same
 - Orbit of the non-scattered particles is unaffected by the magnetic chicane

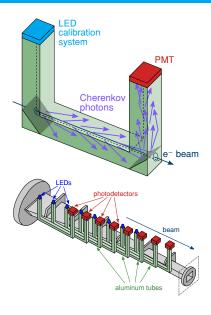
Downstream Polarimeter



Difference to Upstream Polarimeter due to a large disturbed beam

- lacksquare Stronger banding of the beam after $\gamma ext{-IP}$
- 2 additional magnets to restore the beam orbit
- Measuring one bunch per train

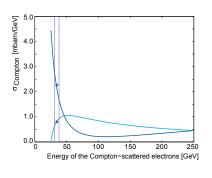
Cherenkov Detectors: Basic Concept



- U-shape channels filled with gas: e.g. perfluorobutane
- Concept
 - Scattered particles propagates through the bottom
 - Produced Cherenkov light is reflected to one end of the channel
 - Light measurement with photomultiplier tube (PMT)
- At the other end: LED for PMT calibration
- Sampling of the energy distribution
 - $\rightarrow \text{Number of Cherenkov detector}$
- Energy resolution
 - → Thickness of a Cherenkov detector
- Quartz Cherenkov detector concept: Ref.: Theses Annika Vauth

http://bib-pubdb1.desy.de/record/171400

Differential Compton Cross Section



Energy dependence:

$$\frac{\mathrm{d}\sigma_C}{\mathrm{d}y_C} = \frac{2\pi r_e^2}{x_C} \left(a_C + \lambda \mathcal{P} \cdot b_C\right); \quad y_C := 1 - \frac{E'}{E}$$

 e^- Polarization: \mathcal{P} ; Laser Polarization: λ

DarkBlue: $\lambda \mathcal{P} = +1$

Cyan: $\lambda \mathcal{P} = -1$

Calculating \mathcal{P}_i of the i-th channel with asymmetry A_i , analysing power Π_i

$$A_i := \frac{N_i^- - N_i^+}{N_i^- + N_i^+}; \qquad \Pi_i = \frac{\mathcal{I}_i^- - \mathcal{I}_i^+}{\mathcal{I}_i^- + \mathcal{I}_i^+}; \qquad \mathcal{I}_i^{\stackrel{\bot}{=}} := \int\limits_{E_i - \Delta/2}^{\int\limits_{C}} \frac{\mathrm{d}\sigma_C}{\mathrm{d}y_C} \bigg|_{\lambda \mathcal{P} = \stackrel{\bot}{=} 1} \, \mathrm{d}y_C$$

 $N^{\pm}:=\#e_{\mathsf{Compton}}$ for $\lambda\mathcal{P}=\pm1;\quad E_i:$ energy of $i\text{-th channel};\quad \Delta:$ energy width

$$\Rightarrow \quad \lambda \mathcal{P}_i = \frac{A_i}{\Pi_i} \quad \Rightarrow \quad \mathcal{P} = \langle \mathcal{P}_i \rangle$$

Compton Scattering Cross Section: Formulary

$$\frac{d\sigma}{dy_C} = \frac{2\pi r_e^2}{x_C} \left(a_C + \lambda \mathcal{P} \cdot b_C \right)$$

$$y_C := 1 - \frac{E'_{\gamma}}{E}; \quad x_C := \frac{4EE_{\gamma}}{m_e^2} \cos^2\left(\frac{\vartheta_0}{2}\right)$$

$$r_C := \frac{y_C}{x_C \left(1 - y_C\right)}$$

$$a_C := (1 - y_C)^{-1} + 1 - y_C$$

- $4r_C (1 - r_C)$

$$b_C := r_C x_C (1 - 2r_C) (2 - y_C)$$

 $\begin{array}{ccc} E, \ E_{\gamma}: & e^{-}, \gamma \ {\rm energy \ before} \\ & {\rm Compton \ scattering} \end{array}$

Compton scattering $E',\ E'_{\gamma}\colon\quad e^-,\gamma \ {\rm energy\ after}$ Compton scattering

 $m_e, \ r_e$: mass, classical radius of $e^ \vartheta_0$: crossing angle between e^-, γ

 ${\cal P}$: longitudinal polarization of e^-

 λ : circular polarization of γ_{Laser}

Characteristic Point:

$$E'_{\text{crossover}} = \frac{E}{1 + x_C/2},$$

$$E_{\rm ComptonEdge}' = E_{\rm min}' = \frac{E}{1+x_C}$$

Laser-Compton Polarimeters

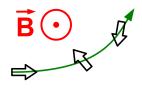
Spin Tracking

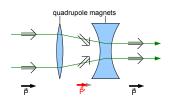
Collision Data

Improvement by Constraints from Polarimeter Measurement

Outlook

Spin Precession





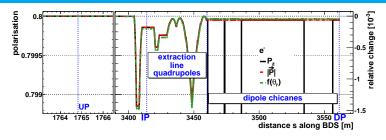
- Polarimeters are 1.65 km and 150 m away from IP
 - $\rightarrow \ \, \text{Particles propagate through magnets}$
 - → Magnets influence the spin, as well
 - → Described by Thomas precession
- $\blacktriangleright \text{ if } \vec{B}_{\parallel} = \vec{E} = 0:$

$$\frac{\mathrm{d}}{\mathrm{d}t}\vec{S} = -\frac{q}{m\gamma}\left(\left(1 + a\gamma\right)\vec{B}_{\perp}\right) \times \vec{S}$$

- Effects from focusing and defocusing can cancel
- For a series of quadrupole magnets $\mathcal P$ described by the angular divergence θ_r

$$f(\theta_r) = |\vec{\mathcal{P}}|_{\text{max}} \cdot \cos((1 + a\gamma) \cdot \theta_r)$$

Spin Tracking



Further causes of longitudinal beam polarization change:

- ightharpoonup Bremsstrahlung: Deceleration by passing through matter \longrightarrow negligible for colliders
- Beamstrahlung:
 Deflection by the em-field of the oncoming bunch during collision
- Synchrotron radiation:
 Deflection by the em-field of accelerator magnets

Systematic Polarization Uncertainty

contribution	$uncertainty \big[10^{-3} \big]$
Beam and polarization alignment at polarimeters and IP ($\Delta \vartheta_{\rm bunch} = 50\mu{\rm rad},~\Delta \vartheta_{\rm pol} = 25{\rm mrad}$)	0.72
Variation in beam parameters (10 $\%$ in the emittances)	0.03
Bunch rotation to compensate the beam crossing angle	< 0.01
Longitudinal precession in detector magnets	0.01
Emission of synchrotron radiation	0.005
Misalignments (10 μ) without collision effects	0.43
Total (quadratic sum)	0.85
Collision effects in absence of misalignments	< 2.2

[Ref.:] Thesis Moritz Beckmann (http://bib-pubdb1.desy.de/record/155874)

Laser-Compton Polarimeters

Spin Tracking

Collision Data

Consider Angular Information by Using differential Cross Section

Improvement by Constraints from Polarimeter Measurement

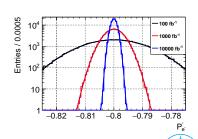
Outlook

χ^2 -Minimization

▶ Defining χ^2 function:

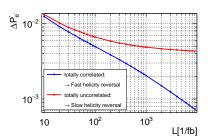
$$\chi^2 \coloneqq \sum_{\text{process}} \sum_{\pm \pm} \frac{\left(\sigma_{\text{data}} - \sigma_{\text{theory}} \left(P_{e^-}^-, \ P_{e^-}^+, \ P_{e^+}^-, \ P_{e^+}^+\right)\right)^2}{\Delta \sigma^2}$$

- $\qquad \qquad \mathbf{Variating} \ \left(P_{e^-}^-, \ P_{e^-}^+, \ P_{e^+}^-, \ P_{e^+}^+\right) \longrightarrow \mathbf{Minimizes} \ \chi^2$
- ► Toy measurement:
 - Signal expectation value: $\langle D \rangle = \sigma_{\text{theory}} \cdot \varepsilon \cdot \mathcal{L} + \mathfrak{B}$
 - One toy experiment: Random Poisson number around each $\langle D \rangle$
 - ▶ Determine $P_{e^{\pm}}^{\pm}$ by minimizing χ^2
 - Simplified case for illustration:
 - ightharpoonup $\mathfrak{B}=0$ and arepsilon=1
 - Statistical uncertainties only
 - ▶ Using 10⁵ toy measruements



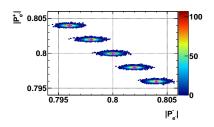
Systematic Uncertainties and their Correlations

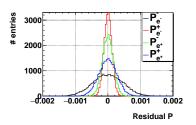
- Systematic Uncertainties are influenced by
 - Detector calibration and alignment
 - Machine performance
 - **>**
- **⇒** Time dependent uncertainties



- Data set are taken one at a time:
 - Slow frequency of helicity reversals:
 O (weeks to months)
 - Data sets are independent
 - → Completely uncorrelated
 - Lead to saturation at systematic precision
- Data sets taken concurrently:
 - Fast frequency of helicity reversals:
 O (train-by-train)
 - → Faster than changes in calibration/alignment
 - → Generate correlations
 - ✓ Lead to cancellation of systematic uncertainties

Testing for a Non-Perfect Helicity Reversal





▶ Variation in the absolute polarization

- ► Toy Measurement for 5 different polarization discrepancies for both beams
- Nominal initial polarizations: $|P_{e^+}| = 80\%$, $|P_{e^+}| = 30\%$
- Statistical uncertainties only

$ightharpoonup \chi^2$ -Fit:

- Correct determination of the 4 polarization values
- No noticeable impact on polarization precision using total cross sections
- Can compensate for a non-perfect helicity reversal

Theoretical Limit of the Statistical Precision

Consider most relevant processes:

Process	Channel		
single W^\pm	e u l u, $e u qar q$		
WW	$q\bar{q}q\bar{q},\ q\bar{q}l\nu,\ l\nu l\nu$		
ZZ	$q ar{q} q ar{q}$, $q ar{q} l l$, $l l l l$		
ZZWWMix	q ar q q ar q, $l u l u$		
Z	$qar{q}$, ll		

- Same processes as for physics analysis (DBD)
- ► Tree-level cross sections + ISR
- Any combination of processes can be used
- Further process can easily added

Consider best case scenario using σ_{tot} :

- \blacktriangleright Assumption of a perfect 4π detector
- No background
- No systematic uncertainties
- Using all considered processes

Statistical precision H-20: $\Delta P/P$ [%]

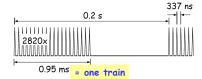
E	500	350	250	500	250
\mathcal{L}	500	200	500	3500	1500
$P_{e^-}^-$	0.2	0.3	0.1	0.08	0.09
$P_{e^-}^+$	0.05	0.06	0.03	0.02	0.02
$P_{e^+}^-$	0.1	0.1	0.06	0.04	0.04
$P_{e^+}^+$	0.2	0.3	0.1	0.08	0.08

Generation of Correlated Uncertainties: Fast Helicity Reversal

Generation of Correlated Uncertainties

- \Rightarrow Change between data sets $(\sigma_{-+}, \ \sigma_{+-}, \ \sigma_{--}, \ \sigma_{++})$ faster than change in detector and accelerator calibration
- ⇒ Change between data sets during normal run without additional breaks

ILC Bunch Structure

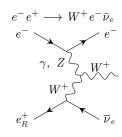


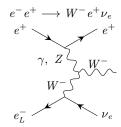
Two possible frequency:

- bunch-by-bunch: switch between tow bunches
- train-by-train: switch between two trains
- ► Technical feasibility much easier for train-by-train
- ▶ Switch train-by-train should be sufficient for polarization precision
- ⇒ Precise correlation coefficient still to do

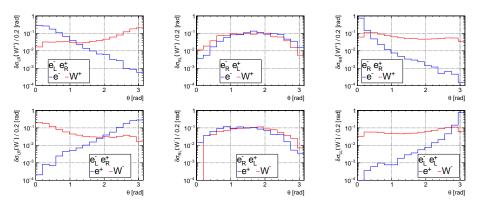
Consideration of the Addition Information from the Angular Distribution

- ► Total cross section
 - Rely on theoretical calculation
 - ⇒ Susceptible to BSM effects
- Differential cross section
 - Additional usage of the angular information
 - ⇒ Increase of the robustness against BSM effects
- Starting with Single W Process
 - Angular distribution has a large dependence on the chirality
 - $lackbox{ Separated in } W^+ \ {\rm and} \ W^- \ {\rm production}$
 - ⇒ Sensitive to individual beam polarization
 - $ightharpoonup W^+$: only sensitive to P_{e^+}
 - $ightharpoonup W^-$: only sensitive to P_{e^-}
- Further processes can easily be included





Single W^\pm : Polar Production Angle Distribution



- ▶ Single differential cross section: $\partial \sigma/\partial \theta$
 - ▶ Two independent angles: $\theta_e, \ \theta_W$
 - lacktriangle For now start with $heta_e
 ightarrow e^\pm$ also needed for separation between W^\pm
- $ightharpoonup \partial \sigma/\partial \theta$ will be calculated via $\Delta \sigma_i/\Delta \theta_i$ ("cross section for the *i*-th bin in θ ")

Usage of the Differential Polarized Cross Section

- ► Total cross section
 - Rely on theoretical calculation
 - ⇒ Susceptible to BSM effects
- Differential cross section
 - Additional usage of the angular information
 - → Increase of the robustness against BSM effects

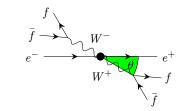
Bin-wise cross section calculation:

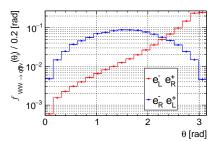
$$\begin{array}{cccc} & \underset{\text{cross section}}{\operatorname{differential}} & & \underset{\text{of the i-th bin}}{\operatorname{cross section}} & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

Analog: RL, LL, RR

- $\delta_i N$: events of *i*-th bin
- $f(\theta_i)$: fraction of the total cross section

e.g.:
$$e^+e^- \rightarrow W^+W^- \rightarrow q\bar{q}l\nu$$





DEST

Defining Differential Cross Sections

Measured cross section:

$$\overbrace{\frac{\partial \sigma}{\partial \theta}}^{\text{cross section}} \longrightarrow \overbrace{\delta_i \sigma_{\text{data}}}^{\text{cross section per } i \text{th bin}} := \frac{\delta_i D - \delta_i \mathfrak{B}}{\delta_i \varepsilon \cdot \mathcal{L}}$$

- $\delta_i D$ Number of signal events
- $\delta_i \mathfrak{B}$ Number of expected background events
- $\delta_i \varepsilon$ Selection efficiency
 - \mathcal{L} Integrated luminosity

Theoretical cross section:

$$\begin{split} \delta_{i}\sigma_{\pm\pm} &= \frac{\left(1\pm\left|P_{e^{\pm}}^{\pm}\right|\right)}{2}\frac{\left(1\pm\left|P_{e^{\pm}}^{\pm}\right|\right)}{2}\delta_{i}\sigma_{RR} &+ \frac{\left(1\mp\left|P_{e^{\pm}}^{\pm}\right|\right)}{2}\frac{\left(1\mp\left|P_{e^{\pm}}^{\pm}\right|\right)}{2}\delta_{i}\sigma_{LL} \\ &+ \frac{\left(1\pm\left|P_{e^{\pm}}^{\pm}\right|\right)}{2}\frac{\left(1\mp\left|P_{e^{\pm}}^{\pm}\right|\right)}{2}\delta_{i}\sigma_{RL} &+ \frac{\left(1\mp\left|P_{e^{\pm}}^{\pm}\right|\right)}{2}\frac{\left(1\pm\left|P_{e^{\pm}}^{\pm}\right|\right)}{2}\delta_{i}\sigma_{LR} \\ \delta_{i}\sigma_{\text{theory}} &:= f\left(\theta_{i}\right) \cdot \sigma_{\text{theory}} \end{split}$$

 $f\left(\theta_{i}\right)$ is directly obtained from the angular distributions

Implementing Differential Cross Sections in the χ^2 Minimization

Replacing: $\sigma \longrightarrow \delta_k \sigma + \mathsf{Sum}$ over all bins

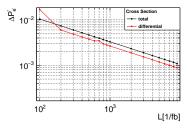
$$\begin{split} \chi^2 &= \sum_{\text{process}} \sum_{\theta_k} \left(\delta_k \vec{\sigma}_{\text{data}} - \delta_k \vec{\sigma}_{\text{theory}} \right)^T \left(\delta_k \Xi \right)^{-1} \left(\delta_k \vec{\sigma}_{\text{data}} - \delta_k \vec{\sigma}_{\text{theory}} \right) \\ \delta_k \vec{\sigma} &:= \left(\delta_k \sigma_{-+} \quad \delta_k \sigma_{+-} \quad \delta_k \sigma_{--} \quad \delta_k \sigma_{++} \right)^T \\ \delta_k \Xi &:= \delta_k \Xi_N + \delta_k \Xi_{\mathfrak{B}} + \delta_k \Xi_{\varepsilon} + \delta_k \Xi_{\mathcal{L}}; \\ \left(\delta_k \Xi_{\varepsilon} \right)_{ij} &= \operatorname{corr} \left(\vec{\sigma}_i^{\varepsilon}, \ \vec{\sigma}_j^{\varepsilon} \right) \frac{\partial \left(\delta_k \vec{\sigma}_i \right)}{\partial \left(\delta_k \varepsilon_i \right)} \frac{\partial \left(\delta_k \vec{\sigma}_j \right)}{\partial \left(\delta_k \varepsilon_j \right)} \Delta \left(\delta_k \varepsilon_i \right) \Delta \left(\delta_k \varepsilon_j \right) \end{split}$$

Remarks:

- Due to correlations, the binning in θ has to be equal for all cross sections
- It can differ between processes and decay-channels
- Range and number of bins of θ can be changed externally for each process

First Toy Measurements: Preliminary Results

Single W^{\pm} only



Using the following configuration:

- lacksquare Using 16 equal bins in a heta range of $[0,\ \pi]$
- Signal determination bin-by-bin: $\langle \delta_k D \rangle = \delta_k \sigma_{\text{theory}} \cdot \delta_k \varepsilon \cdot \mathcal{L} + \delta_k \mathfrak{B}$
- ► For the start: Statistical error only + no background
- Using H-20 integrated luminosity sharing due to energy
- ▶ Differential cross section have a lower statistic uncertainty:
 - ▶ Expectation of $\delta_k D$ can be for some bins $\mathcal{O}(1)$
 - lacktriangle Some zero diagonal entries of the covariance matrix ightarrow not invertible
 - \Rightarrow Dropping χ^2- terms with $\delta_k D=0$
- Further steps:
 - lackbox Optimizing the heta range and binning
 - Including further processes

