Start-to-end simulations of the self-modulation experiment at PITZ

Osip Lishilin

DPG Frühjahrstagung
Würzburg, March 22, 2018
Photo Injector Test facility @DESY Zeuthen site

Self-modulation experiment layout

- Flexible photocathode laser system
 - Arbitrary longitudinal pulse shape
 - Up to 24 ps FWHM long, 2 ps fronts
- Electron beam momentum up to 25 MeV/c after Booster
- Electron beam charge up to 5 nC
- Longitudinal phase space measurement employing a transverse deflecting cavity (TDS) and a dipole spectrometer. Temporal resolution up to 0.3 ps, momentum resolution up to 10 keV/c
Next generation plasma cell

Entrance electron window: 0.9 \text{ um} \mu \text{m} \text{ PET foil coated with 37.5 nm Al both sides}
SMI Experimental Results: 1) Time Resolved Beam

- The first direct time-resolved experimental observation of a self-modulated electron beam

Q=970 pC
Plasma density: $\approx 10^{14}$ cm$^{-3}$
Simulations of the SMI experiment at PITZ | Osip Lishilin | 2018-03-22

SMI Experimental Results: 2) Longitudinal Phase space

- Momentum modulation with 200 keV/c amplitude

Q=970 pC
Plasma density: $\approx 1.3 \times 10^{14} \text{ cm}^{-3}$
SMI Experimental Results 3): Self-Modulation vs plasma density

- Measured time resolved electron bunch for different delays of the electron bunch arrival time relative to the ionization laser pulse

Gross et al., accepted for publication at Physical Review Letters
Start-to-end simulations

Astra+HiPACE

- ASTRA: tracking from cathode plane to the plasma cell
- HiPACE: beam-plasma interaction
- ASTRA: tracking the electron beam to the measurement stations
Focusing into the plasma

Imain = 385 A

Imain = 393 A

Imain = 396 A
Beam evolution

Imain = 385 A. The beam head is overdense -> nonlinear field evolution

Imain = 393 A. The beam is overdense -> plasma focusing, SMI is suppressed

Imain = 395 A. The beam density is relatively homogeneous -> SMI is developed
The overfocused beam behaves as predicted by the SMI theory

Simulations of the measurements

PST.Scr1:
\[\sigma_{xy} = 0.343 \text{ mm} \]

High2.Scr2:
\[\sigma_x = 0.39 \text{ mm} \]
\[\sigma_y = 0.44 \text{ mm} \]
Summary

- Simulations demonstrate:
 - Three regimes of beam-plasma interaction are possible for the experimental conditions
 - Measurements downstream the plasma cell reflect beam properties and allow to distinguish these regimes
- Combination of the longitudinal beam profile and longitudinal phase space measurements indicate on the self-modulation instability
- This summer: experiment with a higher plasma density and a variable plasma channel length (direct observation of the saturation length)